首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cenozoic deformation within the Tien Shan of central Asia has accommodated part of the post-collisional indentation of the Indian plate into Asia. Within the Urumgi—Korla region of the Chinese Tien Shan this occurred dominantly on thrusts, with secondary strike-slip faulting. The gross pattern of deformation is of moderate to steeply dipping thrusts that have overthrust foreland basins to the north and south of the range, the Junggar and Tarim basins, respectively. Smaller foreland basins lie within the margins of the range itself (Turfan, Chai Wo Pu, Korla and Qumishi basins); these lie in the footwalls of local thrust systems. Both the Turfan and the Korla basins contain major thrusts within them; they are complex foreland basins. Deformation has progressively affected regions further into the interior of the Junggar Basin, and propagated into the interiors of the intermontane basins. No unidirectional deformation front has passed across the Tien Shan in the Neogene and Quaternary. An Oligocene unconformity may indicate the time of the onset of the Cenozoic deformation, but most of the Cenozoic molasse has been deposited after the Palaeogene. The rate of deposition in basins next to the uplifted ranges has increased since the onset of deformation. There has been at least about 80 km of Cenozoic shortening across this part of the Tien Shan. Cenozoic shortening is greater in sections of the range further west; these are nearer to the northern margin of the Indian indenter. Cenozoic compression has reactivated structures created by the two late Palaeozoic collisions that created the ancestral Tien Shan. These Palaeozoic structures have exerted a strong control over the style and location of the Cenozoic deformation.  相似文献   

2.
The Chinese Tien Shan range is a Palaeozoic orogenic belt which contains two collision zones. The older, southern collision accreted a north-facing passive continental margin on the north side of the Tarim Block to an active continental margin on the south side of an elongate continental tract, the Central Tien Shan. Collision occurred along the Qinbulak-Qawabulak Fault (Southern Tien Shan suture). The time of the collision is poorly constrained, but was probably in in the Late Devonian-Early Carboniferous. We propose this age because of a major disconformity at this time along the north side of the Tarim Block, and because the Youshugou ophiolite is imbricated with Middle Devonian sediments. A younger, probably Late Carboniferous-Early Permian collision along the North Tien Shan Fault (Northern Tien Shan suture) accreted the northern side of the Central Tien Shan to an island arc which lay to its north, the North Tien Shan arc. This collision is bracketed by the Middle Carboniferous termination of arc magmatism and the appearance of Late Carboniferous or Early Permian elastics in a foreland basin developed over the extinct arc. Thrust sheets generated by the collision are proposed as the tectonic load responsible for the subsidence of this basin. Post-collisional, but Palaeozoic, dextral shear occurred along the northern suture zone, this was accompanied by the intrusion of basic and acidic magmas in the Central Tien Shan. Late Palaeozoic basic igneous rocks from all three lithospheric blocks represented in the Tien Shan possess chemical characteristics associated with generation in supra-subduction zone environments, even though many post-date one or both collisions. Rocks from each block also possess distinctive trace element chemistries, which supports the three-fold structural division of the orogenic belt. It is unclear whether the chemical differences represent different source characteristics, or are due to different episodes of magmatism being juxtaposed by later dextral strike-slip fault motions. Because the southern collision zone in the Tien Shan is the older of the two, the Tarim Block sensu stricto collided not with the Eurasian landmass, but with a continental block which was itself separated from Eurasia by at least one ocean. The destruction of this ocean in Late Carboniferous-Early Permian times represented the final elimination of all oceanic basins from this part of central Asia.  相似文献   

3.
The study of granitic plutons of the Baikal Highland and the Tien Shan has made it possible to establish new features of their posthumous (after incorporation into the consolidated Earth’s crust) structural reworking and to understand the implications of the cataclastic flow for the exhumation of the crystalline basement in the studied regions. It is shown that granitic plutons undergo appreciable structural transformation at the stages of tectonic reactivation that is significantly separated in time from the moment of formation of plutons as geological bodies. The 3D cataclastic deformation is the main mode of structural reworking of granitic plutons, while the cataclastic flow is the main form of their mobility. Newly recognized slice structures characterize the volumetric deformation of granites.  相似文献   

