首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, a new particle image velocimetry (PIV)-based measurement method is proposed to obtain the high-resolution tide-induced Lagrangian residual current field in the laboratory. A long gravity wave was generated to simulate the tide in a narrow tank full of water laden with PIV particles. Consecutive charge-coupled device (CCD) images were recorded with the studied layer illuminated with a laser beam. Two images separated by one tidal period were processed by applying the pattern-matching algorithm to get the horizontal tide-induced Lagrangian residual current field. The results coincide with sporadic results from the traditional surface-float tracing method, but with much higher spatial resolution and accuracy. Furthermore, it is found that the direct acquisition of the Lagrangian residual current may reduce the error at least by one order compared with those acquisition methods that require the detailed information of the tidal cycle.  相似文献   

2.
Wang  Tao  Jiang  Wensheng  Chen  Xu  Feng  Shizuo 《Ocean Dynamics》2013,63(11):1181-1188

In this paper, a new particle image velocimetry (PIV)-based measurement method is proposed to obtain the high-resolution tide-induced Lagrangian residual current field in the laboratory. A long gravity wave was generated to simulate the tide in a narrow tank full of water laden with PIV particles. Consecutive charge-coupled device (CCD) images were recorded with the studied layer illuminated with a laser beam. Two images separated by one tidal period were processed by applying the pattern-matching algorithm to get the horizontal tide-induced Lagrangian residual current field. The results coincide with sporadic results from the traditional surface-float tracing method, but with much higher spatial resolution and accuracy. Furthermore, it is found that the direct acquisition of the Lagrangian residual current may reduce the error at least by one order compared with those acquisition methods that require the detailed information of the tidal cycle.

  相似文献   

3.
The responses to tidal and/or wind forces of Lagrangian trajectories and Eulerian residual velocity in the southwestern Yellow Sea are investigated using a high-resolution circulation model. The simulated tidal harmonic constants agree well with observations and existing studies. The numerical experiment reproduces the long-range southeastward Eulerian residual current over the sloping bottom around the Yangtze Bank also shown in previous studies. However, the modeled drifters deployed at the northeastern flank of the Yangtze Bank in the simulation move northeastward, crossing over this strong southeastward Eulerian residual current rather than following it. Additional sensitivity experiments reveal that the influence of the Eulerian tidal residual currents on Lagrangian trajectories is relatively weaker than that of the wind driven currents. This result is consistent with the northeastward movement of ARGOS surface drifters actually released in the southwestern Yellow Sea. Further experiments suggest that the quadratic nature of the bottom friction is the crucial factor, in the southwestern Yellow Sea, for the weaker influence of the Eulerian tidal residual currents on the Lagrangian trajectories. This study demonstrates that the Lagrangian trajectories do not follow the Eulerian residual velocity fields in the shallow coastal regions of the southwestern Yellow Sea.  相似文献   

4.
The 3D first-order Lagrangian residual velocity (LRV) equation is established, and its analytical solution is obtained in a narrow bay. The results show clearly the 3D structure of the first-order LRV. When the exponential bottom profile is assumed, the upper half layer of the water flows in through the deep channel from the open boundary directly to the head of the bay. Then the water will return to the area surrounding the lower half of the inflow area. The downwelling area is located mainly at the deep channel, while the upwelling area occupies both sides of the bay. The inter-tidal water transport, obtained by integrating the 3D first-order LRV through the water column, has a pattern similar to the previous study in which the 2D depth-averaged Lagrangian residual current equations were solved. The inter-tidal water transport is used to analyze the water exchange, and it is found that the water exchange at different cross sections increases smoothly with the distance between the cross sections and the head of the bay until about one wavelength. It is also found that the pattern of the breadth-averaged Lagrangian residual current varies with the length of the bay if a non-flat bottom profile is used. The depth-integrated LRV and the breadth-averaged LRV are mainly determined by the different terms of the tidal body force, with the former determined by the bottom friction related term and the latter by the eddy viscosity related term. When the bay is longer than one wavelength, different results in the outer bay can be observed.  相似文献   

