首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this research is to study the dynamic responses of gravity quay walls with block type consisting of“three blocks”experimentally.For this purpose,1g shaking table tests were conducted under different cyclic loadings for two different saturated granular backfill materials(Soil 1 and Soil 2).In this study,Dn50 of Soil 1 and Soil 2 are selected as 2.2 cm and 1.0 cm,respectively.During the experiments,accelerations,soil pressures and displacements were measured for each block.Test results pointed out that Soil 2 caused more damage on structures.The measurements for displacement and tilting of each block were discussed in view of“acceptable level of damage in performance-based design”given in PIANC(2001).The result of the study showed that the definitions of damaged levels given in PIANC(2001)were reliable for using in performance-based methods for seismic design of block type quay walls.  相似文献   

2.
The wave transmission, reflection, and energy dissipation of the double rows of vertical piles suspending horizontal steel C shaped bars are experimentally and theoretically studied under normal regular waves. Different wave and structural parameters are investigated e.g. the wave length, the C shaped bars draft and spacing, the supporting piles diameter and spacing, and the space between the double rows. Also, the theoretical model based on an eigenfunction expansion method is developed to study the hydrodynamic breakwater performance. In order to examine the validity of the theoretical model, the theoretical results are compared with the experimental and theoretical results obtained by different authors. Comparison between experiments and predictions showed that theoretical model provides a good estimate to the different hydrodynamic coefficients when the friction factors of the upper and the lower parts are fU = 1.5 and fL = 0.75. The present breakwater physical model gives efficiency near other similar systems of different shapes.  相似文献   

3.
4.
Between 1988 and 1994, twenty time-series sediment traps were deployed at different water depths in the Canary Island region, off Cape Blanc (Mauritania), and off Cape Verde (Senegal). Lithogenic particle fluxes and grain size distributions of the carbonate-free fraction of the trapped material show a high impact of dust transported either in the northeast trade winds or the Saharan Air Layer (SAL). Highest annual mean lithogenic fluxes (31.2–56.1 mg m-2 d-1) were observed at the Cape Blanc site, and largest annual mean diameters (>6 μm) were found off Cape Verde (14.5–16.9 μm) and off Cape Blanc (15.2–16.7 μm). Lowest annual lithogenic fluxes (11.4–21.2 mg m-2 d-1 ) and smallest mean diameters (13.5–13.7 μm) occurred in the Canary Island region. A significant correlation of organic carbon and lithogenic fluxes was observed at all sites. Off Cape Blanc, fluxes and mean diameters correlated well between upper (around 1000 m depth) and lower traps (around 3500 m depth), indicating a fast and mostly undisturbed downward transport of particulate matter. In contrast, a major correlation of fluxes without correlating mean diameters occurred in the Canary Island region, which translates into a fast vertical transport plus scavenging of laterally advected material with depth at this site. The seasonality of lithogenic fluxes was highest in the Canary Island region and off Cape Verde, reflecting strong seasonal patterns of atmospheric circulation, with highest occurrence of continental winds in the trade wind layer during winter. In addition, grain size statistics reflect a dominant change of dust transport in the trade winds during winter/spring and transport in the SAL during summer 1993 at the Cape Verde site. Highest lithogenic fluxes during winter were correlated with mean diameters around 10–13 μm, whereas lower fluxes during summer consisted of coarse grains around 20 μm. Annual mean dust input wascalculated from lithogenic fluxes in the range 0.7×106–1.4×106 t yr-1, roughly confirming both sediment accumulation rates and atmospheric model calculations reported previously from this area.  相似文献   