4.
Apatite fission-track (AFT) thermochronological modeling as a diagnostic tool for periods of stability (peneplanation) and tectonic activity (orogeny) has been broadly used in tectonic studies of Central Asia in recent years. We discuss more than 100 AFT ages of samples from the Kyrgyz Tien Shan and Altai and compare them with AFT data from northern Kazakhstan. Geological, geomorphological, and AFT data indicate intense activity in the Late Cenozoic Eurasian continental interior. The impact from the India-Eurasia collision on the northern Tien Shan, Altai, and northern Kazakhstan regions showed up at 11, 5, and 3 Ma, respectively, as a result of stress propagation into the continent, with the ensuing reactivation and mountain growth. We hypothesize that a distant effect of the Late Cenozoic India-Eurasia collision was to rejuvenate Paleozoic fault zones and to deform the Mesozoic sedimentary cover north of the collision front as far as the West Siberian Plate. The reactivation facilitated formation of tectonic oil and gas traps. The activity in northern Central Asia under the effect of the Indian indentation into Eurasia appears to continue and may evolve to include uplift of southern West Siberian plate with uplift.  相似文献   

5.
西天山博故图金矿床H-O-S-Pb同位素示踪和Re-Os法测年   总被引:1,自引:0,他引:1  
博故图金矿床是西天山近年新发现的一处大型金矿床,位于新疆特克斯县城北东部依什基里克成矿带东段。金矿体赋存于下石炭统大哈拉军山组火山岩地层中的NW或EW向断裂构造破碎带内,呈脉状或透镜状。由金矿体到两侧火山岩地层围岩,基本对称依次出现硅化、黄铁绢英岩化、青磐岩化等热液蚀变。矿石矿物主要有黄铁矿、毒砂、方铅矿、闪锌矿、银金矿、辉银矿,脉石矿物主要有石英、玉髓、方解石、绢云母等。电子探针观测发现矿石中自然金主要在黄铁矿内呈包裹金,或在其他金属硫化物粒间赋存。含金脉石英氢氧同位素分析和计算表明,成矿流体δ18O水-SMOW=-4.2‰~1.4‰,δDV-SMOW=-111.2‰~-94.1‰,主体属循环的大气降水。矿区金属硫化物的δ34SV-CDT范围为-7.5‰~5.8‰,均值为0.45‰,接近于原始地幔硫,矿石铅和火山岩铅同位素组成特征基本一致,206Pb/~(204)Pb=18.243~18.535,207Pb/~(204)Pb=15.565~15.753,208Pb/~(204)Pb=38.021~38.647,结合载金黄铁矿的187Os/188Os(i)平均值为0.774±0.076,γOs(t)平均值为520,显示成矿物质主要来自赋矿围岩大哈拉军山组火山岩。载金黄铁矿的Re-Os等时线年龄为356.1±9.3Ma(MSWD=16),矿区火山岩年龄为344±6Ma~368.3±1.7Ma。博故图金矿床应为低硫型浅成低温热液金矿。  相似文献   

6.
邢浩  赵晓波  张招崇  叶锦超  冯博 《岩石学报》2016,32(6):1770-1794
西天山位于中亚造山带(CAOB)西南部,是其重要组成部分。CAOB晚古生代金属成矿环境和过程尤为典型,但早古生代成矿地质环境还不甚清楚。新疆巴音布鲁克地区出露(原定时代晚志留世)巴音布鲁克组火山岩夹浅海相碎屑岩和灰岩,是认识西天山早古生代成矿地质环境的难得对象。巴音布鲁克组出露于Nikolaev-那拉提山北缘断裂与Atbash-Inylchek-那拉提山南缘断裂之间的中天山,在巴音布鲁克地区典型发育,火山岩包括玄武岩、玄武安山岩、英安岩、流纹岩及相应的火山碎屑岩,其中侵入岩有正长斑岩和花岗闪长岩。LA-ICP-MS测得玄武安山岩、英安岩、正长斑岩、花岗闪长岩、流纹岩锆石U-Pb年龄分别为455.6±8.1Ma、444.5±1.9Ma、441.4±1.6Ma、455.4±5.3Ma、424±1.9Ma,岩浆活动于晚奥陶-早志留世,喷出和侵入时代接近,原定巴音布鲁克组地层时代晚志留世应改为晚奥陶-早志留世。这些岩浆岩具有相似的稀土元素地球化学特征,微量元素相比原始地幔均亏损Nb、Ta、P、Ti。玄武岩正的ε(t)=+1.6~+6.7,低的(~(87)~Sr/~(86)NdSr)i=0.70377~0.70489,指示岩浆源区具有亏损地幔特征,弱的Zr-Hf负异常,低的Th/Nb比值,较窄的同位素变化范围暗示地壳混染并不显著,微量元素及铅同位素特征(~(206)Pb/~(204)Pb=18.26~18.77,~(207)Pb/~(204)Pb=15.63~15.69,~(208)Pb/~(204)Pb=38.21~38.34)表明岩浆源区可能是俯冲流体及洋底沉积物交代的地幔楔橄榄岩部分熔融成因。西天山巴音布鲁克地区早古生代岩浆岩应是南天山洋晚奥陶-早志留世向北向中天山陆块之下俯冲在中天山-伊犁板块南缘活动大陆边缘的岩浆产物,指示了陆缘岩浆弧环境。这种陆缘弧环境有利于斑岩铜金成矿系统发育,值得高度关注相关铜金矿的地质找矿。  相似文献   

