首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The North Qinling Block (NQB) is an important segment of the Qinling Orogen in Central China. Here we report the results from SIMS geochronology and oxygen isotopes, as well as LA-MC-ICPMS Hf isotopic analyses on zircon grains from a suite of metamorphic rocks (felsic gneisses, garnet plagioclase amphibolites, and retrograde eclogite dikes) in the Qinling Group of the NQB. The age data show that these rocks underwent at least two episodes of metamorphism with the peak at 483–501 Ma, followed by 454–470 Ma retrograde metamorphism. These results are generally coeval with the periods of 500–480 Ma for peak metamorphism and 460–420 Ma for retrograde metamorphism previously obtained from the HP/UHP metamorphic rocks of the NQB. During the prograde and retrograde metamorphism, widespread fluid and melt circulation within the block has been identified from the geochemical features of the metamorphic zircons. The fluids that circulated in the felsic gneisses and retrograde eclogite dikes originated from the dehydration of altered oceanic basalts as inferred from the exceedingly low Th/U ratios, positive εHf(t) (> 5) and extremely δ18O (10.01–13.91‰) values in metamorphic zircons. In contrast, the melt involved in the formation of garnet plagioclase amphibolites appears to have been derived from continental sediments interlayered with the oceanic basalts since zircons crystallized during the peak and retrograde metamorphism show typical magmatic features with high U and Th contents and Th/U ratios and enriched Hf (εHf(t) =  5.42 to − 0.18) and oxygen isotope composition (δ18O around 8‰). Geochronological and geochemical features of the magmatic cores of the clear core-rim textured zircons demonstrate that the protoliths of the gneisses were intermediate-acid volcanic rocks erupted before Neoproterozoic (800 Ma), which is further supported by the intrusion of basaltic magma of asthenospheric origin as represented by protoliths of retrograde eclogite dikes, with the oldest magmatic zircon formed at 789 Ma. The protoliths of garnet plagioclase amphibolites appear to be altered oceanic basalts but had been significantly affected by the melt during the metamorphism. Combined with the previous studies, the Qinling Group experienced overall subduction in the Early Paleozoic. The NQB as represented by the Qinling Group was most likely a discrete micro-block in the Neoproterozoic, and underwent deep subduction in the Cambrian (483–501 Ma) and exhumation in Ordovician (454–470 Ma). We propose that the NQB preserves a complete cycle of tectonic evolution of an orogen from an oceanic basin spreading, and micro-continent formation to deep subduction and exhumation.  相似文献   

2.
The geodynamic evolution of the early Paleozoic ultrahigh-pressure metamorphic belt in North Qaidam, western China, is controversial due to ambiguous interpretations concerning the nature and ages of the eclogitic protoliths. Within this framework, we present new LA-ICP-MS U–Pb zircon ages from eclogites and their country rock gneisses from the Xitieshan terrane, located in the central part of the North Qaidam UHP metamorphic belt. Xitieshan terrane contains clearly different protolith characteristics of eclogites and as such provides a natural laboratory to investigate the geodynamic evolution of the North Qaidam UHP metamorphic terrane. LA-ICP-MS U–Pb zircon dating of three phengite-bearing eclogites and two country rock gneiss samples from the Xitieshan terrane yielded 424–427 Ma and 917–920 Ma ages, respectively. The age of 424–427 Ma from eclogite probably reflects continental lithosphere subduction post-dating oceanic lithosphere subduction at ~ 440–460 Ma. The 0.91–0.92 Ga metamorphic ages from gneiss and associated metamorphic mineral assemblages are interpreted as evidence for the occurrence of a Grenville-age orogeny in the North Qaidam UHPM belt. Using internal microstructure, geochemistry and U–Pb ages of zircon in this study, combined with the petrological and geochemical investigations on the eclogites of previous literature’s data, three types of eclogitic protoliths are identified in the Xitieshan terrane i.e. 1) Subducted early Paleozoic oceanic crust (440–460 Ma), 2) Neoproterozoic oceanic crust material emplaced onto micro-continental fragments ahead of the main, early Paleozoic, collision event (440–420 Ma) and 3) Neoproterozoic mafic dikes intruded in continental fragments (rifted away from the former supercontinent Rodinia). These results demonstrate that the basement rocks of the North Qaidam terrane formed part of the former supercontinent Rodinia, attached to the Yangtze Craton and/or the Qinling microcontinent, and recorded a complex tectono-metamorphic evolution that involved Neoproterozoic and Early Paleozoic orogenies.  相似文献   

