首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study outputs from four current General Circulation Models (GCMs) were used to project forest fire danger levels in Canada and Russia under a warmer climate. Temperature and precipitation anomalies between 1 × CO2 and 2 × CO2 runs were combined with baseline observed weather data for both countries for the 1980–1989 period. Forecast seasonal fire weather severity was similar for the four GCMs, indicating large increases in the areal extent of extreme fire danger in both countries under a 2 × CO2 climate scenario. A monthly analysis, using the Canadian GCM, showed an earlier start to the fire season, and significant increases in the area experiencing high to extreme fire danger in both Canada and Russia, particularly during June and July. Climate change as forecast has serious implications for forest fire management in both countries. More severe fire weather, coupled with continued economic constraints and downsizing, mean more fire activity in the future is a virtual certainty. The likely response will be a restructuring of protection priorities to support more intensive protection of smaller, high-value areas, and a return to natural fire regimes over larger areas of both Canada and Russia, with resultant significant impacts on the carbon budget.  相似文献   

2.
An attempt is made to identify the response of forest stands to recent climate change in the north of the European part of Russia using the series of Scots pine linear increments. These series are a useful instrument for assessing the spatial variability of internode growth parameters during short (to 30 years) periods. Linear dendrochronological data allow separating climatogenic reactions of organisms from the interannual variability of increments. In other words, this method allows reducing the level of noise which masks the sought dependences.  相似文献   

3.
气候变化背景下中国小麦需水量的敏感性研究   总被引:1,自引:0,他引:1  
利用CROPWAT作物模型模拟分析了过去50年(1961-2010年)及IPCC RCPs情景下未来2020年代(2020-2029年)中国小麦需水量的变化情况。在此基础上,以小麦需水量的变化率作为敏感性因子,对RCP4.5和RCP8.5排放情景下中国小麦需水量的敏感性进行了探讨。结果表明:中国小麦多年平均需水量约为1056.4亿m3,最高值位于黄淮海地区。小麦需水量对气候变化的敏感性存在空间差异,华北和西北地区是小麦需水量的重度和极度敏感区,东北地区以及云贵高原地带是小麦需水量的轻度敏感区,而中国中部及南方部分地区的小麦需水量对气候变化不敏感。不同RCP排放情景下小麦需水量的敏感性分布不同,RCP8.5高排放情景下的小麦需水量敏感性区域比RCP4.5中排放情景下明显扩大,轻度和中度敏感区域扩大尤为明显。  相似文献   

4.
黄河上中游径流对气候变化的敏感性分析   总被引:27,自引:0,他引:27       下载免费PDF全文
利用月水文模型, 采取假定气候方案, 分析了黄河上中游径流对气候变化的敏感性。 结果表明, 径流对降水变化的响应敏感, 对气温变化的响应相对较弱, 如气温不变, 降水增加 10 %时, 径流量约增加 17%。 如降水不变, 气温升高 1 ℃, 则径流减少 5 %左右。 在区域上分布, 中游较上游对气候变化更为敏感。  相似文献   

5.
全球气候变化对中国森林生态系统的影响   总被引:15,自引:0,他引:15  
王叶  延晓冬 《大气科学》2006,30(5):1009-1018
人类活动所引起的温室效应及由此造成的全球气候变化和对全球生态环境的影响正引起人们越来越多的重视.作为全球陆地生态系统一个重要组分,中国的森林生态系统对未来全球气候变化的响应更是人们关注的重点.作者系统地总结了全球气候变化对中国森林生态系统分布、生态系统生产力、森林树种以及森林土壤的影响,指出了现阶段该领域研究中存在的一些问题,并对今后需要加强的一些核心问题与研究重点作了展望.  相似文献   

6.
中国土壤有机碳库及其演变与应对气候变化   总被引:33,自引:0,他引:33  
 通过综述和评价中国土壤,特别是农田土壤有机碳库(以下简称碳库)的现状与演变态势, 讨论其对我国应对气候变化的意义, 提出了我国土壤碳库及其演变与应对气候变化的基本国情是:1) 我国土壤背景碳储量较低且区域分布不均衡;2) 我国土壤固碳效应明显,未来固碳减排潜力显著;3) 技术和政策是实现和提高我国土壤碳汇、促进我国应对气候变化能力建设的重要途径。建议进一步加强对我国农田土壤固碳减排的研发投入, 完善农业应对气候变化的相关政策和鼓励措施体系,研究构建气候友好的新型农业,以期在提高和稳定农业生产力与应对气候变化能力上获得双赢。  相似文献   