5.
With a depth-averaged numerical model, the tidally induced Lagrangian residual current in a model bay was studied. To correctly reflect the long-term mass transport, it is appropriate to use the Lagrangian residual velocity (LRV) rather than the Eulerian residual velocity (ERV) or the Eulerian residual transport velocity (ETV) to describe the residual current. The parameter κ, which is defined as the ratio of the typical tidal amplitude at the open boundary to the mean water depth, is considered to be the indicator of the nonlinear effect in the system. It is found that the feasibility of making the mass transport velocity (MTV) approximate the LRV is strongly dependent on κ. The error between the MTV and the LRV tends to increase with a growing κ. An additional error will come from the various initial tidal phases due to the Lagrangian drift velocity (LDV) when κ is no longer small. According to the residual vorticity equation based on the MTV, the Coriolis effect is found to influence the residual vorticity mainly through the curl of the tidal stress. A significant difference in the flow pattern indicates that the LRV is sensitive to the bottom friction in different forms.  相似文献   

6.
In a weakly nonlinear tidal system, the depth-averaged equations for the first-order Lagrangian residual velocity (LRV) are deduced systematically. For the case of a narrow bay, the equations are solved analytically and the results for a specific bottom profile are discussed in detail. According to the pattern of the first-order LRV, the bay can be divided into three parts, namely an inner part, a transitional zone, and an outer part. For the given depth profile, the streamline of the first-order LRV for a shorter bay is a part of that for a longer bay. The first-order LRV depends on a nondimensional parameter that combines the influences of the bottom friction coefficient, the tidal period and the averaged water depth. The form of the bottom friction also has a significant influence on the first-order LRV. The second-order LRV, i.e., the Lagrangian drift, is analytically solved and shows dependence on the initial tidal phase. The LRV differs from the Eulerian residual transport velocity both quantitatively and qualitatively. It is demonstrated that the residual currents obtained according to other definitions may cause misunderstanding of the mass transport in water exchange applications.  相似文献   

7.
Abstract

Starting from the nonlinear shallow water equations of a homogeneous rotating fluid we derive the equation describing the evolution of vorticity by a fluctuating bottom topography of small amplitude, using a multiple scale expansion in a small parameter, which is the topographic length scale relative to the tidal wave length. The exact response functions of residual vorticity for a sinusoidal bottom topography are compared with those obtained by a primitive perturbation series and by harmonic truncation, showing the former to be invalid for small topographic length scales and the latter to be only a fair approximation for vorticity produced by planetary vortex stretching. In deriving the exact shape of the horizontal residual velocity profile at a step-like break in the bottom topography, it is shown that the Lagrangian profile only exists in a strip having the width of the amplitude of the tidal excursion at both sides of the break, and that it vanishes outside that interval. Moreover, in the limit of small amplitude topography at least, it vanishes altogether for the generation mechanism by means of planetary vortex stretching. The Eulerian profile is shown to extend over twice the interval of the Lagrangian profile both for production by vortex stretching and by differential bottom friction. These finite intervals over which the residual velocity profiles exist for a step-like topography are not reproduced by harmonic truncation of the basic equation. This method gives exponentially decaying profiles, indicating spurious horizontal diffusion of vorticity. In terms of orders of magnitude, the method of harmonic truncation is reliable for residual velocity produced by vortex stretching but it overestimates the residual velocity produced by differential bottom friction by a factor 2.  相似文献   

8.
The Eulerian residual transport velocity and the first-order Lagrangian residual velocity for weakly nonlinear systems have been used extensively in the past to depict inter-tidal mass transport. However, these could not explain the observed net surface sediment transport pattern in Jiaozhou Bay (JZB), located on the western Yellow Sea. JZB is characterized by strong tidal motion, complex topography and an irregular coastline, which are features of typical nonlinear systems. The Lagrangian residual velocity, which is applicable to general nonlinear systems, was simulated with the water parcel tracking method. The results indicate that the composition of the Lagrangian residual velocity at different tidal phases coincides well with the observed net surface sediment transport pattern. The strong dependence of water flushing time on the initial tidal phase can also be explained by the significant intra-tidal variation of the Lagrangian residual velocity. To investigate the hydrodynamic mechanism governing the nonlinearity of the M 2 tidal system, a set of nonlinearity indexes were defined and analysed. In the surface layer, horizontal advection is the main contributor to the strong nonlinearity near the bay mouth, while in the bottom layer, the strong nonlinearity near the bay mouth may result from the vertical viscosity and horizontal advection.  相似文献   

