首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution and abundance of bacteria and phytoplankton on the continental shelf of the southeastern United States were observed in relation to physical processes. Phytoplankton production was influenced by inputs of water of reduced salinity from the estuaries and by inputs of high salinity, low-temperature water from the west front of the Gulf Stream. The distribution of chlorophyll suggests that in each case production is influenced both by inputs of nutrients and by the enhanced vertical stability associated with the stratification of waters of different densities. The standing stock of bacteria on the inner shelf, 106 ml?1, is little changed by the influx of water of reduced salinity. On the outer shelf, where the usual standing stock of bacteria is 105 ml?1, the numbers increase to 106 ml?1 in and above intrusions of Gulf Stream water in which phytoplankton blooms have developed, suggesting that the bacteria respond to products of both phytoplankton and zooplankton production. Adenylate energy charge values in the waters of the southeastern shelf are variable and volatile. At times values of 0.7 to 0.8 are widespread over most of the shelf, while at other times values <0.6 are common, with localized patches of high values. Both autotroph-dominated and heterotroph-dominated microbial communities show these variations.  相似文献   

2.
The present paper reports on temporalmesoscale (weeks) changes in physical and biological coupling in the cross-frontal area off the coast of Catalonia in Spain (NW Mediterranean) during the spring transition period. The effect of short-term physical variability on the spatio-temporal heterogeneity of phytoplankton biomass and in the area of overlap of the larvae of fish species dwelling on the shelf and slope is discussed. Our results indicate that the region off the Catalan coast is a dynamically active area during the spring transition period. Short-term spatio-temporal variability in the frontal system brought about significant changes in the extension of shelf and slope waters, giving rise to major changes in the spatial distribution patterns of chlorophyll and fish larvae. The relationship between integrated chlorophyll, surface chlorophyll and DCM (Deep Chlorophyll Maximum) showed important variability in a short time period. The area of overlap of the larvae of shelf and slope fish species was broad when the front was located offshore, compared to nearly complete segregation of shelf and oceanic fish larvae when the front moved inshore near the coast.  相似文献   

3.
The relationships between total mercury (Hg) concentration and stable nitrogen isotope ratio (δ15N) were evaluated in Mullus barbatus barbatus and M. surmuletus from the Mediterranean Sea and M. barbatus ponticus from the Black Sea. Mercury concentration in fish muscle was six times higher in the two Mediterranean species than in the Black Sea one for similar sized animals. A positive correlation between Hg concentration and δ15N occurred in all species. Increase in Hg concentration with δ15N was high and similar in the two Mediterranean fishes and much lower in the Black Sea species. Since this was neither related to trophic level difference between species nor to methylmercury (MeHg) concentration differences between the north-western Mediterranean and the Black Sea waters, we suggested that the higher primary production of the Black Sea induced a dilution of MeHg concentration at the base of the food webs.  相似文献   

4.
Water column primary production was measured 43 times over a 3-year period (1983–1985) on the outer shelf of the central Great Barrier Reef province and in the adjacent East Australian Current. No seasonal production cycle could be established. Estimated daily production rates in shelf and offshore waters ranged between 0.1 and 1.5 g C m−2, with most between 0.2 and 0.7 g C m−2. Annual primary production during 1983 in mid-shelf, shelf break and offshore zones was estimated to be 183, 167 and 211 g C m−2, respectively. Annual production by the<10μm size fraction at the same sites was 114, 94 and 127 g C m−2, 62, 56 and 60% of total production, respectively. Corresponding proportions of chlorophyll standing crop in the<10μm fraction were 65, 85 and 79%. In a subset of the above experiments, picoplankton (<2μm size fraction) accounted for 37–99% of total water column production and 32–85% of the chlorophyll standing crop. At first order, annual phytoplankton plus coral reef primary production on the outer shelf in the central GBR is estimated to be 404 g C m−2, with phytoplankton contributing 37%.  相似文献   