3.
Early–Middle Jurassic igneous rocks (190–170 Ma) are distributed in an E–W-trending band within the Nanling Tectonic Belt, and have a wide range of compositions but are only present in limited volumes. This scenario contrasts with the uniform but voluminous Middle–Late Jurassic igneous rocks (165–150 Ma) in this area. The Early–Middle Jurassic rocks include oceanic-island basalt (OIB)-type alkali basalts, tholeiitic basalts and gabbros, bimodal volcanic rocks, syenites, A-type granites, and high-K calc–alkaline granodiorites. Geochemical and isotopic data indicate that alkaline and tholeiitic basalts and syenites were derived from melting of the asthenospheric mantle, with asthenosphere-derived magmas mixing with variable amounts of magmas derived from melting of metasomatized lithospheric mantle. In comparison, A-type granites in the study area were probably generated by shallow dehydration-related melting of hornblende-bearing continental crustal rocks that were heated by contemporaneous intrusion of mantle-derived basaltic magmas, and high-K calc-alkaline granodiorites resulted from the interaction between melts from upwelling asthenospheric mantle and the lower crust. The Early–Middle Jurassic magmatic event is spatially variable in terms of lithology, geochemistry, and isotopic systematics. This indicates that the deep mantle sources of the magmas that formed these igneous rocks were significantly heterogeneous, and magmatism had a gradual decrease in the involvement of the asthenospheric mantle from west to east. These variations in composition and sourcing of magmas, in addition to the spatial distribution and the thermal structure of the crust–mantle boundary during this magmatic event, indicates that these igneous rocks formed during a period of rifting after the Indosinian Orogeny rather than during subduction of the paleo-Pacific oceanic crust.  相似文献   

4.
We report the first sensitive high-resolution ion microprobe (SHRIMP) U–Pb zircon ages with geochemical data from metavolcanic rocks in the Lolotoi complex, Timor. The zircon U–Pb ages of two andesitic metavolcanic rocks yield a permissible range of the Middle Jurassic extrusion from 177 Ma to 174 Ma. The geochemical data indicate that the origins of the basaltic and andesitic metavolcanic rocks are products of prolonged oceanic crust and arc magmatism, respectively. They are originated from partial melting of lherzolites, providing an insight into the tectonic evolution of the forearc basements of the Banda volcanic arc. Thus, parts of the Banda forearc basement are pieces of allochthonous oceanic basalts and Jurassic arc-related andesites accreted to the Sundaland during the closure of Mesotethys, and are incorporated later into the Great Indonesian Volcanic Arc system along the southeastern margin of the Sundaland.  相似文献   

5.
Eclogite is a high-pressure (HP) metamorphic rock that provides important information about the subduction of both continental and oceanic crusts. In this study we present SHRIMP zircon U–Pb isotopic data for a suite of the basement gneisses to investigate the origin of the Proterozoic Bibong eclogite in the Hongseong area, South Korea. Zircon grains from the basement felsic gneisses yielded Paleoproterozoic protolith ages ranging from ca. 2197 to 1880 Ma, and were intruded by syenite at ca. 750 Ma. A HP regional metamorphic event of Triassic age (ca. 255–227 Ma) is recorded in the zircon rims of the country rocks, which is also observed in the zircons from the eclogite. The contacts between the Bibong eclogite and its host rocks support an origin for the Proterozoic protoliths, indicating continental intrusions. The Hongseong area thus preserves evidence for the Triassic collision, indicating a tectonic linkage among the northeast Asian continents.  相似文献   