9.
Liu  Guangliang  Liu  Zhe  Gao  Huiwang  Gao  Zengxiang  Feng  Shizuo 《Ocean Dynamics》2012,62(10):1443-1456

The Eulerian residual transport velocity and the first-order Lagrangian residual velocity for weakly nonlinear systems have been used extensively in the past to depict inter-tidal mass transport. However, these could not explain the observed net surface sediment transport pattern in Jiaozhou Bay (JZB), located on the western Yellow Sea. JZB is characterized by strong tidal motion, complex topography and an irregular coastline, which are features of typical nonlinear systems. The Lagrangian residual velocity, which is applicable to general nonlinear systems, was simulated with the water parcel tracking method. The results indicate that the composition of the Lagrangian residual velocity at different tidal phases coincides well with the observed net surface sediment transport pattern. The strong dependence of water flushing time on the initial tidal phase can also be explained by the significant intra-tidal variation of the Lagrangian residual velocity. To investigate the hydrodynamic mechanism governing the nonlinearity of the M 2 tidal system, a set of nonlinearity indexes were defined and analysed. In the surface layer, horizontal advection is the main contributor to the strong nonlinearity near the bay mouth, while in the bottom layer, the strong nonlinearity near the bay mouth may result from the vertical viscosity and horizontal advection.

  相似文献   

10.
A new theoretical approach for the wave-induced setup over a sloping beach is presented that takes into consideration the explicit variations of the surface waves due to bottom slope and viscosity. In this way, the wave forcing of the mean Lagrangian volume fluxes is calculated without assuming that the local depth is constant. The analysis is valid in the region outside the surf zone and is based on the shallow-water assumption. A novel approach for separating the viscous damping of the waves from the frictional damping of the mean flow is introduced, where the mean Eulerian velocity is applied in the bottom stress for the mean fluxes. In the case where the onshore Lagrangian mean transport is zero, a new formula is derived for the Eulerian mean free surface slope, in which the effects of bottom slope, viscous wave damping and frictional bottom drag on the mean flow are clearly identified. The analysis suggests that viscous damping of the waves and frictional dissipation of the Eulerian near-bed return flow could lead to setup outside the surf zone.  相似文献   

11.
The nonlinear effects of the eddy viscosity and the bottom friction on the Lagrangian residual velocity (LRV) are studied numerically in a narrow model bay. Three groups of the experiments with different eddy viscosity and different forms of the bottom friction are designed and are carried out in the three kinds of the topography. When the eddy viscosity is obtained from a two-equation turbulence closure model, the pattern of the LRV is more complex than that of the time invariant eddy viscosity case and the intensity is from more than 1.3 times to one order smaller than that of the linear eddy viscosity condition. The LRV are also acquired when the eddy viscosity varies from the flood-averaged one to the ebb-averaged one. It is found that when the flood-averaged eddy viscosity is bigger than the ebb-averaged eddy viscosity (flood-dominated asymmetry), the direction of the breadth-averaged LRV and the 3D LRV is nearly opposite to that when the eddy viscosity asymmetry is reverse (ebb-dominated asymmetry). However, the intensity of the LRV for the ebb-dominated case decreases toward the flood-dominated case as the ratio of the maximum depth in the deep channel and the minimum depth on the shoal increases. The different forms of the bottom friction also play a role in the LRV. The structures of the 3D LRV and the depth-integrated LRV are simpler, and the intensity of the LRV is two times smaller when the linear bottom friction is used than those when the quadratic bottom friction is used.  相似文献   

12.
Chen  Yang  Cui  Yanxing  Sheng  Xiaoxuan  Jiang  Wensheng  Feng  Shizuo 《Ocean Dynamics》2020,70(6):759-770
Ocean Dynamics - The 3D Lagrangian residual velocity (LRV) is solved analytically in a narrow bay employing a vertically varying eddy viscosity coefficient. The nondimensional vertical profile of...  相似文献   