7.
The dynamics of the forest at the ecotone of the boreal forest and temperate forest in Northeast China were simulated using the adapted gap model BKPF under global climatic change (GFDL scenario) and doubled CO2 concentrations at 50 years in the future. The response of tree species and species with similar biological characteristics under global climate change and double CO2 concentrations were based on biophysical limits of the tree species in the area and their biological competition. The results showed that after 50 years the stand density and LAI (leaf area index) of the forest growing from a clear-cut would not be significantly different from those under current conditions. Stand productivity would increase about 7%, and stand aboveground biomass would increase 15%. However, the stand density of the current mature forest would be reduced by more than 20%. The stand would be dominated by Quercus mongolica Fisch., Populus davidiana Dode., Betula spp. and other broadleaved tree species, and Quercus mongolica would account for about 50% of the total density. The stand biomass would be reduced by more than 90%. Quercus mongolica would comprise about 57% of the total stand biomass. The stand productivity would not change significantly, but it would be comprised mainly of Quercus mongolica, Populus davidiana, Betula spp. The current stand height would decrease slightly. The stand LAI would decline dramatically, moreover, Quercus mongolica would comprise about 50% of the stand LAI.  相似文献   

8.
中国土壤有机碳库及其演变与应对气候变化   总被引:1,自引:0,他引:1  
通过综述和评价中国土壤,特别是农田土壤有机碳库(以下简称碳库)的现状与演变态势, 讨论其对我国应对气候变化的意义, 提出了我国土壤碳库及其演变与应对气候变化的基本国情是:1) 我国土壤背景碳储量较低且区域分布不均衡;2) 我国土壤固碳效应明显,未来固碳减排潜力显著;3) 技术和政策是实现和提高我国土壤碳汇、促进我国应对气候变化能力建设的重要途径。建议进一步加强对我国农田土壤固碳减排的研发投入, 完善农业应对气候变化的相关政策和鼓励措施体系,研究构建气候友好的新型农业,以期在提高和稳定农业生产力与应对气候变化能力上获得双赢。  相似文献   

9.
The vulnerability of India and Indian states to climate change was assessed using the Vulnerability-Resilience Indicator Prototype (VRIP). The model was adapted from the global/country version to account for Indian dietary practices and data availability with regard to freshwater resources. Results (scaled to world values) show nine Indian states to be moderately resilient to climate change, principally because of low sulfur emissions and a relatively large percentage of unmanaged land. Six states are more vulnerable than India as a whole, attributable largely to sensitivity to sea storm surges. Analyses of results at the state level (Orissa, and comparisons between Maharashtra and Kerala, and Andhra Pradesh and Himachal Pradesh) demonstrate the value of VRIP analyses used in conjunction with other socio-economic information to address initial questions about the sources of vulnerability in particular places. The modeling framework allows analysts and stakeholders to systematically evaluate individual and sets of indicators and to indicate where the likely vulnerabilities are in the area being assessed.  相似文献   

10.
Climate change due to a doubling of the carbon dioxide in the atmosphere and its possible impacts on the hydrological cycle are a matter of growing concern. Hydrologists are specifically interested in an assessment of the impacts on the occurrence and magnitude of runoff, evapotranspiration, and soil moisture and their temporal and spatial redistribution. Such impacts become all the more important as they may also affect the water availability in the storage reservoirs. This paper examines the regional effects of climate change on various components of the hydrologic cycle viz., surface runoff, soil moisture, and evapotranspiration for three drainage basins of central India. Plausible hypothetical scenarios of precipitation and temperature changes are used as input in a conceptual rainfall-runoff model. The influences of climate change on flood, drought, and agriculture are highlighted. The response of hypothetical reservoirs in these drainage basins to climate variations has also been studied. Results indicate that the basin located in a comparatively drier region is more sensitive to climatic changes. The high probability of a significant effect of climate change on reservoir storage, especially for drier scenarios, necessitates the need of a further, more critical analysis of these effects.  相似文献   