5.
The interaction between waves and artificial reefs (ARs; a hollow cube weighing 8.24 kN (0.84 t) and a water pipe weighing 1.27 kN (0.13 t)) in shallow waters was investigated with respect to variations in design weight, orientation (for cube; 45° and 90° angles, for pipe; 0°, 90°, and 180° angles to flow), depth (1–20 m), and bottom slope (10?1, 30?1, and 50?1). Physics equations and FLUENT software were used to estimate resisting and mobilising forces, and drag coefficients. Drag coefficients for the hollow cube were 0.76 and 0.85 at 45° and 90° angles to the current, respectively, and 0.97, 0.38, and 1.42 for the water pipe at 0°, 90°, and 180° angles to the current, respectively. Deepwater offshore wave conditions at six stations were transformed into shallow nearshore waters representative of the artificial reef site. Waters deeper than 12 and 16 m are safe to deploy blocks with angles of 45° and 90°, respectively. However, water pipes constructed at angles of 90° and 180° to the current were estimated as being unstable for 365 out of 720 cases at all stations (only one station was stable for all cases). Water pipes angled at 0° were found to be stable in all 360 cases. Slope had a significant effect on weight and depth. Results from this study provide an important reference for engineers performing projects aiming to increase the performance and service life of ARs.  相似文献   

6.
In this paper, theoretical models are developed and numerical methods are used to analyze the loads, motions and cavity dynamics for freefall wedges with different deadrise angles vertically entering the water surface at Froude numbers: 1  Fn < 9. The time evolutions of the penetration depth, the velocity and the acceleration are analyzed and expressed explicitly. The maximum and average accelerations are predicted. The theoretical results are compared with numerical data obtained through a single-fluid BEM model with globally satisfactory agreement. The evolution of the pressures on the impact side is investigated. Before flow separation, gravity and the acceleration of the wedge have negligible influence on the pressure on the impact side for large Froude numbers or small deadrise angles; with increasing the deadrise angle or decreasing Froude number, the effects of gravity and the acceleration of the wedge tend to become more important. Global loads, with the main emphasis on the drag coefficient, are also studied. It is found that for the light wedge, the transient drag coefficient has slow variation in the first half of the collapse stage and rapid variation in the last half of the collapse stage. For the heavy wedge, the transient drag coefficients vary slowly during the whole collapse stage and can be treated as constant. The characteristics of the transient cavity during its formation are investigated. The non-dimensional pinch-off time, pinch-off depth and submergence depth at pinch-off scale roughly linearly as the Froude number.  相似文献   

7.
The aim of this paper is to evaluate the accuracy, stability and efficiency of the overset grid approach coupled with the RANS (Reynolds Averaged Navier-Stokes) model via the benchmark computations of flows around a stationary smooth circular cylinder. Two dimensional numerical results are presented within a wide range of Reynolds numbers (6.31 × 104  7.57 × 105) including the critical flow regime. All the simulations are carried out using the RANS solver pimpleFoam provided by OpenFOAM, an open source CFD (Computational Fluid Dynamics) toolkit. Firstly, a grid convergence study is performed. The results of the time-averaged drag and lift force coefficients, root-mean square value of lift force coefficient and Strouhal number (St number) are then compared with the experimental data. The velocity, vorticity fields and pressure distribution are also given. One main conclusion is that the numerical solutions in regard to a fixed cylinderare not deteriorated due to the implementation of the overset grid. Furthermore, it can be an appealing approach to facilitate simulations of Vortex Induced Vibrations (VIV), which involves grid deformation. The present study is a good start to implement the overset grid to solve VIV problems in the future.  相似文献   

8.
A new algorithm using a multivariate regression technique for retrieving sea surface specific humidity (Q) from remote sensing data from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) is proposed. Daily and monthly specific humidity data from the National Center for Environmental Prediction (NCEP) reanalysis dataset and data of sea surface temperature, atmospheric total water vapor, and wind speed from AMSR-E oceanographic products were used to derive the regression coefficients of the algorithm, and all the data for derivation are from the year 2003. An F-test was applied to the regression, and small P-values indicate that the regressions are significant to a high level of confidence. The derived coefficients have been validated using similar data from the year 2004. The root mean square (rms) error of the algorithm for daily retrieved Q over the global oceans is 1.05 g kg−1, and the rms error for monthly retrieved Q is 0.61 g kg−1.  相似文献   