7.
The Suusamyr region is located in the northern part of the Tien Shan Range in Central Asia. In 1992, this region was hit by the Ms = 7.3 Suusamyr earthquake triggering several large landslides along the Suusamyr Valley and on the southern slopes of the adjacent Suusamyr Range. One of these landslides had been investigated by geophysical and geotechnical methods in order to determine local trigger factors. The present paper focuses on the influence of geological and morphological factors upon landslide occurrence on a regional scale. The analysis is based on a digital data set including landslides triggered in 1992 and several older landslides as well as various types of digital elevation models (DEMs), ASTER image data, and geological and active fault maps. These data were combined to compute landslide susceptibility (LS) maps using statistical methods, Landslide Factor and Conditional Analyses (LFA, CA), as well as a geotechnical one, the Newmark's Method (NM). The landslide data set was also analyzed with respect to the size–frequency relationship. An erratum to this article can be found at  相似文献   

8.
The Tien Shan is one of the most active intracontinental mountain belts exhibiting numerous examples of Quaternary fault-related folding. To provide insight into the deformation of the Quaternary intermontane basins, the territory of the northwestern Ysyk-Köl region, where the growing Ak-Teke Anticline divided the piedmont apron of alluvial fans, is studied. It is shown that the Ak-Teke Hills are a sharply asymmetric anticline, which formed as a result of tectonic uplift and erosion related to motions along the South Ak-Teke Thrust Fault. The tectonic uplift gave rise to the local deviation of the drainage network in front of the northern limb of the fold. Optical (luminescent) dating suggests that the tectonic uplifting of the young anticline and the antecedent downcutting started 157 ka ago. The last upthrow of the high floodplain of the Toru-Aygyr River took place 1300 years ago. The structure of the South Ak-Teke Fault is examined by means of seismologic trenching and shallow seismic profiling across the fault. A laser tachymeter is applied to determine the vertical deformation of alluvial terraces in the Toru-Aygyr River valley at its intersection with the South Ak-Teke Fault. The rates of vertical deformation and an inferred number of strong earthquakes, which resulted in the upthrow of Quaternary river terraces of different ages, are calculated. The study territory is an example of changes in fluvial systems on growing folds in piedmont regions. As a result of shortening of the Earth’s crust in the mountainous belt owing to thrusting, new territories of previous sedimentation are involved in emergence. The tectonic activity migrates with time from the framing ridges toward the axial parts of intramontane basins.  相似文献   

9.
A plausible seismo-tectonic boundary of the Sinkiang—Tibetan region is defined on the basis of the trend of higher magnitude earthquakes (M7.0) and energy released by them for the period 1905–1965. In order to study the nature of forces at the northwestern and eastern sides of the region focal mechanisms for eleven shocks have been determined using P-wave first-motion directions reported in the Bulletin of the International Seismological Centre (Edinburgh). Of these, seven mechanisms show thrust faulting, three strike-slip and one normal faulting. The sense of motions of underthrusting blocks in thrust-faulting mechanisms for the two sides are directed towards the Sinkiang—Tibetan region. The slip vectors of strike-slip faulting are also in agreement with the direction of movement of thrust faulting. Thus, the seismicity, energy released, slip vectors and the orientation of T-axes reflect that the northwestern and eastern sides of the Sinkiang—Tibetan region are the plausible seismo-tectonic boundary and the major earthquakes and higher crustal thickness are the results of the movements of surrounding plates towards the region.  相似文献   