6.
Geochemical, isotopic, and geochronologic data for exhumed rocks in the Woodlark Rift of Papua New Guinea (PNG) allow a tectonic link to be established with the Late Cretaceous Whitsunday Volcanic Province (WVP) of northeastern Australia. Most of the metamorphic rocks in the Woodlark Rift have Nd isotopic compositions (εNd = + 1.7 to + 6.2) similar to the Nd isotopic compositions of rocks in the WVP (εNd = + 1.3 to + 6.6; Ewart et al., 1992), and contain inherited zircons with 90 to 100 Ma U–Pb ages that overlap the timing of magmatism in the WVP. None of the metamorphic rocks in the Woodlark Rift have the highly evolved Hf and Nd isotopic compositions expected of ancient continental crust. Magmas were erupted in the WVP during the middle Cretaceous as eastern Gondwana was rifted apart. The protoliths of felsic and intermediate metamorphic rocks in the Woodlark Rift are interpreted to be related to the magmatic products produced during this Cretaceous rifting event. Some mafic metamorphic rocks exposed in the western Woodlark Rift (eclogites and amphibolites) are not related to the WVP and instead could have originated as basaltic lavas crystallized from mantle melts at (U)HP depths in the Late Cenozoic, or as fragments of Mesozoic aged oceanic lithosphere.Isotopic and elemental comparisons between basement gneisses and Quaternary felsic volcanic rocks demonstrate that felsic lavas in the D'Entrecasteaux Islands did not form solely from partial melting of metamorphic rocks during exhumation. Instead, the isotopic compositions and geochemistry of Quaternary felsic volcanic rocks indicate a significant contribution from the partial melting of the mantle in this region. When combined with geophysical data for the western Woodlark Rift, this suggests that future seafloor spreading will commence south of Fergusson Island, and west of the present-day active seafloor spreading rift tip.  相似文献   

7.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

8.
Oceanic arcs are commonly cited as primary building blocks of continents, yet modern oceanic arcs are mostly subducted. Also, lithosphere buoyancy considerations show that oceanic arcs (even those with a felsic component) should readily subduct. With the exception of the Arabian–Nubian orogen, terranes in post-Archean accretionary orogens comprise < 10% of accreted oceanic arcs, whereas continental arcs compose 40–80% of these orogens. Nd and Hf isotopic data suggest that accretionary orogens include 40–65% juvenile crustal components, with most of these (> 50%) produced in continental arcs.Felsic igneous rocks in oceanic arcs are depleted in incompatible elements compared to average continental crust and to felsic igneous rocks from continental arcs. They have lower Th/Yb, Nb/Yb, Sr/Y and La/Yb ratios, reflecting shallow mantle sources in which garnet did not exist in the restite during melting. The bottom line of these geochemical differences is that post-Archean continental crust does not begin life in oceanic arcs. On the other hand, the remarkable similarity of incompatible element distributions in granitoids and felsic volcanics from continental arcs is consistent with continental crust being produced in continental arcs.During the Archean, however, oceanic arcs may have been thicker due to higher degrees of melting in the mantle, and oceanic lithosphere would be more buoyant. These arcs may have accreted to each other and to oceanic plateaus, a process that eventually led to the production of Archean continental crust. After the Archean, oceanic crust was thinner due to cooling of the mantle and less melt production at ocean ridges, hence, oceanic lithosphere is more subductable. Widespread propagation of plate tectonics in the late Archean may have led not only to rapid production of continental crust, but to a change in the primary site of production of continental crust, from accreted oceanic arcs and oceanic plateaus in the Archean to primarily continental arcs thereafter.  相似文献   

9.
The paper presents geological, geochemical, and isotopic data on metamorphic rocks in the Anuy block (dome) in the Northern Sikhote-Alin and the surrounding sedimentary rocks of the Samarka accretionary prism. The geochemistry and isotopic composition of the amphibolite-facies metamorphic rocks (variably migmatized gneisses and crystalline schists) in the Anuy block and unmetamorphosed Jurassic-Cretaceous sediments surrounding the block are proved to be similar. All of them corresponded to the erosion products of the transitional-type crust (mature island arcs and active continental margins), have similar major- and trace-element compositions, and Nd model ages of 1.25–1.4 Ga. The geochemistry and isotopic parameters of metapelites in the Anuy block are principally different from those of analogous rocks in the Khanka Massif (the latter rocks are erosion products of the mature crust and have a Nd model age of 1.7–1.9 Ga). The metabasites, which are found as beds and lenses in gneisses and crystalline schists in the Anuy block and among sedimentary rocks surrounding the block, have a composition corresponding to oceanic basalts of the N- and E-MORB types. Based on the synthesis of geological, geochemical and isotopic data it was suggested that the Anuy block could be not a fragment of the basement of an ancient continent (as was believed previously) but rather a complex of the Early Cretaceous granite-metamorphic core of the Cordilleran type.  相似文献   