13.
An unstructured Godunov-type finite volume model is developed for the numerical simulation of geometrically challenging two-dimensional shallow water flows with wetting and drying over convoluted topography. In the framework of sloping bottom model, a modified formulation of shallow water equations is used to preserve mass conservation during flooding and recession. The key ingredient of the model is the use of this combination of the sloping bottom model and the modified shallow water equations to provide a robust technique for wet/dry fronts tracking and, together with centered discretization of the bed slope source term, to exactly preserve the static flow on irregular topographies. The variable reconstruction technique ensures nonnegative reconstructed water depth and reasonable reconstructed velocity, and the friction terms are solved by semi-implicit scheme that does not invert the direction of velocity components. The robustness and accuracy of the proposed model are assessed by comparing numerical and reference results of extensive test cases. Moreover, the results of a dam-break flooding over real topography are presented to show the capability of the model on field-scale application.  相似文献   

14.
Net sediment transport in tidal basins is a subtle imbalance between large fluxes produced by the flood/ebb alternation. The imbalance arises from several mechanisms of suspended transport. Lag effects and tidal asymmetries are regarded as dominant, but defined in different frames of reference (Lagrangian and Eulerian, respectively). A quantitative ranking of their effectiveness is therefore missing. Furthermore, although wind waves are recognized as crucial for tidal flats’ morphodynamics, a systematic analysis of the interaction with tidal mechanisms has not been carried out so far. We review the tide-induced barotropic mechanisms and discuss the shortcomings of their current classification for numerical process-based models. Hence, we conceive a unified Eulerian framework accounting for wave-induced resuspension. A new methodology is proposed to decompose the sediment fluxes accordingly, which is applicable without needing (semi-) analytical approximations. The approach is tested with a one-dimensional model of the Vlie basin, Wadden Sea (The Netherlands). Results show that lag-driven transport is dominant for the finer fractions (silt and mud). In absence of waves, net sediment fluxes are landward and spatial (advective) lag effects are dominant. In presence of waves, sediment can be exported from the tidal flats and temporal (local) lag effects are dominant. Conversely, sand transport is dominated by the asymmetry of peak ebb/flood velocities. We show that the direction of lag-driven transport can be estimated by the gradient of hydrodynamic energy. In agreement with previous studies, our results support the conceptualization of tidal flats’ equilibrium as a simplified balance between tidal mechanisms and wave resuspension.  相似文献   

15.
Here we develop mathematical results to describe the location of linear instability of a parallel mean flow within the framework of the shallow water equations; growth estimates of near neutral modes (for disturbances subcritical with respect to gravity wave speed) in the cases of non-rotating and rotating shallow water. The bottom topography is taken to be one-dimensional and the isobaths are parallel to the mean flow. In the case of a rotating fluid, the isobaths and the mean flow are assumed to be zonal. The flow is front-like: there is a monotonic increase of mean flow velocity. Our results show that for barotropic flows the location of instabilities will be a semi-ellipse region in the complex wave velocity plane, that is based on the wave-number, Froude number, and depth of the fluid layer. We also explore the instability region for the case of spatially unbounded mean velocity profiles for non-rotating shallow water.  相似文献   

16.
《Advances in water resources》2005,28(10):1032-1039
An existing capillarity correction for free surface groundwater flow as modelled by the Boussinesq equation is re-investigated. Existing solutions, based on the shallow flow expansion, have considered only the zeroth-order approximation. Here, a second-order capillarity correction to tide-induced watertable fluctuations in a coastal aquifer adjacent to a sloping beach is derived. A new definition of the capillarity correction is proposed for small capillary fringes, and a simplified solution is derived. Comparisons of the two models show that the simplified model can be used in most cases. The significant effects of higher-order capillarity corrections on tidal fluctuations in a sloping beach are also demonstrated.  相似文献   

