首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study concerns the mineralogy, spatial distribution and sources of nine heavy metals in surface sediments of the Maharlou saline lake, close to the Shiraz metropolis in southern Iran. The sources for these sediments were studied by comparing the mineralogy and the distribution of heavy metals, using multivariate statistical analysis (correlation analysis and principal component analysis). The geochemical indices, including geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI), were used to assess the degree of heavy metal contamination in surface sediments. Sediment quality guidelines (SQGs) have also been applied to assess its toxicity. The XRD analysis shows that the main minerals of the surface sediments are aragonite, calcite, halite and quartz, with small amounts of montmorillonite, dolomite and sepiolite. The total heavy metal contents in surface sediments decrease in order of Sr?>?Ni?>?Cr?>?Zn?>?Cu?>?Co?>?Pb?>?As >?Cd and the average concentrations of Sr, Ni and As exceeded more than 10, 5 and 3 times, respectively, by comparing with the normalized upper continental crust (UCC) values. The results of pollution indices (Igeo, CF and PLI) revealed that strontium (Sr), nickel (Ni) and arsenic (As) were significantly enriched in those sediments. Based on the sediment quality guidelines (SQGs), Ni would infrequently cause toxicity. Multivariate statistical analysis indicated that the Ni, Co and Cr came mainly from natural geological background sources, while Cd, Cu, Pb, and Zn were derived from urban effluents (especially traffic emissions) and As originated from agriculture activities. Significant relationships of Sr with S, CaO and MgO in sediments suggest that Sr was derived from carbonate- and gypsum-bearing catchment source host rocks.  相似文献   

2.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

3.
This paper describes the concentrations of heavy metals in soils and in raisins (sultanas) cultivated upon the Gediz Plain (Manisa), western Turkey, which is cut by major roads from ?zmir to ?stanbul and ?zmir to Ankara. A total of 212 samples of surface soil and 82 raisin samples were analysed. Soil samples have nearly same mineralogy, quartz, calcite, magnetite, pseudo-rutile and clay minerals. Dolomite is seen especially in areas close to Neogene sediments. Clay minerals are mainly mica (illite?Cmuscovite), chlorite/kaolinite, smectite and mixed layers (Sm-Il). The concentrations of 21 elements (Ba, Ni, Mo, Cu, Pb, Zn, Co, Mn, As, U, Sr, Cd, Sb, Bi, Cr, B, W, Hg, Sn, Li and organic C) were determined in the surface soils. The degree of element enrichment in soil can be measured in many ways, the most common of which are the geoaccumulation index (Igeo), enrichment factor and the pollution index. Arsenic and Sb showed the highest Igeo values, corresponding to Igeo classes 3?C4. Hence, the area is characterised as ??being heavily contaminated to polluted?? by As and Sb. Arsenic contamination has been reported from all over world. Arsenic-related pollutants enter the groundwater system by gradually moving with the flow of groundwater from rains and irrigation. Gediz Plain forms the main groundwater supply of ?zmir city. The enrichment factor (EFarsenic) of the analysed soil samples is around 76, which corresponds to ??extremely high enrichment??. The concentrations of 33 elements (Al, Sb, As, Ba, Be, Bi, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Hg, Mo, Ni, K, Se, Ag, Na, Sr, Ta, Th, Sn, Ti, U, V, Zn and Zr) were determined in the raisin samples. The Pb and Cd contents of raisins are of great concern due to their toxicity. Pb contents ranged between 0.05 and 0.46?mg?kg?1, and average Cd content was 0.04?mg?kg?1. Only one sample contained high level of Cd, 0.23?mg?kg?1. After cleaning the raisins, the heavy metal concentrations were low as in the European Community (EC) regulation No: 466/2001 for allowable levels of Pb (0.2?mg?kg?1) and Cd (0.05?mg?kg?1).  相似文献   

