首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 1953 North Sea floods, the Big Flood, was one of the worst natural disasters in Europe in modern times and is probably one of the most studied severe coastal floods. Several factors led to the devastating storm surge along the southern North Sea coast in combination of strong and sustained northerly winds, invert barometric effect, high spring tide, and an accumulation of the large surge in the Strait of Dover. However, the storm waves and their roles during the 1953 North Sea storm surge are not well investigated. Therefore, the effect of wave setup due to breaking waves in the storm surge processes is investigated through numerical experiments. A coupled process-based tide-wave-surge model was used to investigate and simulate the storm surge in the North Sea during January 31–February 1, 1953 and validated by comparing with historical water level records at tide gauges and wave observations at light vessels in the North Sea. Meteorological forcing inputs for the period, January 27–February 3, 1953 are reproduced from ERA-20C reanalysis data with a constant correction factor for winds. From the simulation results, it is found that, in addition to the high water due to wind setup, wave setup due to breaking waves nearshore play a role of approximately 10% of the storm surge peaks with approximately 0.2 m. The resulting modeling system can be used extensively for the preparedness of the storm surge and wave of extreme condition, and usual barotropic forecast.  相似文献   

2.
This study shows that storm surge model performance in the North Sea is mostly unaffected by the application of temporal variations of surface drag due to changes in sea state provided the choice of a suitable constant Charnock parameter in the sea-state-independent case. Including essential meteorological features on smaller scales and minimising interpolation errors by increasing forcing data resolution are shown to be more important for the improvement of model performance particularly at the high tail of the probability distribution. This is found in a modelling study using WAQUA/DCSMv5 by evaluating the influence of a realistic air-sea momentum transfer parameterization and comparing it to the influence of changes in the spatial and temporal resolution of the applied forcing fields in an effort to support the improvement of impact and climate analysis studies. Particular attention is given to the representation of extreme water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5 is forced with ERA-Interim reanalysis data. Model results are obtained from a set of different forcing fields, which either (i) include a wave-state-dependent Charnock parameter or (ii) apply a constant Charnock parameter (α C h =?0.032) tuned for young sea states in the North Sea, but differ in their spatial and/or temporal resolution. Increasing forcing field resolution from roughly 79 to 12 km through dynamically downscaling can reduce the modelled low bias, depending on coastal station, by up to 0.25 m for the modelled extreme water levels with a 1-year return period and between 0.1 m and 0.5 m for extreme surge heights.  相似文献   

3.
Temporal and spatial circulation patterns in the East Frisian Wadden Sea   总被引:2,自引:1,他引:1  
This work deals with the analysis of simulations carried out with a primitive equation numerical model for the region of the East Frisian Wadden Sea. The model, with 200-m resolution, is forced by wind, air–sea heat, and water fluxes and river runoff and is nested in a German Bight 1-km-resolution numerical model, the latter providing tidal forcing for the fine resolution model. The analysis of numerical simulations is focused both on responses due to moderate conditions, as well as to extreme events, such as the storm surge Britta, for which the model demonstrates very good skills. The question addressed in this paper is how well the model output can be compressed with the help of empirical orthogonal function analysis. It is demonstrated that, for the short-time periods of the order of a spring–neap cycle, only a few modes are necessary to almost fully represent the circulation. This is just an illustration that the circulation in this region is subject to the dominating tidal forcing, creating clear and relatively simple response patterns. However, for longer periods of about several months, wind forcing is also very important, and correspondingly, the circulation patterns become much more complex. Possible applications of the results in hindcasting and forecasting of hydrodynamics and sediment dynamics in the coastal zone are considered.  相似文献   

4.
《Journal of Geodynamics》2010,49(3-5):182-188
We investigate the contribution of atmospheric and its induced non-tidal oceanic loading effects on surface time-varying gravity and tilt measurements for several stations in Western Europe. The ocean response to pressure forcing can be modelled accordingly to the inverted barometer, i.e. assuming that air pressure variations are fully compensated by static sea height changes, or using ocean general circulation models. We validate two runs of the HUGO-m barotropic ocean model by comparing predicted sea surface height variations with hundred tide-gauge measurements along the European coasts. We then show that global surface pressure field, as well as a barotropic high-resolution ocean model forced by air pressure and winds allow in most cases a significant reduction of the variance of gravity residuals and, to a smaller extends tilt residuals.We finally show that precise gravity measurements with superconducting gravimeters allow the observation of large storm surges, occurring in the North Sea, even for inland stations. However, we also confirm that the continental hydrology contribution cannot be neglected. Thanks to their specific sensitivity feature, only tiltmeters closest to the coast can clearly detect the loading due to these storm surges.  相似文献   