10.
The shear wave attenuation field in the lithosphere of Eastern Tien Shan has been mapped. The method based on analysis of the ratio between amplitudes of Sn and Pn waves was used. On aggregate, about 120 seismograms made at the Makanchi station (MKAR), mainly in the period of 2003–2009, at epicentral distances of about 350–1200 km were analyzed. It was found that shear wave attenuation in the lithosphere of Eastern Tien Shan is weaker than that in the region of Central Tien Shan. This agrees with the fact that the rate of deformation of the Earth’s crust in Eastern Tien Shan is lower (based on GPS data), as is the seismicity level, in comparison to Central Tien Shan. The zones of high attenuation, where strong earthquakes with M > 7.0 have not occurred for the last 200 years, have been identified: first of all, these are the area west of Urumqi and that of the Lop Nur test site. It is suggested that in the first zone, where an annular seismicity structure has formed over the last 30 years, a strong earthquake may be being prepared. The second zone is most probably related to the uplift of mantle fluids resulting from a long-term intensive technogenic effect, analogous to what has occurred in areas of other nuclear test sites (Nevada and Semipalatinsk).  相似文献   

11.
The Altaid orogen was formed by aggregation of Paleozoic subduction–accretion complexes and Precambrian basement blocks between the Late Proterozoic and the Early Mesozoic. Because the Altaids are the site of abundant granitic plutonism and host some of the largest gold deposits in the world, understanding their formation has important implications on the comprehension of Phanerozoic crustal growth and metallogeny. In this study, we present the first extensive lead isotope data on magmatic and metasedimentary rocks as well as ore deposits of the southern part of the Altaids, including the Tien Shan (Tianshan) and southern Altay (Altai) orogenic belts. Our results show that each terrane investigated within the Tien Shan and southern Altay is characterized by a distinct Pb isotope signature and that there is a SW–NE Pb isotope gradient suggesting a progressive transition from a continental crust environment in the West (the Kyzylkum and Kokshaal segments of the Southern Tien Shan) to an almost 100% juvenile (MORB-type mantle-derived) crust environment in the East (Altay). The Pb isotope signatures of the studied ore deposits follow closely those of magmatic and metasedimentary rocks of the host terranes, thus supporting the validity of lead isotopes to discriminate terranes. Whereas this apparently suggests that no unique reservoir has been responsible for the huge gold concentration in this region, masking of a preferential Pb-poor Au-bearing reservoir by mixing with Pb-rich crustal reservoirs during the mineralizing events cannot be excluded.  相似文献   

12.
阿尔泰—萨彦山系和新构造结构的形成被认为是印度-欧亚板块碰撞带来的远程陆内变形的结果。在本次构造模型中,我们对地质、地震活动数据和地形资料进行了联合分析,认为中亚山带北部地形和地震活动的最大变化仅限于晚古生代区域断层的交叉地带。断层的交叉和接合处应被视为增加基底破碎程度、影响局部应力场变化和预先定位M≥5级的地震震源的最重要的构造因素之一。由此,结合Charysh Terekta和Kurai区域断层交叉带出现的氦和钙华,本次研究获得了发震前兆的一些判断规律。  相似文献   

13.
The seismicity of Uganda has been studied using new data and all other available, previously determined locations of earthquakes (mb 4.0) up to December 1973. A magnitude—frequency graph suggests that since 1963 there is nearly complete coverage of all events with body magnitudes mb 4.2 in Uganda. The distribution of the earthquakes affirms that the Lake Amin—Lake Mobutu region experienced the greatest number of earthquakes, while the area around the Ruwenzori Mountain is probably the most seismically active area in Uganda if not in East Africa. The occurrence of earthquakes and the presence of faults of Cenozoic age in the Ruwenzori fold belt indicate that this area is a tectonically active zone (zone of weakness) probably connecting the eastern and western rifts across the Lake Victoria basin.  相似文献   

14.
15.
An improved technique is suggested for quantifying seismic activity over averaging areas of an arbitrary size. The example of the Altai-Sayan seismic zone is used to substantiate the choice of a 1° N × 2° E averaging area instead of the traditional one of 40×40 km2. Maps compiled with averaging areas of different sizes can be spliced and correlated using a correction coefficient estimated in different models. The new seismicity map of the Altai-Sayan area covers more than 90% of the territory and provides a generalized image of activity being advantageous over the classic maps as it allows better correlation of regional seismicity with the tectonic setting. With larger averaging areas and, correspondingly, a greater amount of data in each area, one can obtain time series of seismic activity to be analyzed using mathematical statistics as a basis for mathematical modeling and simulation of the seismic process.  相似文献   