11.
In August 2010, simultaneous enhancements of aerosol optical depth and total columns of carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) were observed at the Polar Environment Atmospheric Research Laboratory (PEARL, 80.05°N, ?86.42°W, 0.61 km above sea level, Eureka, Nunavut, Canada). Moderate Resolution Imaging Spectroradiometer (MODIS) hot spots, Ozone Monitoring Instrument (OMI) aerosol index maps, and Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) back-trajectories were used to attribute these enhancements to an intense boreal fire event occurring in Russia. A ground-based Fourier Transform InfraRed (FTIR) spectrometer at PEARL provided vertically integrated measurements of trace gases transported in smoke plumes. We derived HCN and C2H6 equivalent emission ratios with respect to CO of 0.0054?±?0.0022 and 0.0108?±?0.0036, respectively, and converted them into equivalent emission factors of 0.66?±?0.27 g kg?1 and 1.47?±?0.50 g kg?1 (in grams of gas per kilogram of dry biomass burnt, with one-sigma uncertainties). These emission factors add new observations to the relatively sparse datasets available and can be used to improve the simulation of biomass burning fire emissions in chemical transport models. These emission factors for the boreal forest are in agreement with the mean values recently reported in a compilation study.  相似文献   

12.
全球变暖导致气象灾害频繁发生,使得人类生存环境变得越发脆弱。文章主要介绍印度东部沿海地区面对日益严重的气象灾害,是如何采取一系列适应对策来降低气象灾害脆弱性的,同时相关部门的决策者和研究人员也可从中得到有意义的启示。  相似文献   

13.
One of the most important effects of climate change is changes in the water regime and the frequency of flood occurrence. The Karun catchment is one of the most important Iran catchments, but it has never been studied specifically. This study considers the effect of climate change on the annual and the maximum runoff of the Karun catchment in the Shalu bridge area. First, temperature and monthly precipitation of the HadCM3 model were downscaled based on three scenarios, AlB, A2, and B1, ustng the LARS-WG model. Then data were spatially downscaled based on the change factor model, and the SRM model was used to simulate runoff. The results show that the climate change affects the water regime of this catchment.  相似文献   

14.
Forests play an important role in sequestrating carbon from the atmosphere. Since the 1980s, reforestation activities have been implemented in the area surrounding the Qianyanzhou Forest Experimental Station in Jiangxi Province, China. Farmland and heavily eroded waste land were replanted with fruit, orchards and forest plantations. The area surrounding the Qianyanzhou Forest Experimental Station was selected as research site to analyze the potential of reforestation in carbon sequestration. This study evaluates the variation of soil organic carbon storage under the different land use types. Soil organic carbon storage varied greatly with land use types. From 1984 to 2002, soil organic carbon storage increased 2.45 × 106 kg across eight land use types. This study demonstrates the potential for carbon sequestration in soils from reforestation. However, a complete understanding of soil carbon fluxes at the landscape scale will depend on the potential and retention period of soil organic carbon.  相似文献   

15.
This study analyzes the uncertainty of seasonal (winter and summer) precipitation extremes as simulated by a recent version of the Canadian Regional Climate Model (CRCM) using 16 simulations (1961–1990), considering four sources of uncertainty from: (a) the domain size, (b) the driving Atmosphere–Ocean Global Climate Models (AOGCM), (c) the ensemble member for a given AOGCM and (d) the internal variability of the CRCM. These 16 simulations are driven by 2 AOGCMs (i.e. CGCM3, members 4 and 5, and ECHAM5, members 1 and 2), and one set of re-analysis products (i.e. ERA40), using two domain sizes (AMNO, covering all North America and QC, a smaller domain centred over the Province of Québec). In addition to the mean seasonal precipitation, three seasonal indices are used to characterize different types of variability and extremes of precipitation: the number of wet days, the maximum number of consecutive dry days, and the 95th percentile of daily precipitation. Results show that largest source of uncertainty in summer comes from the AOGCM selection and the choice of domain size, followed by the choice of the member for a given AOGCM. In winter, the choice of the member becomes more important than the choice of the domain size. Simulated variance sensitivity is greater in winter than in summer, highlighting the importance of the large-scale circulation from the boundary conditions. The study confirms a higher uncertainty in the simulated heavy rainfall than the one in the mean precipitation, with some regions along the Great Lakes—St-Lawrence Valley exhibiting a systematic higher uncertainty value.  相似文献   