5.
Based on results obtained during the GEOSECS program the primary features of the distribution of226Ra in the Atlantic Ocean can be defined. Outside the Antarctic no significant variation has been found in the226Ra content of surface waters. Eighty samples yield an average of 7.4 dpm/100 kg (normalized to a salinity of 35.00‰). Deep waters in the central Atlantic have226Ra contents several dpm/100 kg higher than expected from the mixing of Antarctic Bottom Water (21.3 dpm/100 kg) and basal North Atlantic Deep Water (10.3 dpm/100 kg). These excesses correlate well with deficiencies in O2 and excesses in SiO2. The intermediate water226Ra maximum in the South Atlantic is associated with the inflow of low-oxygen Circumpolar Intermediate Water beneath the Antarctic Intermediate Water.  相似文献   

6.
During the 2005 Layered Organization in the Coastal Ocean (LOCO) field program in Monterey Bay, California, we integrated intensive water column surveys by an autonomous underwater vehicle (AUV) with satellite and mooring data to examine the spatiotemporal scales and processes of phytoplankton thin-layer development. Surveying inner to outer shelf waters repeatedly between August 18 and September 6, the AUV acquired 6841 profiles. By the criteria: [(1) thickness ≤3 m at the full-width half-maximum, (2) peak chlorophyll at least twice the local background concentrations, and (3) a corresponding peak in optical backscattering], thin layers were detected in 3978 (58%) of the profiles. Average layer thickness was 1.4 m, and average intensity was 13.5 μg l?1 above (3.2x) background. Thin layers were observed at depths between 2.6 and 17.6 m, and their depths showed diurnal vertical migration of the layer phytoplankton populations. Horizontal scales of thin-layer patches ranged from <100 m to>10,000 m. A thin-layer index (TLI), computed from layer frequency, intensity and thinness, was highest in mid-shelf waters, coincident with a frontal zone between bay waters and an intrusion of low-salinity offshore waters. Satellite observations showed locally enhanced chlorophyll concentrations along the front, and in situ observations indicated that phytoplankton may have been affected by locally enhanced nutrient supply in the front and concentration of motile populations in a convergence zone. Minimum TLI was furthest offshore, in the area most affected by the intrusion of offshore, low-chlorophyll waters. Average thin-layer intensity doubled during August 25–29, in parallel with warming at the surface and cooling within and below the thermocline. During this apparent bloom of thin-layer populations, density oscillations in the diurnal frequency band increased by an order of magnitude at the shelfbreak and in near-bottom waters of the inner shelf, indicating the role of internal tidal pumping from Monterey Canyon onto the shelf. This nutrient transport process was mapped by the AUV. Peak TLI was observed on August 29 during a nighttime survey, when phytoplankton were concentrated in the nutricline. Empirical orthogonal function decomposition of the thin-layer particle size distribution data from this survey showed that throughout the inner to outer shelf survey domain, the layers were dominated by phytoplankton having a cross-section of ~50 μm. This is consistent with the size of abundant Akashiwo sanguinea cells observed microscopically in water samples. During a subsequent and stronger intrusion of low-salinity offshore waters, spatially-averaged vertical density stratification decreased by > 50%, and phytoplankton thin layers disappeared almost completely from the AUV survey domain.  相似文献   

7.
A month-long investigation of phytoplankton biomass and primary production (PP) was carried out during a harmful algal bloom (HAB) in Daya Bay, China, in 2003. During the bloom, the phytoplankton community was dominated by Scrippsiella trochoidea and Chattonella marina. The phytoplankton biomass (Chl a) and PP reached peak levels of 519.21 mg m−3 and 734.0 mgC m−3 h−1, respectively. Micro-phytoplankton was the key contributor to Chl a and PP in a cage-culture area and in the adjacent HAB-affected waters, with percentages of up to 82.91% and 84.94%, respectively. The HAB had complicated relationships with hydrological and meteorological factors in Daya Bay. However, the water around the cage-culture area always showed statistically greater phytoplankton biomass and nutrient loadings than in adjacent waters, suggesting that this was the “trigger area” of the bloom. The spatial and temporal distribution of diverse HABs in Daya Bay, their ecological characteristics, and their environmental impacts are also discussed in this paper.  相似文献   