10.
屈涛  伊其安 《新疆地质》2019,(3):289-295
提肯乃克特额尔齐斯构造混杂带岩块(片)由变质玄武岩及变质辉绿岩、斜长花岗岩等深成杂岩组成,可能代表了北准噶尔有限洋盆的洋壳残片,基质主要为一套浅变质细碎屑岩,上覆岩石主要由硅质岩、变质粉砂岩等远洋沉积物组成。早泥盆世,准噶尔微板块东北缘及西伯利亚板块南缘因大陆硅铝壳开始破裂、扩张,在额尔齐斯断裂南北两侧分别出现拉张活动。中泥盆世,哈萨克斯坦-准噶尔板块向山区阿尔泰地块俯冲并逐渐闭合成陆。早石炭世初期,准噶尔微型板块北缘再次沿额尔齐斯断裂带南侧发生拉张、裂陷,逐渐演变成活动大陆边缘并发育基性杂岩体。早石炭世晚期,地壳由扩张转为挤压,准噶尔微板块与阿尔泰地块再次发生碰撞,伴随这次板块碰撞活动,其上覆上迭火山-沉积盆地闭合成陆。提肯乃克特额尔齐斯构造混杂岩带的识别,对于重新认识准噶尔地块和阿尔泰地块之间的关系及探讨中亚造山带古生代以来的构造演化具较大意义。  相似文献   

11.
Eclogites and associated high-pressure (HP) rocks in collisional and accretionary orogenic belts preserve a record of subduction and exhumation, and provide a key constraint on the tectonic evolution of the continents. Most eclogites that formed at high pressures but low temperatures at > 10–11 kbar and 450–650 °C can be interpreted as a result of subduction of cold oceanic lithosphere. A new class of high-temperature (HT) eclogites that formed above 900 °C and at 14 to 30 kbar occurs in the deep continental crust, but their geodynamic significance and processes of formation are poorly understood. Here we show that Neoarchaean mafic–ultramafic complexes in the central granulite facies region of the Lewisian in NW Scotland contain HP/HT garnet-bearing granulites (retrogressed eclogites), gabbros, lherzolites, and websterites, and that the HP granulites have garnets that contain inclusions of omphacite. From thermodynamic modeling and compositional isopleths we calculate that peak eclogite-facies metamorphism took place at 24–22 kbar and 1060–1040 °C. The geochemical signature of one (G-21) of the samples shows a strong depletion of Eu indicating magma fractionation at a crustal level. The Sm–Nd isochron ages of HP phases record different cooling ages of ca. 2480 and 2330 Ma. We suggest that the layered mafic–ultramafic complexes, which may have formed in an oceanic environment, were subducted to eclogite depths, and exhumed as HP garnet-bearing orogenic peridotites. The layered complexes were engulfed by widespread orthogneisses of tonalite–trondhjemite–granodiorite (TTG) composition with granulite facies assemblages. We propose two possible tectonic models: (1) the fact that the relicts of eclogitic complexes are so widespread in the Scourian can be taken as evidence that a > 90 km × 40 km-size slab of continental crust containing mafic–ultramafic complexes was subducted to at least 70 km depth in the late Archaean. During exhumation the gneiss protoliths were retrogressed to granulite facies assemblages, but the mafic–ultramafic rocks resisted retrogression. (2) The layered complexes of mafic and ultramafic rocks were subducted to eclogite-facies depths and during exhumation under crustal conditions they were intruded by the orthogneiss protoliths (TTG) that were metamorphosed in the granulite facies. Apart from poorly defined UHP metamorphic rocks in Norway, the retrogressed eclogites in the central granulite/retrogressed eclogite facies Lewisian region, NW Scotland have the highest crustal pressures so far reported for Archaean rocks, and demonstrate that lithospheric subduction was transporting crustal rocks to HP depths in the Neoarchaean.  相似文献   

12.
New field work, in addition to zircon geochronology, Nd isotopes and reconnaissance geochemical data allow the recognition of Paleoproterozoic volcanic and metavolcanic sequences in the São Luís Craton of northern Brazil. These sequences record at least five volcanic pulses occurring probably in three distinct epochs and in different tectonic settings. (1) The Pirocaua Formation of the Aurizona Group comprises early arc-related calc-alkaline metapyroclastic rocks of 2240 ± 5 Ma formed from juvenile protoliths in addition to minor older crustal components. (2) The Matará Formation of the Aurizona Group holds mafic tholeiitic and ultramafic metavolcanic rocks of back arc and/or island arc setting, which are likely coeval to the Pirocaua Formation. (3) The Serra do Jacaré volcanic unit is composed of tholeiitic basalts and predominantly metaluminous, normal- to high-K calc-alkaline andesites of 2164 ± 3 Ma formed in mature arc or active continental margin from juvenile protoliths along with subordinate older (Paleoproterozoic) materials and associated to the main calc-alkaline orogenic stage. (4) The Rio Diamante Formation consists of late-orogenic metaluminous, medium-K, calc-alkaline rhyolite to dacite and tuffs of 2160 ± 8 Ma formed in continental margin setting from reworked Paleoproterozoic crust (island arc) with incipient Archean contribution. (5) The Rosilha volcanic unit is composed of weakly peraluminous, medium-K, calc-alkaline dacite and tuff formed probably at about 2068 Ma from reworked crustal protoliths. As a whole the volcanic and metavolcanic rocks record and characterized better the previously proposed orogenic evolution of the São Luís Craton.  相似文献   