16.
A regional database containing historical time series and climate change scenarios for the Southeastern United States was developed for the U.S.D.A. Forest Service Southern Global Change Program (SGCP). Daily historical values of maximum temperature, minimum temperature and precipitation and empirically derived estimates of vapor pressure deficit and solar radiation across a uniform 1° latitude × 1° longitude grid were obtained. Climate change scenarios of temperature, precipitation, vapor pressure deficit and solar radiation were generated using semi-empirical techniques which combined historical time series and simulation field summaries from GISS, GFDL, OSU and UKMO General Circulation Model (GCM) experiments. An internally consistent 1° latitude × 1° longitude climate change scenario database was produced in which vapor pressure deficit and solar radiation conditions were driven by the GCM temperature projections, but were not constrained to agree with GCM calculated radiation and humidity fields. Some of the unique characteristics of the database were illustrated through a case study featuring growing season and annual potential evapotranspiration (ETp) estimates. Overall, the unconstrained scenarios produced smaller median ETp changes from historical baseline conditions, with a smaller range of outcomes than those driven by GCM-directed scenarios. Collectively, the range of annual and growing season ET changes from baseline estimates in response to the unconstrained climate scenarios was +10% to +40%. No outlier responses were identified. ETp changes driven by GCM-directed (constrained) UKMO radiation and humidity scenarios were on the order of +100%, resulting in the identification of some ETp responses as statistical outliers. These response differences were attributed to differences between the constrained and unconstrained humidity scenarios.  相似文献   

17.
利用内蒙古农牧交错带多伦县50余a的气候资料,基于Miami和Thornthwaite Memorial气候模型,分析了该地区草地生产潜力对气候要素的响应。结果表明,Thomthwaite Memorial模型更能反映草地生产潜力随气候要素的变化规律。温度升高和降水增加均对当地草地生产潜力起正作用。其中,相对温度而言,降水对草地生产潜力的限制作用更为明显。另外,利用多伦县1999~2002年的畜牧业统计资料,对天然草地和人工草地的有效生产潜力和实际产量作了对比,其中天然草地的草地生产潜力开发度很低,仅为26%,具有很大的开发空间。人工草地的实际产量和草地生产潜力开发度相对更高,显示了它作为提高该地区牧草产量有效途径的可能性。最后通过对比多伦县2000~2002年的理论和实际载畜量,提出该地区草原处于高超载状态,平均超载率高达79.3%。  相似文献   

18.
19.
A coupled ocean and sea-ice pan-Arctic model forced by the Intergovernmental Panel on Climate Change A1B climate scenario is used to study the evolution of ice and ocean surface conditions within the Canadian Arctic Archipelago (CAA) during the twenty-first century. A summer ice-free CAA is likely by the end of our simulation. Sea ice undergoes significant changes from the mid-2020s to the mid-2060s in both concentration and thickness. The simulation shows a shrinking of 65% and a thinning of 75% in summer over the 40 years, resulting in a partially open Northwest Passage by the 2050s. However, ice in central Parry Channel might increase due to a decrease in export from April to June, linked to a reduced cross-channel sea surface height (SSH) gradient, before melting thermodynamically. On a larger scale, the central CAA throughflow will experience a significant decrease in both volume and freshwater transport after 2020, which is related to the change in the SSH difference between the two ends of Parry Channel, particularly the lifting of SSH in Baffin Bay. With a lower albedo, a warmer ocean is simulated, particularly in summer. The sea surface salinity within the CAA demonstrates a strong decadal oscillation without a clear trend over the entire simulation. A north–south pattern, separated by Parry Channel, is also found in the changes of ocean temperature and salinity fields due to different ice conditions.  相似文献   

20.
This paper explores the relation between coffee production and climatic and economic variables in Veracruz in order to estimate the potential impacts of climate change. For this purpose, an econometric model is developed in terms of those variables. The model is validated by means of statistical analysis, and then used to project coffee production under different climatic conditions. Climate change scenarios are produced considering that the observed trends of climate variables will continue to prevail until the year 2020. An approach for constructing simple probability scenarios for future climate variability is presented and used to assess possible impacts of climate change beyond what is expected from changes in mean values. The model shows that temperature is the most relevant climatic factor for coffee production, since production responds significantly to seasonal temperature patterns. The results for the projected climate change conditions for year 2020 indicate that coffee production might not be economically viable for producers, since the model indicates a reduction of 34% of the current production. Although different economic variables (the state and international coffee prices, a producer price index for raw materials for coffee benefit, the national and the USA coffee stocks) were considered as potentially relevant, our model suggests that the state real minimum wage could be regarded as the most important economic variable. Real minimum wage is interpreted here as a proxy for the price of labor employed for coffee production. This activity in Mexico is very labor intensive representing up to 80% of coffee production costs. As expected, increments in the price of such an important production factor increase production costs and have strong negative effects on production. Different assumptions on how real minimum wage could evolve for the year 2020 are considered for developing future production scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号