8.
This study presents the distribution of dissolved inorganic carbon (DIC) along the Strait of Gibraltar, its tidal-induced variability, as well as the inorganic carbon exchange between the Atlantic Ocean and Mediterranean Sea. During November 2003, water column samples were collected at nine stations to measure total alkalinity (TA), pH, and dissolved oxygen (DO) for the spatial characterization of the carbonate system. At the same time, anchored samplings were carried out, above the Camarinal Sill and in the Eastern Section of the Strait, in order to assess the tidal mixing effects for oxygen and DIC distribution on the water column. Three distinct water masses can be discerned in this area: the Surface Atlantic Water (SAW), the Mediterranean Water (MW), and the less abundant North Atlantic Central Water (NACW). The observations show an increase in the DIC and a decrease in oxygen concentration with depth, related to the different physico-chemical features of each water mass. The results show the high time-dependence of the vertical distribution of DIC with the interface oscillation, affected by the intense mixing processes taking place in the Strait. Intense mixing episodes over the Camarinal Sill are responsible for an increase in the DIC concentrations in the upper layer of the Eastern Section of the Strait. Higher DIC concentrations in the Mediterranean than in the Atlantic waters are responsible for a net DIC transport of 1.47×1012 mol C yr−1 to the Atlantic Ocean. Nevertheless, the net exchange is highly sensitive to the interface definition, as well as to the estimate of water volume transport used.  相似文献   

9.
The physical aspects of the Subtropical Shelf Front (STSF) for the Southwest Atlantic Continental Shelf were previously described. However, only scarce data on the biology of the front is available in the literature. The main goal of this paper is to describe the physical, chemical and biological properties of the STSF found in winter 2003 and summer 2004. A cross-section was established at the historically determined location of the STSF. Nine stations were sampled in winter and seven in summer. Each section included a series of conductivity-temperature-depth (CTD) stations where water samples from selected depths were filtered for nutrient determination. Surface samples were taken for chlorophyll a (Chl-a) determination and plankton net tows carried out above and below the pycnocline. Results revealed that winter was marked by an inner-shelf salinity front and that the STSF was located on the mid-shelf. The low salinity waters in the inner-shelf indicated a strong influence of freshwater, with high silicate (72 μM), suspended matter (45 mg l−1), phosphate (2.70 μM) and low nitrate (1.0 μM) levels. Total dissolved nitrogen was relatively high (22.98 μM), probably due to the elevated levels of organic compound contribution close to the continental margin. Surface Chl-a concentration decreased from coastal well-mixed waters, where values up to 8.0 mg m−3 were registered, to offshore waters. Towards the open ocean, high subsurface nutrients values were observed, probably associated to South Atlantic Central Waters (SACW). Zooplankton and ichthyoplankton abundance followed the same trend; three different groups associated to the inner-, mid- and outer-shelf region were identified. During summer, diluted waters extended over the shelf to join the STSF in the upper layer; the concentration of inorganic nutrients decreased in shallow waters; however, high values were observed between 40 and 60 m and in deep offshore waters. Surface Chl-a ranged 0.07–1.5 mg m−3; winter levels were higher. Three groups of zoo and ichthyoplankton, separated by the STSF, were also identified. Results of the study performed suggest that the influence of freshwater was stronger during winter and that abundance distribution of Chl-a, copepods and ichthyoplankton was related to the Plata Plume Waters (PPW), rather than to the presence of the STSF. During summer, when the presence of freshwater decreases, plankton interactions seem to take place in the STSF.  相似文献   