4.
Water, sediment, and mine spoil samples were collected within the vicinity of the Okpara coal mine in Enugu, Southeastern Nigeria, and analyzed for trace elements using ICP-MS to assess the level of environmental contamination by these elements. The results obtained show that the mine spoils and sediments are relatively enriched in Fe, with mean values of 1,307.8(mg/kg) for mine spoils and 94.15% for sediments. As, Cd, Cr, Mn,Ni, Pb, and Zn in the sediments were found to be enriched relative to the mean values obtained from the study area, showing contamination by these elements. The mean values of Fe, Mn, Cu, and Cr in the mine spoils and mean values of Fe, Cu, Pb, Zn, Ni, Cr, and Mn in sediments, respectively, are above the background values obtained from coal and shale in the study area, indicating enrichment with these elements. The water and sediments are moderately acidic, with mean pH values of 4.22?±?1.06 and 4.66?±?1.35, respectively. With the exception of Fe, Mn, and Ni, all other elements are within the Nigerian water quality standard and WHO limits for drinking water and other domestic purposes. The strong to moderate positive correlation between Fe and Cu (r?=?0.72), Fe and Zn (r?=?0.88), and Fe and As (r?=?0.60) at p?<?0.05 as obtained for the sediments depict the scavenging effect of Fe on these mobile elements. As also shows a strong positive correlation with Mn (r?=?≥ 0.70, p?<?0.05), indicating that Mn plays a major role in scavenging elements that are not co-precipitated with Fe. In water, the strong positive correlation observed between Cr and Cd (r?=?1.00), Cu and Ni (r?=?0.94), Pb and Cu (r?=?0.87) and Zn and Cu (r?=?0.99); Ni and Pb (r?=?0.83) and Zn and Ni (r?=?0.97); and between Pb and Zn (0.84) at p?<?0.05 may indicate similar element–water reaction control on the system due to similarities in chemical properties as well as a common source. Elevated levels of heavy metals in sediments relative to surface water probably imply that sorption and co-precipitation on Al and Fe oxides are more effective in the mobilization and attenuation of heavy metals in the mine area than acid-induced dissolution. The level of concentration of trace elements for the mine spoils will serve as baseline data for future reference in the study area.  相似文献   

5.
Using trace elements to reconstruct paleoenvironment is a current hot topic in geochemistry. Through analytical tests of oil yield, ash yield, calorific value, total sulfur, major elements, trace elements, and X-ray diffraction, the quality, mineral content, occurrence mode of elements, and paleoenvironment of the Zhangjiatan oil shale of the Triassic Yanchang Formation in the southern Ordos Basin were studied. The analyses revealed relatively high oil yield (average 6.63%) and medium quality. The mineral content in the oil shale was mainly clay minerals, quartz, feldspar, and pyrite; an illite–smectite mixed layer comprised the major proportion of clay minerals. Compared with marine oil shale in China, the Zhangjiatan oil shale had higher contents of quartz, feldspar, and clay minerals, and lower calcite content. Silica was mainly in quartz and Fe was associated with organic matter, which is different from marine oil shale. The form of calcium varied. Cluster analyses indicated that Fe, Cu, U, V, Zn, As, Cs, Cd, Mo, Ga, Pb, Co, Ni, Cr, Sc, P, and Mn are associated with organic matter while Ca, Na, Sr, Ba, Si, Zr, K, Al, B, Mg, and Ti are mostly terrigenous. Sr/Cu, Ba/Al, V/(V + Ni), U/Th, AU, and δU of oil shale samples suggest the paleoclimate was warm and humid, paleoproductivity of the lake was relatively high during deposition of the shale—which mainly occurred in fresh water—and the paleo-redox condition was dominated by reducing conditions. Fe/Ti ratios of the oil shale samples suggest clear hydrothermal influence in the eastern portion of the study area and less conspicuous hydrothermal influence in the western portion.  相似文献   