5.
We present an idealized network model for storm surges in the Wadden Sea, specifically including a time-dependent wind forcing (wind speed and direction). This extends the classical work by H.A. Lorentz who only considered the equilibrium response to a steady wind forcing. The solutions obtained in the frequency domain for the linearized shallow-water equations in a channel are combined in an algebraic system for the network. The velocity scale that is used for the linearized friction coefficient is determined iteratively. The hindcast of the storm surge of 5 December 2013 produces credible time-varying results. The effects of storm and basin parameters on the peak surge elevation are the subject of a sensitivity analysis. The formulation in the frequency domain reveals which modes in the external forcing lead to the largest surge response at coastal stations. There appears to be a minimum storm duration, of about 3–4 h, that is required for a surge to attain its maximum elevation. The influence of the water levels at the North Sea inlets on the Wadden Sea surges decreases towards the shore. In contrast, the wind shearing generates its largest response near the shore, where the fetch length is at its maximum.  相似文献   

6.
A three-dimensional finite volume unstructured mesh model of the west coast of Britain, with high resolution in the coastal regions, is used to investigate the role of wind wave turbulence and wind and tide forced currents in producing maximum bed stress in the eastern Irish Sea. The spatial distribution of the maximum bed stress, which is important in sediment transport problems, is determined, together with how it is modified by the direction of wind forced currents, tide–surge interaction and a surface source of wind wave turbulence associated with wave breaking. Initial calculations show that to first order the distribution of maximum bed stress is determined by the tide. However, since maximum sediment transport occurs at times of episodic events, such as storm surges, their effects upon maximum bed stresses are examined for the case of strong northerly, southerly and westerly wind forcing. Calculations show that due to tide–surge interaction both the tidal distribution and the surge are modified by non-linear effects. Consequently, the magnitude and spatial distribution of maximum bed stress during major wind events depends upon wind direction. In addition calculations show that a surface source of turbulence due to wind wave breaking in shallow water can influence the maximum bed stress. In turn, this influences the wind forced flow and hence the movement of suspended sediment. Calculations of the spatial variability of maximum bed stress indicate the level of measurements required for model validation.  相似文献   

7.
The research presented in this paper involves the application of the joint probability method to the estimation of extreme water levels resulting from astronomical tides and surge residuals and the investigation of the effects of tide–surge interactions on extreme water levels. The distribution of tide peaks was analysed from field records (<20 years) and a 46-year dataset of monthly maximum tidal amplitudes. Large surges were extracted from both field records and a numerical model hindcast covering the 48 largest storm events in the Irish Sea over the period 1959–2005. Extreme storm surges and tides were independently modelled using the generalised extreme value statistical model, and derived probability distributions were used to compute extreme water levels. An important, and novel, aspect of this research is an analysis of tide–surge interactions and their effects on total water level; where interactions exist, they lead to lower total water levels than in the case of independency. The degree of decrease varies with interaction strength, magnitude of surge peak at a particular phase of tide and the distribution of peaks over a tidal cycle. Therefore, including interactions in the computation of extreme levels may provide very useful information at the design stage of coastal protection systems.  相似文献   

8.
A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/m2 is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/m2. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced.  相似文献   

9.
Global coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature. However, the global models do not perform as well on regional scales. Here, we present results from a 20-year, high-resolution ocean model experiment for the Atlantic and Arctic Oceans. The atmospheric forcing is taken from the final 20 years of a twentieth-century control run with a coupled atmosphere–ocean general circulation model. The ocean model results from the regional ocean model are validated using observations of hydrography from repeat cruises in the Barents Sea. Validation is performed for average quantities and for probability distributions in space and time. The validation results reveal that, though the regional model is forced by a coupled global model that has a noticeable sea ice bias in the Barents Sea, the hydrography and its variability are reproduced with an encouraging quality. We attribute this improvement to the realistic transport of warm, salty waters into the Barents Sea in the regional model. These lateral fluxes in the ocean are severely underestimated by the global model. The added value with the regional model that we have documented here lends hope to advance the quality of oceanic climate change impact studies.  相似文献   