10.
New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average εNd(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean,εNd(0) ? ?12 ± 2; Indian Ocean,εNd(0) ? ?8 ± 2; Pacific Ocean,εNd(0) ? ?3 ± 2. These values are considerably less than εNd(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of143Nd between the Pacific and Atlantic Oceans corresponds to ~106 atoms143Nd per gram of seawater. The correspondence between the143Nd/144Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography.Distinctive differences in εNd(0) values are observed in the Atlantic Ocean between deep-ocean water associated with North Atlantic Deep Water and near-surface water. This suggests that North Atlantic Deep Water may be relatively well mixed with respect to Nd isotopic composition whereas near-surface water may be quite heterogeneous, reflecting different sources for surface waters relative to deep water. This suggests that it may be possible to distinguish the sources of water masses within an ocean basin on the basis of Nd isotopic composition.The Nd isotopic variations in seawater are used to relate the residence time of Nd and mixing rates between the oceans.  相似文献   

11.
This paper reports the first results on δ18O and δ2H analysis of precipitations, cave drip waters, and groundwaters from sites in Mallorca (Balearic Islands, western Mediterranean), a key region for paleoclimate studies. Understanding the isotopic variability and the sources of moisture in modern climate systems is required to develop speleothem isotope‐based climate reconstructions. The stable isotopic composition of precipitation was analysed in samples collected between March 2012 and March 2013. The values are in the range reported by GNIP Palma station. Based on these results, the local meteoric water line (LMWL) δ2H = 7.9 (±0.3) δ18O + 10.8 (±2.5) was derived, with slightly lower slope than Global Meteoric Water Line. The results help tracking two main sources of air masses affecting the study sites: rain events with the highest δ18O values (> ?5‰) originate over the Mediterranean Sea, whereas the more depleted samples (< ?8‰) are sourced in the North Atlantic region. The back trajectory analysis and deuterium excess values, ranging from 0.4 to 18.4‰, further support our findings. To assess the isotopic variation across the island, water samples from eight caves were collected. The δ18O values range between ?6.9 and ?1.6‰. With one exception (Artà), the isotopic composition of waters in caves located along the coast (Drac, Vallgornera, Cala Varques, Tancada, and Son Sant Martí) indicates Mediterranean‐sourced moisture masses. By contrast, the drip water δ18O values for inland caves (Campanet, ses Rates Pinyades) or developed under a thick (>50 m) limestone cap (Artà) exhibit more negative values. A well‐homogenized aquifer supplied by rainwaters of both origins is clearly indicated by groundwater δ18O values, which show to be within 2.4‰ of the unweighted arithmetic mean of ?7.4‰. Although limited, the isotopic data presented here constitute the baseline for future studies using speleothem δ18O records for western Mediterranean paleoclimate reconstructions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Vertical distributions of chlorophyll in deep, warm monomictic lakes   总被引:1,自引:0,他引:1  
The factors affecting vertical distributions of chlorophyll fluorescence were examined in four temperate, warm monomictic lakes. Each of the lakes (maximum depth >80 m) was sampled over 2 years at intervals from monthly to seasonal. Profiles were taken of chlorophyll fluorescence (as a proxy for algal biomass), temperature and irradiance, as well as integrated samples from the surface mixed layer for chlorophyll a (chl a) and nutrient concentrations in each lake. Depth profiles of chlorophyll fluorescence were also made along transects of the longest axis of each lake. Chlorophyll fluorescence maxima occurred at depths closely correlated with euphotic depth (r 2 = 0.67, P < 0.01), which varied with nutrient status of the lakes. While seasonal thermal density stratification is a prerequisite for the existence of a deep chlorophyll maximum (DCM), our study provides evidence that the depth of light penetration largely dictates the DCM depth during stratification. Reduction in water clarity through eutrophication can cause a shift in phytoplankton distributions from a DCM in spring or summer to a surface chlorophyll maximum within the surface mixed layer when the depth of the euphotic zone (z eu) is consistently shallower than the depth of the surface mixed layer (z SML). Trophic status has a key role in determining vertical distributions of chlorophyll in the four lakes, but does not appear to disrupt the annual cycle of maximum chlorophyll in winter.  相似文献   