13.
新识别的“下二台”构造杂岩作为华北板块北缘东段分布的构造混杂岩带重要组成部分,其物质组成、形成时代和构造属性仍需进一步研究,这将为探讨华北板块北缘东段晚古生代构造演化提供重要依据。作者在“下二台”构造杂岩中识别出一套早-中二叠世变质火山-碎屑岩,其以变质碎屑岩为主,并夹变质火山岩,二者在野外产出上混杂在一起。变质火山岩原岩类型包括流纹岩、英安岩、安山岩、玄武安山岩,为一套钙碱性火山岩,属于准铝质-弱过铝质岩石。根据岩相学和地球化学特征,将其分为变质酸性火山岩和变质中-基性火山岩;二者均相对富集轻稀土元素,亏损重稀土元素,轻重稀土元素分馏明显,Eu负异常不明显,但变质酸性火山岩明显亏损P、Ti元素,结合高场强元素相关性特征,认为二者不是同一基性岩浆分异的产物。变质火山岩锆石LA-ICP-MS U-Pb同位素年龄为272~288Ma,代表其原岩结晶年龄,时代为早二叠世;变质酸性火山岩原始岩浆来源于地壳物质的部分熔融,变质中-基性火山岩原始岩浆来源于岩石圈地幔(俯冲带附近),并遭受了地壳物质的混染,二者均形成于活动大陆边缘火山弧环境。变质碎屑岩原岩恢复为泥砂质沉积岩和砂泥质沉积岩,相对亏损轻稀土元素,富集重稀土元素,轻重稀土元素分馏较明显,Eu异常不明显。两件碎屑岩样品锆石LA-ICP-MS U-Pb同位素年龄主要介于267~347Ma,推断其沉积下限为267Ma和269Ma,均为中二叠世;泥砂质沉积岩可能来源于再旋回的以长英质岩石为母岩的沉积岩,砂泥质沉积岩可能来源于再旋回的以长英质和镁铁质岩石为母岩的沉积岩,二者分别形成于活动大陆边缘大陆岛弧和大洋岛弧环境。下二台地区早-中二叠世变质火山-碎屑岩为“下二台”构造杂岩重要组成部分,它表明二叠纪时期华北板块北缘东段经历了三个构造演化阶段:早二叠世古亚洲洋加速俯冲,形成新的大陆弧阶段;中二叠世古亚洲洋持续俯冲,大陆弧和大洋弧碰撞阶段;晚二叠世陆-陆碰撞前阶段。  相似文献   

14.
The Heilongjiang complex, extending along a suture zone between the Jiamusi and Songliao blocks in Northeast China, is composed mainly of blueschists, greenschists, meta-ultramafic rocks, quartzites, muscovite–albite schists and two-mica schists. Controversy has long surrounded the ages and tectonic settings of mafic rocks from the complex, which are crucial part of the complex. The lithological associations and their major and trace element compositions indicate that the mafic protoliths of the Yilan greenschists can be subdivided into alkali and tholeiitic basalts, which were derived from partial melting of a garnet-bearing and spinel-bearing mixed source, whereas the protoliths of the amphibolites are tholeiitic and were generated from the partial melting of spinel peridotite. Magmatic zircons from a tholeiitic amphibolite sample yielded a 206Pb/238U age of 256 ± 2 Ma, interpreted as its protolithic age. The sample also contains small amounts of older inherited zircons up to 344 Ma, which, together with its origin from shallow lithospheric mantle, indicate that the tholeiitic rocks were generated in a continental rift. The geochemical data suggest that further rifting led to the formation of an ocean between the Jiamusi and Songliao blocks, in which some oceanic islands developed, represented by the alkali basaltic protoliths of the Yilan greenschists. Magmatic zircons from an alkaline greenschist sample yielded a 206Pb/238U age of 162 ± 3.9 Ma, which, together with protolithic age of 141.8 ± 1 Ma previously obtained for the Yilian blueschist, support the model that the ocean between the Jiamusi and Songliao blocks closed at some time after ~ 141 Ma, not earlier at 210–180 Ma as previously considered.  相似文献   

