共查询到13条相似文献,搜索用时 0 毫秒
1.
J. A. Docobo 《Astronomy Letters》2003,29(5):344-347
an extension of the Gylden-Meshcherskii problem when the mass depends both on time and distance between two bodies is considered. certain mass loss laws as well as the Meshcherskii position vector and time transformation are used to convert the problem into the cases with equations of motion arising from integrable potentials. 相似文献
2.
M. H. Gokhale 《Journal of Astrophysics and Astronomy》1986,7(4):241-257
We present preliminary results of a spherical-harmonic-Fourier analysis of sunspot activity during the twenty-two years 1933–1954.
The results indicate that the sunspot activity might be originating in global solar oscillations with periods of years and
decades. However, except for the axisymmetric mode of degree 6, the set of other axisymmetric modes showing ∼ 11 yr periodicities
are different from one sunspot cycle to another. A more detailed analysis, preferably with larger data series, will be needed
to arrive at a more definite conclusion. 相似文献
3.
电子是太阳风粒子中最为重要的组分之一,它可以通过多种机制对太阳风产生影响.太阳风中的电子通常具有温度各向异性和束流两种非热平衡分布特征,这些偏离热平衡分布的特征可以通过波粒相互作用激发电子不稳定性和等离子体波动,激发的等离子体波动又可以通过波粒相互作用调制太阳风粒子的分布,从而加热太阳风中的背景粒子.因此电子动力学不稳定性在太阳风的演化过程中扮演了极为重要的角色.详细介绍了太阳风中常见的电子动力学不稳定性,并基于等离子体动力论,详细介绍太阳风传播过程中所出现的各种不稳定性,尤其是在近日球层和太阳大气区域所出现的电子声热流不稳定性以及低混杂热流不稳定性,并分析其波粒相互作用机制,以便更加深入地研究太阳风传播过程中的电子分布函数演化. 相似文献
4.
The most rapid and dramatic evolution in the solar corona occurs in events now known as Coronal Mass Ejections (CMEs). There have considerable importance for our understanding of the evolution of the mass and energy injected into the interplanetary medium. In this work, we have studied the relation of CMEs with geomagnetic activity for the period of 1988 to 1993. Not all CMEs are capable of producing geomagnetic disturbances. Our study indicates that the maximum chance of a geomagnetic disturbance occurs two to three days after a CME in association with B-type solar flares. 相似文献
5.
6.
The star HD220825 is studied as part of a program to investigate the chemical abundance of CP stars with weak magnetic fields.
Its magnetic field is found to be Be < 100 G. The chemical abundance appears to correspond to that of CP stars with high magnetic
fields. The present results and other data imply that the magnetic field has little effect on the degree of anomaly in the
chemical abundance, although it undoubtedly has an effect. The rotation speed of the star is 37.5 km/s, substantially lower
than for normal stars with the same temperature. The weak magnetic field raises difficulties for the hypothesis that the loss
of angular momentum involves the magnetic field.
__________
Translated from Astrofizika, Vol. 49, No. 4, pp. 585–594 (November 2006). 相似文献
7.
Based on our own observational data, we have constructed the mass functions for three young-and intermediate-age Galactic star clusters, Trumpler 2, NGC 7243, and NGC 1513. Their mean slopes Γ fall within the Scalo range: Γ = ?1.7 ± 0.5 for 1M ⊙ < M < 10M ⊙. For each of the clusters, we also analyze the mass distribution of their members as a function of the distance to the center. Noticeable mass segregation in the sense of massive-star concentration toward the cluster center has been detected in Trumpler 2 and NGC 7243. Deviations from rectilinearity in the same direction are observed at log M ≈ 0.41 in each of the three zones of Trumpler 2, which can be interpreted as a small dip in the mass function. We have found peculiarities in NGC 1513 that are difficult to explain by observational selection alone. Comparison of our results with similar studies reveals a similarity in radial Γ distribution for NGC 7243 with h Per and for Trumpler 2 with IC 1805. 相似文献
8.
O. G. Den 《Astronomy Letters》2002,28(5):345-352
We propose a method for solving the Neumann boundary-value problem using the known magnetic-field component at the boundary in a specified direction (the oblique-derivative problem). The method allows the normal field component at the boundary to be directly determined from the measured line-of-sight component. This makes it possible to calculate the potential magnetic field in the corona above a region far removed from the solar-disk center. A model potential magnetic field is used as an example to test our method. 相似文献
9.