13.
Jordan is classified as an arid to semi‐arid country with a population according to 1999 estimates of 4·8 millions inhabitants and a growth rate of 3·4%. Efficient use of Jordan's scarce water is becoming increasingly important as the urban population grows. This study was carried out within the framework of the joint European Research project ‘Groundwater recharge in the eastern Mediterranean’ and describes a combined methodology for groundwater recharge estimation in Jordan, the chloride method, as well as isotopic and hydrochemical approaches. Recharge estimations using the chloride method range from 14 mm year?1 (mean annual precipitation of 500 mm) for a shallow and stony soil to values of 3·7 mm year?1 for a thick desert soil (mean annual precipitation of 100 mm) and values of well below 1 mm year?1 for thick alluvial deposits (mean annual rainfall of 250 mm). Isotopically, most of the groundwater in the Hammad basin, east Jordan, falls below the global meteoric water line and far away from the Mediterranean meteoric water line, suggesting that the waters are ancient and were recharged in a climate different than Mediterranean. Tritium levels in the groundwater of the Hammad basin are less than the detection limit (<1·3 TU). However, three samples in east Hammad, where the aquifer is unconfined, present tritium values between 1 and 4 TU. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Twenty-four years of AVHRR-derived sea surface temperature (SST) data (1985–2008) and 35 years of NOCS (V.2) in situ-based SST data (1973–2008) were used to investigate the decadal scale variability of this parameter in the Mediterranean Sea in relation to local air–sea interaction and large-scale atmospheric variability. Satellite and in situ-derived data indicate a strong eastward increasing sea surface warming trend from the early 1990s onwards. The satellite-derived mean annual warming rate is about 0.037°C year–1 for the whole basin, about 0.026°C year–1 for the western sub-basin and about 0.042°C year–1 for the eastern sub-basin over 1985–2008. NOCS-derived data indicate similar variability but with lower warming trends for both sub-basins over the same period. The long-term Mediterranean SST spatiotemporal variability is mainly associated with horizontal heat advection variations and an increasing warming of the Atlantic inflow. Analysis of SST and net heat flux inter-annual variations indicates a negative correlation, with the long-term SST increase, driving a net air–sea heat flux decrease in the Mediterranean Sea through a large increase in the latent heat loss. Empirical orthogonal function (EOF) analysis of the monthly average anomaly satellite-derived time series showed that the first EOF mode is associated with a long-term warming trend throughout the whole Mediterranean surface and it is highly correlated with both the Eastern Atlantic (EA) pattern and the Atlantic Multidecadal Oscillation (AMO) index. On the other hand, SST basin-average yearly anomaly and NAO variations show low and not statistically significant correlations of opposite sign for the eastern (negative correlation) and western (positive correlation) sub-basins. However, there seems to be a link between NAO and SST decadal-scale variations that is particularly evidenced in the second EOF mode of SST anomalies. NOCS SST time series show a significant SST rise in the western basin from 1973 to the late 1980s following a large warming of the inflowing surface Atlantic waters and a long-term increase of the NAO index, whereas SST slowly increased in the eastern basin. In the early 1990s, there is an abrupt change from a very high positive to a low NAO phase which coincides with a large change in the SST spatiotemporal variability pattern. This pronounced variability shift is followed by an acceleration of the warming rate in the Mediterranean Sea and a change in the direction (from westward to eastward) of its spatial increasing tendency.  相似文献   