10.
The coastal zones are facing the prospect of changing storm surge statistics due to anthropogenic climate change. In the present study, we examine these prospects for the North Sea based on numerical modelling. The main tool is the barotropic tide-surge model TRIMGEO (Tidal Residual and Intertidal Mudflat Model) to derive storm surge climate and extremes from atmospheric conditions. The analysis is carried out by using an ensemble of four 30-year atmospheric regional simulations under present-day and possible future-enhanced greenhouse gas conditions. The atmospheric regional simulations were prepared within the EU project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). The research strategy of PRUDENCE is to compare simulations of different regional models driven by the same global control and climate change simulations. These global conditions, representative for 1961–1990 and 2071–2100 were prepared by the Hadley Center based on the IPCC A2 SRES scenario. The results suggest that under future climatic conditions, storm surge extremes may increase along the North Sea coast towards the end of this century. Based on a comparison between the results of the different ensemble members as well as on the variability estimated from a high-resolution storm surge reconstruction of the recent decades it is found that this increase is significantly different from zero at the 95% confidence level for most of the North Sea coast. An exception represents the East coast of the UK which is not affected by this increase of storm surge extremes.  相似文献   

11.
12.
Barotropic responses of the East China Sea to typhoon KOMPASU are investigated using a high-resolution, three-dimensional, primitive equation, and finite volume coastal ocean model. Even the fact that the typhoon KOMPASU only brushed across the brink of China mainland without landing, it still imposed great influence across China's east coastal area, where storm surges ranging from 35 to 70 cm were intrigued during this event and a large wake of water setdown due to the outward radial transport driven by the cyclonic wind stress was generated after the KOMPASU traveled across the Yellow Sea. Analysis of the numerical results reveals that the barotropic waves propagating along the coast after the typhoon's landing can be identified as Kelvin wave and the currents associated with the storm are geostrophic currents. A series of model runs are initiated to diagnose the effects of wind stress, atmospheric pressure, and storm track variation on the surge's spatial distribution in the East China Sea. The barotropic waves affected by the atmospheric disturbance due to the typhoon in deep Pacific Ocean travel far more rapidly, arriving at the coastal regions at least 60 h ahead of the typhoon. The wave amplitudes are merely 0.2–0.4 cm and damp gradually due to friction. The model experiments also confirm that the surge levels in nearshore regions are highly dominated by winds, whereas the water level variations in deeper areas are controlled by the atmospheric pressure forcing during typhoon events in the East China Sea.  相似文献   

13.
Planning and design of coastal protection rely on information about the probabilities of very severe storm tides and the possible changes that may occur in the course of climate change. So far, this information is mostly provided in the form of high percentiles obtained from frequency distributions or return values. More detailed information and assessments of events that may cause extreme damages or have extreme consequences at the coast are so far still unavailable. We describe and compare two different approaches that may be used to identify highly unlikely but still physically possible and plausible events from model simulations. Firstly, in the case when consistent wind and tide-surge data are available, different metrics such as the height of the storm surge can be derived directly from the simulated water levels. Secondly, in cases where only atmospheric data are available, the so called effective wind may be used. The latter is the projection of the horizontal wind vector on that direction which is most effective in producing surges at the coast. Comparison of events identified by both methods show that they can identify extreme events but that knowledge of the effective wind alone does not provide sufficient information to identify the highest storm surges. Tracks of the low-pressure systems over the North Sea need to be investigated to find those cases, where the duration of the high wind is too short to induce extreme storm tides. On the other hand, factors such as external surges or variability in mean sea level may enhance surge heights and are not accounted for in estimates based on effective winds only. Results from the analysis of an extended data set suggest that unprecedented storm surges at the German North Sea coast are possible even without taking effects from rising mean sea level into account. The work presented is part of the ongoing project “Extreme North Sea Storm Surges and Their Consequences” (EXTREMENESS) and represents the first step towards an impact assessment for very severe storm surges which will serve as a basis for development of adaptation options and evaluation criteria.  相似文献   