9.
The water mass structure and circulation of the continental shelf waters west of the Antarctic Peninsula are described from hydrographic observations made in March–May 1993. The observations cover an area that extends 900 km alongshore and 200 km offshore and represent the most extensive hydrographic data set currently available for this region. Waters above 100–150 m are composed of Antarctic Surface Water and its end member Winter Water. Below the permanent pycnocline is a modified version of Circumpolar Deep Water, which is a cooled and freshened version of Upper Circumpolar Deep Water. The distinctive signature of cold and salty water from the Bransfield Strait is found at some inshore locations, but there is little indication of significant exchange between Bransfield Strait and the west Antarctic Peninsula shelf. Dynamic topography at 200 m relative to 400 m indicates that the baroclinic circulation on the shelf is composed of a large, weak, cyclonic gyre, with sub-gyres at the northeastern and southwestern ends of the shelf. The total transport of the shelf gyre is 0.15 Sv, with geostrophic currents of order 0.01 m s-1. A simple model that balances across-shelf diffusion of heat and salt from offshore Upper Circumpolar Deep Water with vertical diffusion of heat and salt across the permanent pycnocline into Winter Water is used to explain the formation of the modified Circumpolar Deep Water that is found on the shelf. Model results show that the observed thermohaline distributions across the shelf can be maintained with a coefficient of vertical diffusion of 10-4 m2 s-1 and horizontal diffusion coefficients for heat and salt of 200 and 1200 m2 s-1, respectively. When the effects of double diffusion are included in the model, the required horizontal diffusion coefficients for heat and salt are 200 and 400 m2 s-1, respectively.  相似文献   

10.
The response of an oscillating circular cylinder at the wake of an upstream fixed circular cylinder was classified by different researchers as galloping, wake induced galloping or wake induced vibration. Furthermore it is already known that a sharp edge square cylinder would undergo galloping if it is subjected to uniform flow. In this study the influence of the wake of a fixed circular cylinder on the response of a downstream square cylinder at different spacing ratios (S/D = 4, 8, 11) is experimentally investigated. The subject appears not to have received previous attention. The lateral displacements, lift forces and the pressure data from gauges mounted in the wake of the oscillating cylinder are recorded and analyzed. The single degree of freedom vibrating system has a low mass-damping parameter and the Reynolds number ranges from 7.7 × 102 to 3.7 × 104.In contrast to that for two circular cylinders in tandem arrangement, the freely mounted downstream square cylinder displays a VIV type of response at all spacing ratios tested. There is no sign of galloping or wake induced galloping with the square cylinder. With increase at the spacing ratio the cross-flow oscillations decrease. It is shown that the vortices arriving from the upstream fixed circular cylinder play a major role on the shedding mechanism behind the downstream square cylinder and cause the square cylinder to shed vortices with frequencies above Strouhal frequency of the fixed square cylinder (St = 0.13). The VIV type of oscillations in the downstream square cylinder is most probably caused by the vortices newly generated behind the square cylinder.  相似文献   

11.
Prey selection and knowledge of the amounts of water processed by the early stages of the common jellyfish Aurelia aurita may at certain times of the year be crucial for understanding the plankton dynamics in marine ecosystems with mass occurrences of this jellyfish. In the present study we used two different methods (“clearance method” and “ingestion-rate method”) to estimate the amount of water cleared per unit of time of different types and sizes of prey organisms offered to A. aurita ephyrae and small medusae. The mean clearance rates of medusae, estimated with Artemia sp. nauplii as prey by both methods, agreed well, namely 3.8 ± 1.4 l h? 1 by the clearance method and 3.2 ± 1.1 l h? 1 by the ingestion-rate method. Both methods showed that copepods (nauplii and adults) and mussel veligers are captured with considerably lower efficiency, 22 to 37% and 14 to 30%, respectively, than Artemia salina nauplii. By contrast, the water processing rates of ephyrae measured by the clearance method with A. salina nauplii as prey were 3 to 5 times lower than those measured by the ingestion-rate method. This indicates that the prerequisite of full mixing for using the clearance method may not have been fulfilled in the ephyrae experiments. The study demonstrates that the predation impact of the young stages of A. aurita is strongly dependent on its developmental stage (ephyra versus medusa), and the types and sizes of prey organisms. The estimated prey-digestion time of 1.3 h in a steady-state feeding experiment with constant prey concentration supports the reliability of the ingestion-rate method, which eliminates the negative “container effects” of the clearance method, and it seems to be useful in future jellyfish studies, especially on small species/younger stages in which both type and number of prey can be easily and precisely assessed.  相似文献   