15.
13C and ΣCO2 data from the North and South Atlantic, the Antarctic, and the North and South Pacific are given. The δ13C of the ΣCO2 in the deep water (~3000m) decreases from 1.7‰ in the North Atlantic to ?0.10‰ in the North Pacific. This change is attributed to the addition of about 158 μmoles of CO2 per kg of seawater. The in-situ oxidation of organic matter accounts for 83% of this increase in ΣCO2, while the remainder is attributed to dissolution of calcium carbonate.The δ13C of the dissolved CO2 in mid-latitude surface water samples is controlled by a quasi-steady-state equilibrium with atmospheric CO2 at a mean temperature of 16°C. The δ13C and ΣCO2 values of Antarctic surface water samples suggest that these waters are derived from a mixture of North Atlantic deep water and equilibrated surface water.  相似文献   

16.
The amphipod crustacean Talitrus saltator is an established, easily accessible, biomonitor of trace metal bioavailabilities in coastal waters. We have carried out a geographically widespread collection of T. saltator from European shores, stretching from the north-west Atlantic through the Baltic to the Mediterranean. A primary aim of the work was to establish a database of accumulated trace metal concentrations (Cd, Cr, Cu, Fe, Mn and Zn) in this biomonitor. Statistical analysis has shown significant geographical differences in the bioavailabilities of all the metals, the most distinct being copper, iron and manganese. It has proved possible to identify unusually high accumulated concentrations of Cd, Cr, Cu, Fe, Mn and Zn in this biomonitor, indicative of high metal bioavailability at a particular site. These may serve as reference points for future biomonitoring programmes seeking to identify metal contamination in coastal waters.  相似文献   

17.
Wind-induced subduction at the South Atlantic subtropical front   总被引:1,自引:1,他引:0  
The South Atlantic Subtropical Front, associated with the eastward-flowing South Atlantic Current, separates the colder, nutrient-rich waters of the subpolar gyre from the warmer, nutrient-poor waters of the subtropical gyre. Perturbations to the quasi-geostrophic, eastward flow generate meanders and filaments which induce cross-frontal exchange of water properties. Down-front winds transport denser waters from the South over warm waters from the North, inducing convective instability and subduction. Such processes occur over spatial scales of the order of 1 km and thus require high horizontal spatial resolution. In this modeling study, a high-resolution (4 km) regional grid is embedded in a basin-wide configuration (12 km) of the South Atlantic Ocean in order to test the importance of submesoscale processes in water mass subduction along the subtropical front. Stronger and more numerous eddies obtained in the high-resolution run yield more intense zonal jets along the frontal zone. Such stronger jets are more susceptible to instabilities, frontogenesis, and the generation of submesoscale meanders and filaments with \(\mathcal {O}(1)\) Rossby number. As a consequence, vertical velocities larger than 100 md 1 are obtained in the high-resolution run, one order of magnitude larger than in the low-resolution run. Wind-driven subduction occurs along the frontal region, associated with negative Ertel potential vorticity in the surface layer. Such processes are not observed in the low-resolution run. A passive tracer experiment shows that waters with density characteristics similar to subtropical mode waters are preferentially subducted along the frontal region. The wind-driven buoyancy flux is shown to be much larger than thermal or haline fluxes during the wintertime, which highlights the importance of the frictional component in extracting PV from the surface ocean and inducing subduction, a process that has been overlooked in subtropical mode water formation in the region.  相似文献   