6.
The mineralogy and geochemistry data are presented for thirty-seven shales,four concretions,two carbonate sediments and seven lignites from the Marathousa coal field of the Megalopolis Basin in Greece.The argillaceous rocks consist of chlorite,illite,kaolinte,albite,quartz.opal-A,calcite and dolomite;the concretions of aragonite,gypsum and pyrite;and the carbonate rocks of calcite,quartz and illite.The mineral matter in the lignites consists of gypsum,quartz,albite,chlorite,illite,opal-A,dolomite,pyrite,and rarely calcite and kaolinite Athree-factor model explains the total variaition of major and trace elements in the argillaceous sediments.The first factor is an aluminosilicate factor and involves the following elements:Al,Si,Mg,Na,K,Ti,Mn,Nb,Y,Rb,Zn,Cu,Ni,Cr,Nband V,associated with chlorite,albite and illite.The second factor involves the elements Ca,Sr,Ba,Znand Sc and is related to carbonate lithology and mainly the carbonate concretions with gypsum.The third factor involves Fe and Ce with a weak association with Mn.The diagenesis of the Marathousa sediments and lignites was not very advanced as indicated by (a) the total thickness of the sequence (500m),(b) the presence of biogenic silica(opal-A) and (c) the age of the deposit(Pleistocene).FOr these reasons the rpresence of chlorite,illite and kaolinite in the sediments and lignite is due not to diagenetic reactions but to weathering of the flysch and metamorphic rocks at the edges of the Megalopolis Basin and transport of the weathering products(illite,chlorite,kaolinite)into the basin of deposition.The diagenetic minerals of the Marathousa sequence include pyrite,gypsum,dolomite and aragonite.  相似文献   

7.
This work focuses on the relationship between the coal deposition and explosive volcanism of the Miocene basin, NW central Anatolia, Turkey. The coal-bearing Hirka Formation was deposited over the Galatian Andesitic Complex and/or massive lagoonal environments during the Miocene. The investigated lignite is a high ash (from 32 to 58%) and sulphur (from 1.43 to 3.03%) lignite which is petrographically characterised by a high humunite content. The mineral matter of the studied lignite samples is made up of mainly clay minerals (illite-smectite and kaolinite), plagioclase and quartz in Bolu coal field, clay minerals (illite-smectite, smectite and illite), quartz, calcite, plagioclase and gypsum in Seben coal field, quartz, K-feldspar, plagioclase and clay minerals (kaolinite and illite) in K?br?sc?k, and dolomite, quartz, clinoptilolite, opal CT and gypsum in Çaml?dere coal field. The differences in these four types of lignite with specific mineralogical patterns may be due to the explosive volcanic events and depositional conditions which changed from one coal field to the others. There is a zonation from SW to SE in the studied area for zeolites such as Opal CT+smectite-clinoptilolite-analcime-K-feldspar. Carbonate minerals are commonly calcite in Seben and K?br?sc?k coal fields. In Bolu, coal samples are devoid of calcite and dolomite. These analyses show that there is an increase in the amount of Mg and a decrease in the amount of Na from the northwestern part to the southern part in the study area.  相似文献   

8.
The concentrations and speciation of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in the sediments of the nearshore area, river channel and coastal zones of the Yangtze estuary, China, were systematically investigated in this study. The concentrations of all heavy metals except Ni in the sediments of the nearshore area were higher than those of the river channel and coastal zones. In the nearshore area, the concentrations of most heavy metals except Hg in the sediments of the southern branch were higher than those of the northern branch because of the import of pollutants from the urban and industrial activities around. When compared with the threshold effect level (TEL) and geochemical background levels, Cr, Ni and As accumulated and posed potential adverse biological effects. The speciation analysis suggested that Cd, Pb and Zn in the sediments of the three zones showed higher bioavailability than the other heavy metals, and thus posed ecological risk. Significant correlations were observed among Cr, Cu, Ni and Zn (r > 0.77) in the nearshore area, Ni, Cu, Zn and Pb (r > 0.85) in the river channel and Ni, Cu, Cr, Pb and Zn (r > 0.75) in the coastal zone. Principal component analysis (PCA) indicated that the discharge of unban and industrial sewage, shipping pollution and the properties of the sediments (contents of Fe, Mn, Al, TOC, clay and silt) dominated the distribution of heavy metal in the nearshore area, river channel and coastal zones of the Yangtze estuary.  相似文献   