16.
The tectonic and geodynamic consequences of the collision between Hindustan and Eurasia are considered in the paper. The tectonic evolution and deformation of Tibet and the Tien Shan in the Late Cenozoic is described on the basis of geological, geophysical, and geodetic data. The factual data and their interpretation, which shed light on the kinematics of the tectonic processes in the lithosphere and the geodynamics of the interaction between the Tien Shan, Tarim, and Tibet are discussed. A geodynamic model of their interaction is proposed.  相似文献   

17.
We present the results of mapping selected cross-sections across the margins of the Chinese Tien Shan, an intracontinental mountain belt that formed in response to the India-Eurasia collision. This belt contains significant lateral variation in topography, structure, and stratigraphy at all scales, and our estimated rates of shortening also reveal a distribution of shortening that varies laterally. At the largest scale, it consists of two major high mountain ranges in the west that merge eastward into a complex, single high mountain belt with several distinct ranges, then separates farther eastward into several low mountain ranges in the south and a single narrow high mountain range in the north. Active fold-and-thrust belts along parts of the north and south flanks of the Tien Shan involve only Mesozoic and Cenozoic sedimentary cover, which varies in both stratigraphy and structure from east to west. The southern fold-and-thrust belt decreases in width and complexity from west to east and ends before reaching Korla. The northern belt begins near the longitude where the southern belt ends, and increases in width and complexity from west to east. Within these two fold-and-thrust belts are both E-W and N-S variations in stratigraphy at the scale of the fold-and-thrust belts and across individual structures. All these variations make it very difficult to generalize either structure or stratigraphy within the Tien Shan or within local areas.

Four maps and cross-sections, two across each of the northern and southern fold-and-thrust belts, imply different magnitudes of shortening. In the eastern part of the northern belt, a cross-section along the southern part of the Hutubi River yields shortening of 6.2 km, and a section to the north across the Tugulu anticline yields shortening of 5.5 km. The two parts of the cross-section cannot be added because the Tugulu anticline lies 20 km west of the Hutubi River, and diminishes greatly in amplitude toward the Hutubi River. In the western part of the northern belt, cross-sections require 4.6 to 5.0 km of shortening at Tuositai and 2.12 to 2.35 km across the Dushanzi anticline. The Tuositai structure lies south of the Dushanzi anticline, but shortening in these two areas also cannot be summed, because they seem to be separated by a N-trending strike-slip fault. In the western part of the southern fold-and-thrust belt, an incomplete cross-section along the Kalasu River suggests shortening of 12.1 to 14.1 km. If the estimated shortening of 6 to 7 km in the Qiulitage anticline, which we did not map, is added, the total shortening in this cross-section would be ~18 to 21 km. To the east, a complete cross-section at Boston Tokar yielded shortening of 10.3 to 13.0 km.

Calculating long-term shortening rates from these four cross-sections is difficult, because the time of initiation of deformation is poorly known. In the Kalasu River area of the southern belt, there is evidence that limited shortening of 2 to 4 km occurred in the early Miocene, if major thickness changes in deposition of conglomerate unit 3b are interpreted to be growth strata. Geological evidence suggests that most of the shortening began in both belts after the beginning of the deposition of the thick conglomerate unit shown as lower Quaternary on Chinese geological maps. Strata within the middle part of these conglomerates were deposited during the growth of the folds. Presence of Equus near the base of similar conglomerates indicates a Quaternary age, but the fossil localities are far from most of our cross-sections, and the contemporaneity of the rocks remains in question. The beginning of conglomerate deposition may be controlled by climate change, and if so, the beginning of conglomerate deposition may be generally contemporaneous throughout the region at ~2.5 Ma. Deformation began at some time after the onset of conglomerate deposition, but this time is not well constrained. Thus we have calculated shortening rates for 2.5, 1.6, and 1.0 Ma that should bracket maximum and minimum slip rates. These calculations yield the following ranges in the northern fold-and-thrust belt: southern Hutubi River = 2.5 to 6.2 mm/yr; Tugulu anticline = 2.1 to 5.5 mm/yr; Tuositai anticline = 1.8–2.0 to 4.6–5.0 mm/yr; and Dushanzi anticline = 0.8 to 2.1–2.4 mm/yr; and in the southern fold-and-thrust belt: Kalasu River = 4.6–5.6 (including the Qiulitage anticline = 7.2–8.4) to 12.1–14.1 (including Qiulitage anticline = 18–21) mm/yr; and at Boston Tokar = 4.1–5.2 to 10.3–13.1 mm/yr. If 2 to 4 km of shortening occurred in the Kalasu River section during early Miocene time, the long-term rates for Quaternary time are 3.2–4.8 (including Qiulitage anticline = 5.6–7.6) to 8.1–12.1 (including Qiulitage anticline = 14–19) mm/yr.