J. O. Stenflo 《Astronomy and Astrophysics Review》1989,1(1):3-48
Summary The Sun provides us with a unique astrophysics laboratory for exploring the fundamental processes of interaction between a turbulent, gravitationally stratified plasma and magnetic fields. Although the magnetic structures and their evolution can be observed in considerable detail through the use of the Zeeman effect in photospheric spectral lines, a major obstacle has been that all magnetic structures on the Sun, excluding sunspots, are smaller than what can be resolved by present-day instruments. This has led to the development of indirect, spectral techniques (combinations of two or more polarized spectral lines), which overcome the resolution obstacle and have revealed unexpected properties of the small-scale magnetic structures. Indirect empirical and theoretical estimates of the sizes of the flux elements indicate that they may be within reach of planned new telescopes, and that we are on the verge of a unified understanding of the diverse phenomena of solar and stellar activity.In the present review we describe the observational properties of the smallscale field structures (while indicating the diagnostic methods used), and relate these properties to the theoretical concepts of formation, equilibrium structure, and origin of the surface magnetic flux.On leave from Institute of Astronomy, ETH-Zentrum, CH-8092 Zürich, SwitzerlandThe National Center for Atmospheric Research is sponsored by the National Science Foundation 相似文献
10.
The problem of particle acceleration in collapsing magnetic traps in the solar corona has been solved by taking into account the particle scattering and braking in the high-temperature plasma of solar flares. The Coulomb collisions are shown to be weak in traps with lifetimes t l < 10 s and strong for t l > 100 s. In the approximation of strong collisions, collapsing magnetic traps are capable of confining up to 20% of the injected particles in the corona for a long time. In the collisionless approximation, this value exceeds 90%. The question about the observational manifestations of collisions is examined. For collision times comparable to t l , the electron spectrumat energies above 10 keV is shown to be a double-power-law one. Such spectra were found by the RHESSI satellite in flares. 相似文献
11.
12.
太阳活动区是太阳大气中产生各种活动现象的区域,精确地检测和识别太阳活动区对理解太阳磁场的形成机制具有极为重要的科学意义.根据太阳活动区结构较为复杂的特点,基于尺度不变特征变换(ScaleInvariant Feature Transform, SIFT)和密度峰值聚类(Clustering by Fast Search and Find of Density Peaks,DPC)算法的优越性,提出了一种太阳活动区的自动检测和识别方法.首先,对太阳动力学天文台(Solar Dynamics Observatory, SDO)日震和磁场成像仪(Helioseismic and Magnetic Imager, HMI)的纵向磁图进行对比度增强;然后采用SIFT方法提取出全日面磁图中的特征点;最后利用DPC算法将特征点进行聚类,从而自动检测和识别出太阳活动区.研究结果表明, SIFT和DPC算法相结合的方法可以在不需要人工交互的情况下准确地自动检测出太阳活动区. 相似文献
13.
E. A. Semenko M. E. Sachkov T. A. Ryabchikova D. O. Kudryavtsev N. E. Piskunov 《Astronomy Letters》2008,34(6):413-422
We present the results of our abundance analysis for the magnetic chemically peculiar star HD 115708 based on high-resolution spectra. The atmospheric chemical composition of HD 115708 (T eff = 7550 K) is shown to be typical of cool Ap stars with a significant ionization disequilibrium for the first and second rare earth ions, which is commonly observed in the atmospheres of pulsating Ap (roAp) stars. Our study of the vertical distribution of elements has shown that Mg, Ca, Cr, and Fe concentrate in deeper atmospheric layers, with their abundances decreasing sharply in the upper layers. The jumps in abundance are 1.5–3 orders of magnitude. Silicon is distributed in depth almost uniformly in the atmosphere of HD 115708. The derived empirical Cr and Fe distributions agree qualitatively with the results of diffusion calculations. Since the atmospheric chemical peculiarities in HD 115708 correspond to roAp stars, we have performed a spectroscopic monitoring to find nonradial pulsations. We have been able to determine only an upper limit for the amplitude of the possible radial velocity pulsations, ~100 m s?1, due to the insufficient temporal resolution and instability of the main stellar spectrograph (MSS) of the 6-m telescope. 相似文献