12.
A new fuel consumption monitoring system was set up for research purpose in order to evaluate the energy performance of fishing vessels under different operating conditions. The system has been tested on two semi-pelagic pair trawlers in the Adriatic Sea with an engine power of around 900 kW, and with length overall of around 30 m. Both vessels work with a gear of similar design and size, the differences between the two vessels are in the propeller design and the hull material: the first with a controllable pitch propeller (CPP) and a metal hull, the second with a fixed pitch propeller (FPP) and a wooden hull. The fuel monitoring system conceived at CNR-ISMAR Ancona (Italy) consists of two mass flow sensors, one multichannel recorder and one GPS data logger. The working time duration, the vessel speed, the total fuel consumption and the instant fuel rate were logged by the system. A typical commercial round trip for a semi-pelagic trawler consists of several fishing operations (steaming, trawling sailing, etc.). Fuel consumption rate and vessel speed data were used to identify energy performance under different vessel-operating conditions. The highest fuel demands were during the trawling (130 l/h at 4.4 kn) and the steaming (100–130 l/h at 11 kn) phases. Fuel savings of up to 15% could be obtained by reducing the navigation speed of half a knot.  相似文献   

13.
In this study we investigated the impacts of potential changes of land cover due to sea-level rise (SLR) on storm surge (i.e., the rise of water above normal sea level, namely mean-sea level and the astronomical tide, caused by hurricane winds and pressure) response inside bays on the lower Texas coast. We applied a hydrodynamic and wave model (ADCIRC + SWAN) forced by hurricane wind and pressure fields to quantify the importance of SLR-induced land cover changes, considering its impacts by changing bottom friction and the transfer of wind momentum to the water column, on the peak surge inside coastal bays. The SLR increments considered, 0.5 m to 2.0 m, significantly impacted the surge response inside the bays. The contribution of land cover changes due to SLR to the surge response, on average, ranged from a mean surge increase of 2% (SLR of 0.5 m) to 15% (SLR of 2.0 m), in addition to the SLR increments. The increase in surge response strongly depended on storm condition, with larger increases for more intense storms, and geographical location. Although land cover changes had little impact on the surge increase for SLR increments lower than 1.0 m, intense storms resulted in surge increase of up to 10% even for SLR below 1.0 m, but in most cases, the geometry changes were the major factor impacting the surge response due to SLR. We also found a strong relationship between changes in bottom friction and the surge response intensification; demonstrating the importance of considering land cover changes in coastal regions that are highly susceptible to SLR when planning for climate change.  相似文献   

14.
In this paper, the evolution of focused waves using different paddle displacements (piston type) under laboratory conditions is presented. It is well known that in intermediate water depths, linear paddle displacements will generate spurious, free, sub and super harmonics. Thus, a second order correction to suppress these spurious free sub and super harmonics was used to generate the focused waves. The focused waves were generated in the laboratory using a linear superimposition principle, in which the wave paddle displacement is derived based on the sum of a number of sinusoidal components at discrete frequencies, whose phases are accordingly set to focus at a particular location. For this method of generation, the second order wave maker theory proposed by Schäffer [24] can be easily adopted and was used in the present study. Two different centre frequencies (fc = 0.68 Hz and 1.08 Hz) with three different bandwidth ratios (Δf/fc = 0.5, 0.75 and 1.0) were tested in a constant water depth, to consider both narrow and broadband spectra. These test cases correspond to wave focusing packets propagating in intermediate and deep water regions. Further, for each wave packet, two different amplitudes were considered in order to analyze non-breaking and breaking cases. Thus, by systematically generating the wave packets using the linear and second order paddle displacements, the analysis was carried out for the spectral and temporal evolution of selected long waves. The temporal evolution of the selected harmonics was analyzed using the Inverse Fast Fourier Transform (IFFT), to show the propagation of the spurious, free, long waves. Further, the variations in energy for the lower, higher and primary frequency ranges are reported for different wave paddle displacements. The analysis revealed that for the broadband spectrum the differences are more pronounced when using linear paddle displacements. We have also noticed a shift in focusing/breaking location and time (i.e. premature) due to the increase in crest height using linear displacements. The experiment data used in this paper has been provided as a supplementary, which can be used to validate the numerical models.  相似文献   