9.
A study was conducted to understand the hydrogeological processes dominating in the North 24 Parganas and South 24 Parganas based on representative 39 groundwater samples collected from selected area. The abundance of major ions was in the order of Ca2+ > Na+ > Mg2+ > K+ > Fe2+ for cations and HCO3 ? > PO4 3? > Cl? > SO4 2? > NO3 ? for anions. Piper trilinear diagram was plotted to understand the hydrochemical facies. Most of the samples are of Ca-HCO3 type. Based on conventional graphical plots for (Ca + Mg) vs. (SO4 + HCO3) and (Na + K) vs. Cl, it is interpreted that silicate weathering and ion exchange are the dominant processes within the study area. Previous studies have reported quartz, feldspar, illite, and chlorite clay minerals as the major mineral components obtained by the XRD analysis of sediments. Mineralogical investigations by SEM and EDX of aquifer materials have shown the occurrence of arsenic as coating on mineral grains in the silty clay as well as in the sandy layers. Excessive withdrawal of groundwater for irrigation and drinking purposes is responsible for fluctuation of the water table in the West Bengal. Aeration beneath the ground surface caused by fluctuation of the water table may lead to the formation of carbonic acid. Carbonic acid is responsible for the weathering of silicate minerals, and due to the formation of clay as a product of weathering, ion exchange also dominates in the area. These hydrogeological processes may be responsible for the release of arsenic into the groundwater of the study area, which is a part of North 24 Parganas and South 24 Parganas.  相似文献   

10.
The x-ray powder diffraction identification of clay minerals both in bulk samples and in separated clay fraction confirmed the presence of palygorskite in samples of cave sediments from Wadi Haqil (the western slopes of Musandam Mountains; Ras Al-Khaimah Emirate, UAE). Samples contain quartz, gypsum, smectite, kaolinite, calcite, and palygorskite, some of them chlorite, illite, feldspars, and goethite. Calcite dominates in most samples; smectite prevails in clay fraction. After heating, the 001 reflection of chlorite shifts to higher diffraction angles and its intensity decreases; these features indicate that the chlorite represent a Fe-dominant species. Unit-cell dimensions of major phases as refined by the Rietveld method are in agreement with literature data. Chemical composition of palygorskite was derived from unit-cell dimensions as follows: MgO content is 11–14 wt% and Al2O3 10–13 wt%. Clay mineralogy is only hard to ascertain from the scanning electron microscope (SEM) images even after being combined with the energy-dispersive spectrometer data. The SEM was also used to characterize gypsum grains; they often display flow deformation features. Studied cave sediments represent palygorskite-bearing weathering products and desert soils re-deposited from the cave surroundings by slope processes and wind and/or surface runoff. The mixture with other clay minerals, quartz, feldspars, etc. supports this interpretation. Fine-grained quartz fraction is probably wind-blown. Gypsum and calcite are the precipitates (crusts and/or cements), although gypsum can also be re-deposited from omnipresent gypsum-cemented surface sediments.  相似文献   

11.
The major, trace and rare earth elements geochemistry and clay mineral compositions in the river bed sediments from lower reaches of Godavari river suggest that they are derived from weathering of felsic rocks. Trace and rare earth elemental compositions indicate evidence of sedimentary sorting during transportation and deposition. Lower concentrations of transition elements, such as V, Ni and Cr imply enrichment of felsic minerals in these bed sediments. The REE pattern in lower Godavari sediments is influenced by the degree of source rock weathering. The light rare earth elements (LREE) content are indicating greater fractionation compared to the heavy rare earth elements (HREE). A striking relationship is observed between TiO2 and gZREE content suggesting a strong control by LREE-enriched titaniferous minerals on REE chemistry. Shale-normalized REE pattern demonstrate a positive Eu anomaly, suggesting weathering of feldspar and their secondary products, which are enriched in Eu. Chondrite-normalised REE pattern is characteristic of felsic volcanic, granites and gnessic source rocks. Trace elemental compositions in sediments located near urban areas suggest influence of anthropogenic activity. Chemical Index of Alteration (CIA) is high (avg. 65.76), suggesting a moderate chemical weathering environment. X-ray diffraction analysis of clay fraction shows predominance of clay minerals that are formed because of the chemical weathering of felsic rocks.  相似文献   