14.
A two-dimensional coupled tide-surge model was used to investigate the effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea. In order to estimate the impacts of tide-surge interactions on storm surge elevations, Typhoon 7203 was assumed to arrive at 12 different times, with all other conditions remaining constant. This allowed simulation of tide and total water levels for 12 separate cases. Numerical simulation results for Yingkou, Huludao, Shijiusuo, and Lianyungang tidal stations were analyzed. Model results showed wide variations in storm surge elevations across the 12 cases. The largest difference between 12 extreme storm surge elevation values was of up to 58 cm and occurred at Yingkou tidal station. The results indicate that the effects of tide-surge interactions on storm surge elevations are very significant. It is therefore essential that these are taken into account when predicting storm surge elevations.  相似文献   

15.
The Adriatic Sea general circulation model coupled to a third generation wave model SWAN and a sediment transport model was implemented in the Adriatic Sea to study the dynamics of the sediment transport and resuspension in the northern Adriatic Sea (NAS) during the Bora event in January 2001. The bottom boundary layer (BBL) was resolved by the coupled model with high vertical resolution, and the mechanism of the wave–current interaction in the BBL was also represented in the model. The study found that, during the Bora event of 13–17 January 2001, large waves with significant wave height 2 m and period of 5 s were generated by strong winds in the northwestern shelf of the Adriatic where the direction of wave propagation was orthogonal to the current. The combined motion of the wave and current in the BBL increased the bottom stress over the western Adriatic shelf, resulting in stronger sediment resuspension there. Combining stronger bottom resuspension and strong upward vertical flux of resuspended sediments due to turbulent mixing, the model predicted that sediment concentration near the Po River was much higher than that predicted by the model run without wave forcing. The study also shows that wave–current interaction in the BBL reduced the western Adriatic Coastal Currents (WACCs) in the shallower north. It is concluded that wave forcing significantly changed the sediment distributions and increased the total horizontal fluxes over the western shelf. These results signified wave effect on sediment flux and distribution in the NAS, and suggested that waves cannot be neglected in the study of dynamics of sediment transport and resuspension in the shallow coastal seas. By including the tidal forcing in the coupled model, we also examined the effect of tides on the sediment transport dynamics in the NAS.  相似文献   

16.
This paper addresses the impact of atmospheric variability on ocean circulation in tidal and non-tidal basins. The data are generated by an unstructured-grid numerical model resolving the dynamics in the coastal area, as well as in the straits connecting the North Sea and Baltic Sea. The model response to atmospheric forcing in different frequency intervals is quantified. The results demonstrate that the effects of the two mechanical drivers, tides and wind, are not additive, yet non-linear interactions play an important role. There is a tendency for tidally and wind-driven circulations to be coupled, in particular in the coastal areas and straits. High-frequency atmospheric variability tends to amplify the mean circulation and modify the exchange between the North and the Baltic Sea. The ocean response to different frequency ranges in the wind forcing is area-selective depending on specific local dynamics. The work done by wind on the oceanic circulation depends strongly upon whether the regional circulation is tidally or predominantly wind-driven. It has been demonstrated that the atmospheric variability affects the spring-neap variability very strongly.  相似文献   

17.
The Pearl River Estuary (PRE) in South China's Guangdong Province is a subtropical estuary with highly irregular topography and dynamically complicated circulations. A nested-grid coastal circulation modelling system is used in this study to examine dynamic responses of the PRE to tides, meteorological forcing and buoyancy forcing. The nested-grid modelling system is based on the Princeton Ocean Model and consists of three downscaling subcomponents: including an outer-most model with a coarse horizontal resolution of ~7 km for simulating tidally forced and wind-driven surface elevations and depth-mean currents over the China Seas from Bohai Sea to the northern South China Sea and an innermost model with a fine resolution of ~1.2 km for simulating the 3D coastal circulation and hydrography over the PRE and adjacent coastal waters. Model results during the winter northeast monsoon surge in January and super typhoon Koryn in June of 1993 are used to demonstrate that the 3D coastal circulation and hydrographic distributions in the PRE are affected by tides, winds and buoyancy forcing associated with river discharge from the Pearl River with significant seasonal and synoptic variabilities.  相似文献   