15.
《Coastal Engineering》2006,53(11):929-945
A finite difference model based on a recently derived highly-accurate Boussinesq-type formulation is presented. Up to the third-order space derivatives in terms of the velocity variables are retained, and the horizontal velocity variables are re-formulated in terms of a velocity potential. This decreases the total number of unknowns in two horizontal dimensions from seven to five, simplifying the implementation, and leading to increased computational efficiency. Analysis of the embedded properties demonstrates that the resulting model has applications with errors of 2 to 3% for (wavenumber times depth) kh  10 in terms of dispersion and kh  4 in terms of internal kinematics. The stability and accuracy of the discrete linearised systems are also analysed for both potential and velocity formulations and the advantages and disadvantages of each are discussed. The velocity potential model is then used to study physically demanding problems involving highly nonlinear wave run-up on a bottom-mounted (surface-piercing) plate. New cases involving oblique incidence are considered. In all cases, comparisons with recent physical experiments demonstrate good quantitative accuracy, even in the most demanding cases, where the local wave steepness can exceed (waveheight divided by wavelength) H / L = 0.20. The velocity potential model is additionally shown to have numerical advantages when dealing with wave–structure interactions, requiring less smoothing around exterior structural corners.  相似文献   

16.
《Ocean Engineering》2007,34(8-9):1069-1079
This paper presents the results of a series of centrifuge model tests performed to study the behavior of suction bucket foundations for a tension leg platform in the Bohai Bay, China. The target lateral loadings were from ice-sheet-induced structural vibrations at a frequency of 0.8–1.0 Hz. The results indicate that excess pore water pressures reach the highest values within a depth of 1.0–1.5 m below the mud line. The pore pressures and the induced settlement and lateral displacement increase with the amplitude of the cyclic loading. Two failure modes were observed: liquefaction in early excitations and settlement-induced problems after long-term excitations.  相似文献   

17.
《Marine Geology》2001,172(3-4):287-307
Submarine volcaniclastic deposits, both modern and ancient, pose a conundrum in distinguishing between syn- and post-eruptive processes. High-standing, submarine volcanic edifices of the late Quaternary southern Kermadec arc (SW Pacific) are point sources of pyroclastic/hyaloclastic deposits that are bathed and modified by a complex current system of the South Pacific gyre flowing southeast along the northern margin of New Zealand, which in part comprises the anticyclonic flow of the warm-cored East Cape Eddy (ECE). Flow of the ECE across the southern Kermadec arc provides a present-day case of extensive and in situ, post-eruptive, textural modification of modern pyroclastic/hyaloclastic deposits on the crests and upper flanks of submarine stratovolcanoes. Photographic observations (and limited textural data) from seven Kermadec volcanoes reveal pervasive evidence of sediment winnowing (including crag and tail structures, scour and moating around volcanic blocks, coarse sand-granule lag deposits, epifaunal deflection, lineated mud streaking, and moulded bioturbation mounds) and asymmetric current-ripple bedforms at water-depths of at least 1500 m. All bedforms indicate increasing current speed at progressively higher elevations (decreasing water-depth) for each volcano. Current-ripples mostly have discontinuous, asymmetric, shorted-crested, linguoid–lunate forms below 1000 m water-depth, progressing to semi-continuous, asymmetric, shorted-crested, linear-sinuous forms above 500 m. Current elutriation of the Kermadec deposits progressively removes fines with decreasing water-depth resulting in relatively fines-depleted, volcaniclastic sands and granules. This post-eruptive process overprints syn-eruptive processes that notionally generate more comminuted fine-grained clasts with decreasing water-depth as phreatomagmatic explosive eruptions become more vigorous. Current-elutriation also modifies volcaniclastic detritus prior to subsequent removal by episodic, mass-gravity flow. In addition the sand-granule traction load, driven by current-flow, moves sediment nearly continuously to gully and rill heads for removal down-slope, independently of syn-eruptive sediment flux. The underlying observation is that volcaniclastic deposits rarely reflect just syn-eruptive processes, and that significant in situ current-elutriation of at the least surficial pyroclastic/hyaloclastic eruption products can occur on submarine volcanoes.Threshold current velocities, derived assuming unidirectional flow over cohesionless sand-lapilli grainsizes, and accounting for bed friction, yield current velocities (at 100 cm above the bed) of ≤15 cm s−1 for water-depths >1500 m through to ∼70 cm s−1 for depths <500 m at the crests of Rumble III and V volcanoes. Estimated velocities are consistent with short-term current velocities of 30–40 cm s−1, measured directly from either acoustic doppler current profile data or relative geostrophic flow, since the latter do not account for seafloor topographic intensification. The variable hydrographic climatology of the ECE, known from sea-surface dynamic heights and repeat CTD surveys, is possibly recorded by seafloor substrates as evinced by worm-trails post-dating ripple formation and differing orientations of winnowed structures and ripples.  相似文献   