17.
Runup of Tsunami Waves in U-Shaped Bays   总被引:2,自引:0,他引:2  
The problem of tsunami wave shoaling and runup in U-shaped bays (such as fjords) and underwater canyons is studied in the framework of 1D shallow water theory with the use of an assumption of the uniform current on the cross-section. The wave shoaling in bays, when the depth varies smoothly along the channel axis, is studied with the use of asymptotic approach. In this case a weak reflection provides significant shoaling effects. The existence of traveling (progressive) waves, propagating in bays, when the water depth changes significantly along the channel axis, is studied within rigorous solutions of the shallow water theory. It is shown that traveling waves do exist for certain bay bathymetry configurations and may propagate over large distances without reflection. The tsunami runup in such bays is significantly larger than for a plane beach.  相似文献   

18.
海啸造成的灾害与损失并非都与淹没有关,特别是港口中海啸诱导的强流会对船只及海事设施产生重要的影响及损害.由于海啸流观测数据稀缺及海啸诱导涡流机制的不确定性,过去60年海啸科学主要集中于对海啸波特征及淹没过程的研究与分析,海啸流模拟及验证工作开展较少,导致对海啸流基本特征及其造成灾害现象的曲解.开展海啸诱导的涡流研究及预警服务显得尤为重要及紧迫.考虑快速海啸预警需要,综合对比海啸诱导涡流的物理框架及模型方法,探索兼顾效率与计算精度的海啸流模拟方法是本文的核心工作及出发点.通过分析浅层湍流相干结构(TCS)产生的主要物理耗散机制,确定了考虑2D水平耗散机制的非线性浅水方程可用于海啸涡流的模拟分析.基于高精、高分辨率有限体积模型Geoclaw建立了三个精细化的港口海啸流模型,模型分辨率为5m.利用基于海啸浮标反演的海啸源模型作为初始条件,模拟分析了日本东北地震海啸在远场的海啸波流特征.海啸波流特征模拟结果与观测吻合较好,结果可信.对比发现:波驱动的自由表面流,小的位相或波幅误差就会导致大的流速误差,流的模拟和预报相对波幅来说更具挑战性.研究了海啸波流能量在港池中的分布特征,得到:港池入口及防波堤两端常被强流控制,具有极高的危险性;相对于波幅的空间变化,海啸流具有更强的空间敏感性;所建立的高分辨率海啸模型模拟再现了日本海啸在近场的涡旋结构,给出了与观测基本一致的涡流特征.最后,引入海啸流危险等级标准,分析了港口海啸流危险性等级分布、船只疏散的安全深度及回港的时间周期.针对港口、海湾同时考虑海啸波流特征的海啸预警与评估对于港口应急管理者科学决策具有重要意义.  相似文献   

19.
Dolgopolova  E. 《Water Resources》2019,46(1):S11-S19
Water Resources - The relationship between turbulent diffusion with Eulerian and Lagrangian scales of turbulence in natural flows is considered. An estimate of the depth-averaged Lagrangian time...  相似文献   

20.
Abstract

A depth-dependent model for the topographic rectification of tidal currents in a homogeneous rotating fluid is used to examine the dependence of the rectified mean flow on various tidal, topographic and frictional parameters. Friction is parameterized through a vertically-uniform, time-independent vertical eddy viscosity and a bottom stress law applied near the top of the constant stress layer. The model neglects the interaction of mean and tidal currents, assumes uniformity along isobaths, and is closed with the assumption of zero depth-averaged mean flow across isobaths.

In the limit of depth-independence, the model reduces to that considered by Huthnance (1973) and Loder (1980) which, for weak friction, favours anticyclonic mean circulation around shallow regions and Lagrangian flow which is significantly reduced from the Eulerian. With the inclusion of vertical structure, the magnitude of the anticyclonic flow is amplified suggesting that depth-independent models may underestimate the along-isobath flow. For strong friction the direction of the mean flow depends on the orientation of the tidal ellipse relative to the isobaths. The depthindependent model again underestimates the magnitude of the along-isobath flow, but this can be offset with an appropriate reduction of the bottom friction coefficient.

The cross-isobath mean flows are one to two orders of magnitude weaker than the along-isobath flows and generally have more vertical structure. There is also a significant Stokes drift in the cross-isobath direction. Although there is some tendency for the cross-isobath mean bottom current to be down the cross-isobath mean pressure gradient, it appears that it is not generally possible to infer this current from depth-independent models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号