Calculation of the shortening rate across the entire width of the Tien Shan is difficult because of the rapid lateral variations in structure and because of active deformation within the range, which we have not studied. The cross-sections at Boston Tokar in the south and Tuositai in the north lie along the same longitude. Adding the shortening rates in these areas would yield a minimum range (using 2.5 Ma as the initiation time) of 5.7 to 7.2 mm/yr. If deformation began at 1.6 or 1.0 Ma, the range of shortening rates would be 10–11.2 mm/yr to 14.9–18.1 mm/yr, respectively. Because the first indication of structural growth with the mapped areas occurs above the base of the conglomerates at the top of the stratigraphic succession, a minimum shortening rate greater than 5.7 to 7.2 mm/yr is more likely.

Both the marginal fold-and-thrust belts have a thin-skinned geometry with the drcollement at -6 to 10 km and within Mesozoic and Cenozoic sedimentary rocks. Toward the interior of the range the decollement must pass into the Paleozoic basement rocks and steepen beneath the flanks of the range. The structural style is similar to that in the Laramide Rocky Mountains and the California Transverse Ranges. The highest parts of the Tien Shan are adjacent to areas of active shortening. Such a relation might suggest that the major uplift of the Tien Shan is very young, mostly latest Cenozoic or Quaternary in age. The shortening across the Tien Shan is inhomogeneous and spatially distributed.  相似文献   

18.
The results of numerical modelling of deformation of the Earth’s crust along the Tarim–Altai profile caused by the force of gravity and lateral compression using the approximate two-dimensional model of the elastoplastic transition are presented. The conditions of the formation of mountains and their roots were determined taking into account some geological and geophysical parameters.  相似文献   

19.
Sr-Nd-Pb-Hf isotope mapping combined with U-Pb zircon SHRIMP ages of granitoids from four sampling profiles across terrane boundaries in Uzbekistan reveal distinct reservoir types (cratonic and accretionary), witnessed by the diverse nature and origin of the predominant Paleozoic granitic magmatism that provided hosts for major ore-bodies. The study region comprises four major terranes, including 1) the Sultan-Uvais terrane, 2) the Kyzylkum-Nurata Segment and 3) the Gissar Segment of the South Tien Shan and 4) the Chatkal-Kurama terrane of the Middle Tien Shan. Sr-Nd isotope analyses show a wide range of εNdt (− 5 to + 7) and (87Sr/86Sr)t of 0.704–0.707, indicating involvement of both mantle-derived material and older crustal sources. A wide range of Hf-isotope compositions found in zircons of Chatkal-Kurama granites, Middle Tien Shan (εHf mainly ~  5 to + 5), could be due to recycling of older crustal protolith(s); in particular, the earliest (Silurian) granites may be directly derived from 1.5 to 1.7 Ga lower crust. In the Southern Tien Shan, some involvement of subducted oceanic crust is evidenced by strongly juvenile εHft values of up to + 14 and + 16 (Sultan-Uvais, Teskuduk-Kyzylkum). Permo-Carboniferous granitoids, which occur across all terranes also exhibit a wide range of isotope signatures, corresponding to Mesoproterozoic–Neoproterozoic crustal protoliths with a westward increase in juvenile contributions. Pb isotopes (whole-rock) imply the dominance of a crustal component and crust-mantle mixing processes. New age data confirmed: 1) old age of the Turkestan Ocean (505 Ma in Sultan-Uvais), 2) fragments of Silurian island arcs in the accretionary complex of the Chatkal-Kurama terrane (granites of 429–416 Ma) and in the upper allochthon of the South Tien Shan (gabbro 438 Ma in Tamdytau), and 3) a significant volume of granitoid magmatism of subduction or early-collisional stages (around 320–310 Ma) in the Chatkal-Kurama Segment and especially in the Gissar Segment. The westernmost part of the Tien Shan is characterized by multiple subduction processes responsible for 300 million years of geodynamic evolution history (accretionary collage, crustal growth) with the pre-Mesozoic crust formation concluded by Permian post-collisional extensional magmatism.  相似文献   

20.
Doklady Earth Sciences - This paper analyzes the rose diagrams of the directions of 439 faults of the Variscian province, 476 faults of the Caledonian province, and 603 presently active faults of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号