18.
Gulf Stream frontal disturbances cause nutrient-rich waters to frequently upwell and intrude onto the southeastern United States continental shelf between Cape Canaveral, Florida and Cape Hatteras, North Carolina. Phytoplankton response in upwelled waters was determined with three interdisciplinary studies conducted during April 1979 and 1980, and in summer 1978. The results show that when shelf waters are not stratified, upwelling causes productive phytoplankton (diatom) blooms on the outer shelf. Phytoplankton production averages about 2 g C m−2 d−1 during upwelling events, and ‘new’ production is 50% or more of the total. When shelf waters are stratified, upwelled waters penetrate well onto the shelf as a subsurface intrusion in which phytoplankton production averages about fives times higher than the nutrient-depleted overlying mixed layer. Phytoplankton within the intrusion deplete upwelled NO3 in about 7 to 10 days, at which point no further net increase in phytoplankton biomass occurs.Current meter records show that upwelling occurs roughly 50% of the time on the outer shelf during November to April (shelf not stratified), and we estimate that seasonal primary production in upwelled waters is 175 g C m−2 6 months−1 of which at least 50% is ‘new’ production. More than 90% of outer shelf primary and ‘new’ production occurs during upwelling and thus upwelling is the dominant process affecting primary productivity of the outer shelf. Our seasonal estimates of outer shelf primary and ‘new’ production are, respectively, three and ten times higher than previous estimates that did not account for upwelling.  相似文献   

19.
In this work, we make use of satellite estimates of chlorophyll a, photosynthetically active radiation and sea surface temperatures, to compute regional estimates of primary production integrated throughout the euphotic layer for the Algero-Provençal Basin, by means of a modified version of the vertically generalized production model. The seasonal and interannual variability of the primary production has been analysed over the decade 1997–2007. Empirical orthogonal functions analysis has been applied to decompose the variability of the primary production dataset in orthogonal modes of variability. The seasonal signal is distributed between the two first modes of variability, temporally shifted each other and respectively related to the northern (early spring) and the southern (winter) part of the basin. We found a minimum of the annual production in 2003, when a summer heatwave strongly enhanced the stratification of surface waters, further limiting the injection of nutrients into the surface layers. Maxima in the annual series are found in 1999 and 2005, due to two particularly intense and extended (in space) spring-blooms in the northern part of the basin. These two maxima, clearly identified in space and time by EOF analysis (EOF1 and EOF3), are related to strong mistral-wind interannual events occurring during winters of 1999 and 2005, preceding the blooms by some few months. We found that these production maxima are due both to a more intense production in the usual blooming area (shown by EOF1–PC1) as well as to an exceptional local production in the eastern side of the basin, off the Corsica western coasts (EOF3–PC3). Previous observations of exceptional deep-water formation events in 1999 and 2005, with easterly spots close to the primary production-observed anomalies, and the meridional character of the mistral 1999 and 2005 peaks both support the idea that such eastern PP interannual maxima would be actually due to exceptional production more than to an easterly advection of biomass from the usual bloom area. Finally, the potential link of the observed features with large-scale atmospheric forcing is discussed, and a potential relation of such interannual events with the East Atlantic pattern is drawn.  相似文献   

20.
On the biophilic nature of iodine in seawater   总被引:1,自引:0,他引:1  
Vertical profiles of concentrations of iodate- and total-iodine have been measured at thirty stations in the Pacific, Atlantic and Antarctic Oceans. The salinity-normalised iodine profiles are indicative of both iodine removal and iodate reduction in the euphotic zone. Thus, surface waters appear to be depleted in iodate-iodine (by 0.03?0.22 μM) but less so in total-iodine (by<0.01?0.06 μM) when compared with the near-constant iodine concentrations (~0.46 μM) at depth. Graphs of specific total-iodine versus specific phosphate fit a linear model well and lie within a narrow envelope for all stations, suggesting a direct coupling of iodine and nutrients during assimilation/regeneration. The I/C atom ratio calculated from these hydrographic data (1.0 × 10?4) agrees well with contemporary plankton compositions (I/C= 1.4 (±0.8) × 10?4). Similar graphs involving specific iodate also fit a linear model well. However, their gradients vary from station to station leading to a variability in I/C interconversion ratio, analogous to the variability of Redfield nutrient ratios for coastal waters. This variation is attributed to changes in both productivity and nitrate availability. Pacific deep waters contain anomalously high total-iodine concentrations which may reflect regional differences of I/P ratio in surface waters or else diffusion of iodine from bottom sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号