15.
The Xitieshan terrane, located in the central part of the North Qaidam ultrahigh pressure (UHP) metamorphic belt, China, is mainly composed of orthogneiss and paragneiss and a few intercalated eclogite layers and boudins. Based on their bulk-rock TiO2-contents, the eclogites can be subdivided into a high-Ti group (TiO2 > 2%) and a low-Ti group (TiO2 < 2%). Whole-rock major and trace element analyses revealed that the protoliths of the low-Ti eclogites are normal-type mid-ocean ridge basalts (N-MORB), whereas those of the high-Ti eclogites are either enriched-type mid-ocean ridge basalts (E-MORB) or near ridge seamount basalts, respectively. The Sr–Nd isotopes of eclogites of both groups are similar to those of MORB. Those of the low-Ti eclogites are characterized by positive εNd(T) and restricted ISr values and therefore provide further evidence for the formation of the protoliths of the eclogites in an oceanic environment. On the other hand, the Sr–Nd isotopes of high-Ti eclogites show mainly positive but also some negative εNd(T) values and relatively broadly distributed ISr values, indicating minor crustal contamination of the ocean floor basalts. Considering available 750–877 Ma protolith ages preserved in zircon cores, it is inferred that some of the eclogites derived from Neoproterozoic protoliths were emplaced onto the crust far ahead of the Paleozoic deep subduction, while the other eclogites originate from a different oceanic crust, e.g., the Paleo-Qilian ocean, indicating multiple orogenies in the geological history of the Xitieshan terrane, China.Whole-rock and in-situ LA-ICP-MS mineral trace element analyses of eclogites revealed two stages of fluid behavior during retrogression that correspond to the two exhumation stages uncovered by phase equilibrium calculations. The mineral scale trace element distributions and trace element inheritance of newly formed amphibole from its precursors indicate that, at the peak metamorphic stage (M1) and at the earlier (eclogite facies) overprint (M2), the fluid was internally controlled by the rock itself. Within a mafic lens, the amount of water-soluble elements (e.g., Rb, Sr, Ba, U, Pb and LREE), observed in the whole-rock compositions as well as in amphiboles, increases from the core (phengite-bearing eclogite) to the rim (amphibolite) and implies an external fluid source for the amphibolite facies retrogression (M3) which should be helpful for the final exhumation of UHP eclogite.  相似文献   

16.
《Gondwana Research》2014,25(3):1272-1286
The Mejillonia terrane, named after the Mejillones Peninsula (northern Chile), has been traditionally considered an early Paleozoic block of metamorphic and igneous rocks displaced along the northern Andean margin in the Mesozoic. However, U–Pb SHRIMP zircon dating of metasedimentary and igneous rocks shows that the sedimentary protoliths were Triassic, and that metamorphism and magmatism took place in the Late Triassic (Norian). Field evidence combined with zircon dating (detrital and metamorphic) further suggests that the sedimentary protoliths were buried, deformed (foliated and folded) and metamorphosed very rapidly, probably within few million years, at ca. 210 Ma. The metasedimentary wedge was then uplifted and intruded by a late arc-related tonalite body (Morro Mejillones) at 208 ± 2 Ma, only a short time after the peak of metamorphism. The Mejillones metamorphic and igneous basement represents an accretionary wedge or marginal basin that underwent contractional deformation and metamorphism at the end of a Late Permian to Late Triassic anorogenic episode that is well known in Chile and Argentina. Renewal of subduction along the pre-Andean continental margin in the Late Triassic and the development of new subduction-related magmatism are probably represented by the Early Jurassic Bólfin–Punta Tetas magmatic arc in the southern part of the peninsula, for which an age of 184 ± 1 Ma was determined. We suggest retaining the classification of Mejillonia as a tectonostratigraphic terrane, albeit in this new context.  相似文献   