12.
The Sardar Formation (Carboniferous) has a lithological variation that is characterized by sandstone, shale and limestone members. Shales of the Sardar Formation from the east central Iran have been analyzed for major elements and a number of trace elements. The shales of Sardar Formation are rich in quartz minerals and clay minerals of the bulk minerals. Clay minerals of shales are composed of illite, kaolinite and slightly montmorillonite. SiO2 versus K2O/Na2O diagram shows these shales plotted in the passive continental margin or cratonic field. Geochemical data suggest high acidic source rocks similar to granite and intermediate igneous rocks. CIA and ICV suggest semi-humid climatic conditions during depositions and indicate high chemical weathering in the source area. The geochemical parameters such as V/Cr, Ni/Co and Cu/Zn ratios indicate that these shales were deposited in oxic environment.  相似文献   

13.
李娟  于炳松  郭峰 《沉积学报》2013,31(1):20-31
为了深入探讨黔北地区下寒武统底部黑色页岩的沉积环境条件和源区构造背景,对黔北地区下寒武统牛蹄塘组黑色页岩进行系统采样,对其微量元素和稀土元素地球化学特征进行了系统分析。研究表明,微量元素中高的WV/(WNi+WV)和U/Th比值等反映该区黑色页岩形成于海域开阔的还原环境。区内黑色页岩样品中Mo、Sb、U、Cd、 V、Ba、Tl、Ni、W、 Cr、Cs、Cu、Zn、Bi等元素的高富集以及正Eu异常和较低的Co/Zn比值均反映了黔北下寒武统底部黑色页岩受到深部热液活动的影响。根据主、微量和稀土元素组合及比值特征可以看出黔北地区下寒武统底部黑色页岩的源岩具有花岗岩、沉积岩和玄武岩等多成因性质。源区构造背景以被动大陆边缘为主,由于受深部热液活动的影响,也显示大陆岛弧构造背景的特征。  相似文献   

14.
Ulsan mine produced the iron ore minerals of magnetite, arsenopyrite, and scheelite in 1992, and serpentine was developed from 1977 to 2002. The soils of the mine were contaminated by heavy metals such as As, Zn, Ni, and Cd. Heavy metals of Ni and Zn came mostly from serpentinite, and As was derived mainly from arsenopyrite in the scan-type iron ore body. As, Zn, and Ni were major contaminants, but Cd was a minor contaminant on a basis of Korean standard. The heavy metals in the deep depth (>?5 m) came from the host rocks, and those in the shallow depth (<?5 m) were derived from the organic–mineral complexation soil. The remediation plan was a soil washing for highly contaminated soils and the containment of clay materials for less contaminated soils. Even though the remediation methods were successful, the continuous monitoring and the analysis of monitoring data are still necessary for the conservation of soil and groundwater around the study area.  相似文献   

15.
In this work we have studied stream sediments that differ in hydrodynamic energy of depositional environments and in the lithologies of source areas. The first type consists of sediment sampled in stream channels in a relatively high energy environment (samples CS); the other type is from sediments deposited laterally, along margins of channels, where stream energy decreases (samples LS). Eighteen CS samples and 36 LS samples, sieved to 230 mesh, taken from streams and rivers that drain different lithologies, were analyzed for mineralogical and chemical compositions.Samples CS and LS have different chemical compositions, although they are composed of the same minerals. CS samples have low concentrations of absorbing phases (e.g., clay and Fe-Mn oxides), low total and extractable Cu, Co, Ni and Cr, and high zircon and quartz. Conversely, LS samples have greater abundances of absorbing phases, transition elements, and lower zircon and quartz. The sample types can be discriminated by compositional differences in Zr, Si and Al.Differences in proportions of minerals of the fine sediment samples (Fe-Mn oxides, clays, quartz and zircon) result from differences in source areas and hydrodynamic characteristics of depositional sites. It is difficult, if not impossible, to collect all samples from sites with exactly the same hydrodynamic conditions or from the same source area; it is therefore necessary to classify samples according to mineralogical compositions, and to know proportions of absorber phases, clays and oxides, to the inert phase, quartz, before interpretation.  相似文献   