18.
This study examines the parasite fauna of Bathypterois mediterraneus, the most common fish below 1500 m in Western Mediterranean waters. Samples were obtained during July 2010 from the continental slope of two different areas (off Catalonia and Balearic Islands) in three different bathymetric strata at depths between 1000 and 2200 m. The parasite fauna of B. mediterraneus included a narrow range of species: Steringophorus cf. dorsolineatum, Scolex pleuronectis, Hysterothylacium aduncum, Anisakis sp. larva 3 type II and Sarcotretes sp. Steringophorus cf. dorsolineatum and H. aduncum were the most predominant parasites. H. aduncum showed significant differences in abundance between depths of 2000–2200 m with 1000–1400 m and 1400–2000 m, irrespective of locality, whereas S. cf. dorsolineatum showed significant differences between the two localities at all depths except for 2000–2200 m. We suggest the possible usefulness of these two parasites as geographical indicators for discriminating discrete stocks of B. mediterraneus in Western Mediterranean waters.  相似文献   

19.
Investigation of the bottom slope effects on the nonlinear transformation of irregular waves, which are generated based on JONSWAP spectra, is carried out in a physical wave flume with three slopes (β = 1/15, 1/30, 1/45). The slope effects on the estimation of representative wave height are examined first. To obtain a better estimation of wave height, the slope effect should be considered when slope is larger than 1/30. The nonlinear parameters (bicoherence, skewness and asymmetry) are estimated by using the wavelet-based bispectrum, and the empirical formulae regarding these nonlinear parameters as a function of the local Ursell number are derived based on the present data measured on each slope. The results indicate that the slopes have a negligible effect on the variations of the skewness. The fitted coefficients of the formulae for the other parameters on slope β = 1/15 are clearly different from the results on the slopes β = 1/30 and 1/45, indicating that slope influence on the parameterization cannot be ignored when β > 1/30. Hence, new formulae considering the slope effect are presented. Furthermore, the empirical formulae for the data in surf zone are recommended.  相似文献   

20.
The ability to robustly predict future shoreline position under the influence of changing waves and sea-level rise is a key challenge to scientists and engineers alike. While extrapolating a linear trend out in time is a common baseline approach, the recent development of a number of empirical shoreline models allows the prediction of storm and annual-scale variability as well. The largest constraint in applying these models is the availability of high quality, adequate duration data sets in order to calibrate model free parameters. This contribution outlines several such models and discusses the monitoring programs required to calibrate and hindcast shoreline change from 1 to 10 years at two distinct beach types: a storm-dominated site and the second exhibiting a large seasonal variability. The seasonally-dominated site required longer data sets but was less sensitive to sampling interval, while the storm-dominated site converged on shorter, more frequently sampled data sets. In general, calibration based on a single year of observed shorelines resulted in a large range of model skill and was not considered robust. Monitoring programs of at least two years, with shorelines sampled at dt  30 days were sufficient to determine initial estimates of calibration coefficients and hindcast short-term (1–5 years) shoreline variability. In the presence of unresolved model processes and noise, hindcasting longer (5 + years) data sets required longer (5 + years) calibration data sets, particularly when sampling intervals exceeded 60 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号