17.
New geological, geochronological and isotopic data reveal a previously unknown arc system that evolved south of the Kyrgyz Middle Tianshan (MTS) microcontinent during the Middle and Late Ordovician, 467–444 Ma ago. The two fragments of this magmatic arc are located within the Bozbutau Mountains and the northern Atbashi Range, and a marginal part of the arc, with mixed volcanic and sedimentary rocks, extends north to the Semizsai metamorphic unit of the southern Chatkal Range. A continental basement of the arc, indicated by predominantly felsic volcanic rocks in Bozbutau and Atbashi, is supported by whole-rock Nd- and Hf-in-zircon isotopic data. εNd(t) of + 0.9 to − 2.6 and εHf(t) of + 1.8 to − 6.0 imply melting of Neo- to Mesoproterozoic continental sources with Nd model ages of ca. 0.9 to 1.2 Ga and Hf crustal model ages of ca. 1.2 to 1.7 Ga. In the north, the arc was separated from the MTS microcontinent by an oceanic back-arc basin, represented by the Karaterek ophiolite belt. Our inference of a long-lived Early Palaeozoic arc in the southwestern MTS suggests an oceanic domain between the MTS microcontinent and the Tarim craton in the Middle Ordovician.The time of arc-continent collision is constrained as Late Ordovician at ca. 450 Ma, based on cessation of sedimentation on the MTS microcontinent, the age of an angular unconformity within the Karaterek suture zone, and the age of syncollisional metamorphism and magmatism in the Kassan Metamorphic Complex of the southern Chatkal Range. High-grade amphibolite-facies metamorphism and associated crustal melting in the Kassan Metamorphic Complex restricts the main tectonic activity in the collisional belt to ca. 450 Ma. This interpretation is based on the age of a synkinematic amphibolite-facies granite, intruded into paragneiss during peak metamorphism. A second episode of greenschist- to kyanite–staurolite-facies metamorphism is dated between 450 and 420 Ma, based on the ages of granitoid rocks, subsequently affected or not affected by this metamorphism. The latest episode is recorded by greenschist-facies metamorphism in Silurian sandstones and granodiorites and by retrogression of the older, higher-grade rocks. This may have occurred at the Silurian to Devonian transition and reflects reorganization of a Middle Palaeozoic convergent margin.Late Ordovician collision was followed by initiation of a new continental arc in the southern MTS. This arc was active in the Early Silurian, latest Silurian to Middle Devonian, and Late Carboniferous, whereas during the Givetian through Mississippian (ca. 385–325 Ma) this area was a passive continental margin. These arcs, previously well constrained west of the Talas-Ferghana Fault, continued eastwards into the Naryn and Atbashi areas and probably extended into the Chinese Central Tianshan. The disappearance of a major crustal block with transitional facies on the continental margin and too short a distance between the arc and accretionary complex suggest that plate convergence in the Atbashi sector of the MTS was accompanied by subduction erosion in the Devonian or Early Pennsylvanian. This led to a minimum of 50–70 km of crustal loss and removal of the Ordovician arc as well as the Silurian and Devonian forearcs in the areas east of the Talas-Ferghana Fault.  相似文献   

18.
P. Agard  P. Yamato  L. Jolivet  E. Burov 《Earth》2009,92(1-2):53-79
High-pressure low-temperature (HP–LT) metamorphic rocks provide invaluable constraints on the evolution of convergent zones. Based on a worldwide compilation of key information pertaining to fossil subduction zones (shape of exhumation PTt paths, exhumation velocities, timing of exhumation with respect to the convergence process, convergence velocities, volume of exhumed rocks,…), this contribution reappraises the burial and exhumation of oceanic blueschists and eclogites, which have received much less attention than continental ones during the last two decades.Whereas the buoyancy-driven exhumation of continental rocks proceeds at relatively fast rates at mantle depths (≥ cm/yr), oceanic exhumation velocities for HP–LT oceanic rocks, whether sedimentary or crustal, are usually on the order of the mm/yr. For the sediments, characterized by the continuity of the PT conditions and the importance of accretionary processes, the driving exhumation mechanisms are underthrusting, detachment faulting and erosion. In contrast, blueschist and eclogite mafic bodies are systematically associated with serpentinites and/or a mechanically weak matrix and crop out in an internal position in the orogen.Oceanic crust rarely records P conditions > 2.0–2.3 GPa, which suggests the existence of maximum depths for the sampling of slab-derived oceanic crust. On the basis of natural observations and calculations of the net buoyancy of the oceanic crust, we conclude that beyond depths around 70 km there are either not enough serpentinites and/or they are not light enough to compensate the negative buoyancy of the crust.Most importantly, this survey demonstrates that short-lived (<  15 My), discontinuous exhumation is the rule for the oceanic crust and associated mantle rocks: exhumation takes place either early (group 1: Franciscan, Chile), late (group 2: New Caledonia, W. Alps) or incidentally (group 3: SE Zagros, Himalayas, Andes, N. Cuba) during the subduction history. This discontinuous exhumation is likely permitted by the specific thermal regime following the onset of a young, warm subduction (group 1), by continental subduction (group 2) or by a major, geodynamic modification of convergence across the subduction zone (group 3; change of kinematics, subduction of asperities, etc).Understanding what controls this short-lived exhumation and the detachment and migration of oceanic crustal slices along the subduction channel will provide useful insights into the interplate mechanical coupling in subduction zones.  相似文献   