16.
《Applied Geochemistry》2003,18(3):409-421
This study provides a geochemical partitioning pattern of Fe, Mn and potentially toxic trace elements (As, Cd, Cr, Cu, Ni, Pb, Zn) in sediments historically contaminated with acid mine drainage, as determined by using a 4-step sequential extraction scheme. At the upperstream, the sediments occur as ochreous precipitates consisting of amorphous or poorly crystalline oxy-hydroxides of Fe, and locally jarosite, whereas the estuarine sediments are composed mainly of detrital quartz, illite, kaolinite, feldspars, carbonates and heavy minerals, with minor authigenic phases (gypsum, vivianite, halite, pyrite). The sediments are severely contaminated with As, Cd, Cu, Pb and Zn, especially in the vicinity of the mining pollution sources and some sites of the estuary, where the metal concentrations are several orders of magnitude above background levels. Although a significant proportion of Zn, Cd and Cu is present in a readily soluble form, the majority of heavy metals are bonded to reducible phases, suggesting that Fe oxy-hydroxides have a dominant role in the metal accumulation. In the estuary, the sediments are potentially less reactive than in the riverine environment, because relevant concentrations of heavy metals are immobilised in the crystalline structure of minerals.  相似文献   

17.
太平洋北部铁锰结核富集区沉积物的元素地球化学特征   总被引:2,自引:1,他引:2  
鲍根德 《沉积学报》1990,8(1):44-56
本文对太平洋北部铁锰结核富集区沉积物的元素地球化学作了较为详细的研究。因子分析提供的信息表明,元素的分布主要受三个因子控制:(1)粘土及Fe、Mn氧化物水化物胶体的吸附作用;(2)生物化学作用过程有关的自生沉积作用;(3)海底页岩风化及附近海区的火山喷发作用。元素的来源:(1)Fe、Mn、Cu、Co、Ni、Zn、Cr、Cr、Mg、Al、Ti、K共生,主要来自粘土吸附;(2)C有机、N、Sr、Na及Si、Ca、Sr主要来自生物化学过程沉积;(3)Pb主要来源于岩石碎屑(火山喷发碎屑)。  相似文献   

18.
Uranium(VI) adsorption onto aquifer sediments was studied in batch experiments as a function of pH and U(VI) and dissolved carbonate concentrations in artificial groundwater solutions. The sediments were collected from an alluvial aquifer at a location upgradient of contamination from a former uranium mill operation at Naturita, Colorado (USA). The ranges of aqueous chemical conditions used in the U(VI) adsorption experiments (pH 6.9 to 7.9; U(VI) concentration 2.5 · 10−8 to 1 · 10−5 M; partial pressure of carbon dioxide gas 0.05 to 6.8%) were based on the spatial variation in chemical conditions observed in 1999-2000 in the Naturita alluvial aquifer. The major minerals in the sediments were quartz, feldspars, and calcite, with minor amounts of magnetite and clay minerals. Quartz grains commonly exhibited coatings that were greater than 10 nm in thickness and composed of an illite-smectite clay with occluded ferrihydrite and goethite nanoparticles. Chemical extractions of quartz grains removed from the sediments were used to estimate the masses of iron and aluminum present in the coatings. Various surface complexation modeling approaches were compared in terms of the ability to describe the U(VI) experimental data and the data requirements for model application to the sediments. Published models for U(VI) adsorption on reference minerals were applied to predict U(VI) adsorption based on assumptions about the sediment surface composition and physical properties (e.g., surface area and electrical double layer). Predictions from these models were highly variable, with results overpredicting or underpredicting the experimental data, depending on the assumptions used to apply the model. Although the models for reference minerals are supported by detailed experimental studies (and in ideal cases, surface spectroscopy), the results suggest that errors are caused in applying the models directly to the sediments by uncertain knowledge of: 1) the proportion and types of surface functional groups available for adsorption in the surface coatings; 2) the electric field at the mineral-water interface; and 3) surface reactions of major ions in the aqueous phase, such as Ca2+, Mg2+, HCO3, SO42−, H4SiO4, and organic acids. In contrast, a semi-empirical surface complexation modeling approach can be used to describe the U(VI) experimental data more precisely as a function of aqueous chemical conditions. This approach is useful as a tool to describe the variation in U(VI) retardation as a function of chemical conditions in field-scale reactive transport simulations, and the approach can be used at other field sites. However, the semi-empirical approach is limited by the site-specific nature of the model parameters.  相似文献   