18.
The influence of a summer storm event in 2007 on the North Sea and its effects on the ocean stratification are investigated using a regional coupled ocean (Regional Ocean Modeling System, ROMS)-atmosphere (Weather Research & Forecasting model, WRF) modeling system. An analysis of potential energy anomaly (PEA, Φ) and its temporal development reveals that the loss of stratification due to the storm event is dominated by vertical mixing in almost the entire North Sea. For specific regions, however, a considerable contribution of depth-mean straining is observed. Vertical mixing is highly correlated with wind induced surface stresses. However, peak mixing values are observed in combination with incoming flood currents. Depending on the phase between winds and tides, the loss of stratification differs strongly over the North Sea. To study the effects of interactive ocean-atmosphere exchange, a fully coupled simulation is compared with two uncoupled ones for the same vertical mixing parameters to identify the impact of spatial resolution as well as of SST feedback. While the resulting new mixed layer depth after the storm event in the uncoupled simulation with lower spatial and temporal resolution of the surface forcing data can still be located in the euphotic zone, the coupled simulation is capable to mix the entire water column and the vertical mixing in the uncoupled simulation with higher resolution of the surface forcing data is strongly amplified. These differences might have notable implications for ecosystem modeling since it could determine the development of new phytoplankton blooms after the storm and for sediment modeling in terms of sediment mobilization. An investigation of restratification after the extreme event illustrates the persistent effect of this summer storm.  相似文献   

19.
An unstructured mesh finite element model of the sea region off the west coast of Britain is used to examine the storm surge event of November 1977. This period is chosen because accurate meteorological data to drive the model and coastal observations for validation purposes are available. In addition, previous published results from a coarse-grid (resolution 7 km) finite difference model of the region and high-resolution (1 km) limited area (namely eastern Irish Sea) model are available for comparison purposes. To enable a “like with like” comparison to be made, the finite element model covers the same domain and has the same meteorological forcing as these earlier finite difference models. In addition, the mesh is based on an identical set of water depths. Calculations show that the finite element model can reproduce both the “external” and “internal” components of the surge in the region. This shows that the “far field” (external) component of the surge can accurately propagate through the irregular mesh, and the model responds accurately, without over- or under-damping, to local wind forcing. Calculations show significant temporal and spatial variability in the surge in close agreement with that found in earlier finite difference calculations. In addition, root mean square errors between computed and observed surge are comparable to those found in previous finite different calculations. The ability to vary the mesh in nearshore regions reveals appreciable small-scale variability that was not found in the previous finite difference solutions. However, the requirement to perform a “like with like” comparison using the same water depths means that the full potential of the unstructured grid model to improve resolution in the nearshore region is inhibited. This is clearly evident in the Mersey estuary region where a higher resolution unstructured mesh model, forced with uniform winds, had shown high topographic variability due to small-scale variations in topography that are not resolved here. Despite the lack of high resolution in the nearshore region, the model showed results that were consistent with the previous storm surge models of the region. Calculations suggest that to improve on these earlier results, a finer nearshore mesh is required based upon accurate nearshore topography.  相似文献   

20.
An operational storm surge forecasting system aimed at providing warning information for storm surges has been developed and evaluated using four typhoon events. The warning system triggered by typhoon forecasts from Taiwan Cooperative Precipitation Ensemble Forecast Experiment (TAPEX) has been executed with two storm surge forecasting scenarios with and without tides. Three numerical experiments applying different meteorological inputs have been designed to assess the impact of typhoon forcing on storm surges. One uses synthetic wind fields, and the others use realistic wind fields with and without adjustments to the initial wind fields for the background circulation. Local observations from Central Weather Bureau (CWB) weather stations and tide gauge stations are used to evaluate the wind fields and storm surges from our numerical experiments. The comparison results show that the accuracy of the storm surge forecast is dominated by the track, the intensity, and the driving flow of a typhoon. When the structure of a typhoon is disturbed by Taiwan’s topography, using meteorological inputs from real wind fields can result in a better typhoon simulation than using inputs from synthetic wind fields. The driving flow also determines the impact of topography on typhoon movement. For quickly moving typhoons, storm forcing from TAPEX is reliable when a typhoon is strong enough to be relatively unaffected by environmental flows; otherwise, storm forcing from a sophisticated typhoon initialization scheme that better simulates the typhoon and environmental flows results in a more accurate prediction of storm surges. Therefore, when a typhoon moves slowly and interacts more with the topography and environmental flows, incorporating realistic wind fields with adjustments to the initial wind fields for the background circulation in the warning system will obtain better predictions for a typhoon and its resultant storm surges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号