19.
The juvenile component of accretionary orogenic belts has been declining since the Archean. As a result, there is often controversy regarding the contribution of oceanic basalts to Phanerozoic crustal growth, as in the case of the Central Asian Orogenic Belt (CAOB). Here we report on three groups of Late Carboniferous (316–305 Ma) granitoids in the western Junggar region of northern Xinjiang, NW China, which is part of the southwestern CAOB. They consist of adakites and I and A-type granites, and as a whole have the most depleted isotopic compositions (εNd(t) = + 6–+9, (87Sr/86Sr)i = 0.7030–0.7045, and εHf(t) = + 12–+16) among the granitoids of the CAOB. These features are nearly identical to those of pre-Permian ophiolites in northern Xinjiang, and are clearly different from those of Carboniferous basalts in the western Junggar region. These relationships indicate that the granitoids were mainly derived from recycled oceanic crust by melting of subducted oceanic crust (e.g., adakites), and of the middle–lower crust of intra-oceanic arc that mainly consisted of oceanic crust (e.g., I and A-type granites). Based on evidence from the CAOB, we suggest that recycling of oceanic crust has made a significant contribution to continental crustal growth and evolution during the Phanerozoic.  相似文献   

20.
The Central Asian Orogenic Belt (CAOB) formed mainly in the Paleozoic due to the closure of the Paleo-Asian oceanic basins and accompanying prolonged accretion of pelagic sediments, oceanic crust, magmatic arcs, and Precambrian terranes. The timing of subduction–accretion processes and closure of the Paleo-Asian Ocean has long been controversial and is addressed in a geochemical and isotopic investigation of mafic rocks, which can yield important insight into the geodynamics of subduction zone environments. The Xilingol Complex, located on the northern subduction–accretion zone of the CAOB, mainly comprises strongly deformed quartzo-feldspathic gneisses with intercalated lenticular or quasi-lamellar amphibolite bodies. An integrated study of the petrology, geochemistry, and geochronology of a suite of amphibolites from the complex constrains the nature of the mantle source and the tectono-metamorphic events in the belt. The protoliths of these amphibolites are gabbros and gabbroic diorites that intruded at ca. 340–321 Ma with positive εHf(t) values ranging from + 2.89 to + 12.98. Their TDM1 model ages range from 455 to 855 Ma and peak at 617 Ma, suggesting that these mafic rocks are derived from a depleted continental lithospheric mantle. The primitive magma was generated by variable degrees of partial melting of spinel-bearing peridotites. Fractionation of olivine, clinopyroxene and hornblende has played a dominant role during magma differentiation with little or no crustal contamination. The mafic rocks are derived from a Late Neoproterozoic depleted mantle source that was subsequently enriched by melts affected by slab-derived fluids and sediments, or melts with a sedimentary source rock. The Carboniferous mafic rocks in the northern accretionary zone of the CAOB record a regional extensional event after the Early Paleozoic subduction of the Paleo-Asian Ocean. Both addition of mantle-derived magmas and recycling of oceanic crust played key roles in significant Late Carboniferous (ca. 340–309 Ma) vertical crustal growth in the CAOB. Amphibolite–facies metamorphism (P = 0.34–0.52 GPa, T = 675–708 °C) affected these mafic rocks in the Xilingol Complex at ca. 306–296 Ma, which may be related to the crustal thickening by northward subduction of a forearc oceanic crust beneath the southern margin of the South Mongolian microcontinent. The final formation of the Solonker zone may have lasted until ca. 228 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号