19.
 The major (Al, Ti, Ca, Mg, Fe, Mn, Si) and trace element (Cd, Cr, Cu, Hg, Li, Ni, Pb, V, Zn) concentrations in surficial (<20 cm) sediments from fjords and open coastal waters around Greenland have been determined. Regionally, high concentrations of Fe, Ti, Mg, Cr, Cu, Ni, and V occur in some west and east coast sediments, but they appear to be natural in origin, as there is no indication of anthropogenic influence. Chemical partition indicates that most of the heavy metals are structurally bound in various silicate, oxide, and sulfide minerals. These host minerals occur more or less equally in the coarse and fine sediment fractions (material >63 μm and <63 μm) and have accumulated at the same rate as other detrital clastic material. Provenance and glaciomarine deposition are the main factors controlling the abundance and distribution of the major and trace elements. The chemical composition reflects the mineralogical differences in the provenance of glacial marine material deposited by water and ice adjacent to Greenland. The main source of the sediments enriched in Ti, Fe, Mg, Cr, Cu, Ni, and V appears to be material derived from the volcanic rocks of the Mesozoic-Tertiary Provinces of Greenland by glacial erosion. Received: 26 June 1995 · Accepted: 11 August 1995  相似文献   

20.
Surface sediments (fraction <63 μm) from the source to the mouth of the Rječina, short (18.3 km) karst allogenic river in Croatia, which is an important source of drinking water, were studied to investigate their mineral (by XRD) and chemical (by ICP-MS) composition to check possible anthropogenic influence at the lower course due to paper industry and mills, and in the prodelta area from untreated municipal sewage and the large harbor of Rijeka town. In all analyzed sediment samples and in the sandstone source, rock quartz is a major mineral, while feldspar and mica group minerals are less abundant. Chlorite is a minor or trace mineral in all samples. Calcite and dolomite are abundant in the river prodelta, reflecting changes in bedrock lithology from flysch to carbonates. In river sediments, Fe is the most abundantly analyzed element, while Ca is the most abundant in prodelta sediments. Concentrations of Al, Mn, Ni, Cr, Co, La and Nd decrease downstream, while Mg, S, Na, B, Pb, Zn, As, Sn, U, Mo, Hg and Ag have relatively higher concentration in prodelta sediments. The results are compared with sediments of other rivers in the area: Raša, Rižana and Dragonja, as well as with those of the Rosandra Creek (Italy). Sediments in the Raša River showed similar behavior as those in the Rječina, as the highest concentration of metals was found in the restricted upper part of the estuary, characterized by rapid deposition of clay particles and terrestrial sedimentary organic matter. The comparison also showed that the most contaminated were the sediments from the Rižana, followed by those from the Rječina and Rosandra Creek, which had similar results. Among the studied elements, As was present in all sediment samples at concentrations >6 ppm that might have the lowest toxic effects. At the lower Rječina and in prodelta sediments, Pb was also present at slightly elevated concentrations (>31 ppm) that could cause such effects. Concentrations of Zn in the prodelta correspond to those occurring in moderately polluted sediments (90–200 ppm). In the prodelta sediments, Hg is slightly below toxicity threshold (1 ppm), while Ag is present at toxicity threshold (0.5 ppm) or close to it. Rječina River could act as a good illustrative example for behavior of toxic metals in allogenic karstic rivers, in which accumulation of anthropogenically introduced pollutants usually occurs in their estuaries, as a result of transport and deposition of fine particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号