首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The presence of dust at high redshift requires efficient condensation of grains in supernova (SN) ejecta, in accordance with current theoretical models. Yet observations of the few well-studied supernovae (SNe) and supernova remnants (SNRs) imply condensation efficiencies which are about two orders of magnitude smaller. Motivated by this tension, we have (i) revisited the model of Todini & Ferrara for dust formation in the ejecta of core collapse SNe, and (ii) followed, for the first time, the evolution of newly condensed grains from the time of formation to their survival – through the passage of the reverse shock – in the SNR. We find that  0.1–0.6  M  of dust form in the ejecta of 12–40 M stellar progenitors. Depending on the density of the surrounding interstellar medium, between 2 and 20 per cent of the initial dust mass survives the passage of the reverse shock, on time-scales of about  4–8 × 104  yr  from the stellar explosion. Sputtering by the hot gas induces a shift of the dust size distribution towards smaller grains. The resulting dust extinction curve shows a good agreement with that derived by observations of a reddened QSO at   z = 6.2  . Stochastic heating of small grains leads to a wide distribution of dust temperatures. This supports the idea that large amounts (∼0.1 M) of cold dust  ( T ∼ 40   K)  can be present in SNRs, without being in conflict with the observed infrared emission.  相似文献   

3.
Following our hypothesis that each supernova (SN) event triggers star formation in the swept-up gas, so that newly formed stars inherit the elemental abundance pattern of individual SNe, we deduce the production sites and yields for r-process elements. We further show that a strong evidence for the origin of r-process nucleosynthesis products was just there in our backyard - supernova SN1987A -, and conclude that 20 M SNe are the predominant production sites for r-process elements. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

4.
In this paper, we present and discuss the effects of scattered light echoes (LEs) on the luminosity and spectral appearance of Type Ia supernovae (SNe). After introducing the basic concept of LE spectral synthesis by means of LE models and real observations, we investigate the deviations from pure SN spectra, light and colour curves, the signatures that witness the presence of an LE and the possible inferences on the extinction law. The effects on the photometric parameters and spectral features are also discussed. In particular, for the case of circumstellar dust, LEs are found to introduce an apparent relation between the post-maximum decline rate and the absolute luminosity, which is most likely going to affect the well-known Pskowski–Phillips relation.  相似文献   

5.
6.
Detailed observations of the [Oiii]5007 Å emission from the elliptical rings around SN 1987A suggest a model wherein the two faint, outer rings are due to emission from two circular toroids moving outwards (at 25 km s–1) along a bipolar cone centred on the site of the supernova. The brighter, central ring is expanding radially outward at 8.3 km s–1. The rings must have been created 2-3 × 104 years before the supernova explosion and are thought to be a consequence of the interaction of stellar winds emanating from the progenitor system during the final stages of its evolution to a supernova.  相似文献   

7.
8.
9.
10.
11.
12.
We present optical and near-infrared photometry and spectroscopy of the Type Ia SN 2003cg, which exploded in the nearby galaxy NGC 3169. The observations cover a period between −8.5 and +414 d post-maximum. SN 2003cg is a normal but highly reddened Type Ia event. Its B magnitude at maximum   B max= 15.94 ± 0.04  and  Δ m 15( B )obs= 1.12 ± 0.04 [Δ m 15( B )intrinsic= 1.25 ± 0.05]  . Allowing   RV   to become a free parameter within the Cardelli et al. extinction law, simultaneous matches to a range of colour curves of normal SNe Ia yielded   E ( B − V ) = 1.33 ± 0.11  , and   RV = 1.80 ± 0.19  . While the value obtained for   RV   is small, such values have been invoked in the past, and may imply a grain size which is small compared with the average value for the local interstellar medium.  相似文献   

13.
14.
If Type II supernovae – the evolutionary end points of short-lived, massive stars – produce a significant quantity of dust  (>0.1 M)  then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre (submm) observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type II supernovae. In this paper, we present new data which show that the submm emission from Cas A is polarized at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarized submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarization in this way and so we attribute the excess polarized submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarized and unpolarized dust emission in the north of the remnant where there is no contamination from foreground molecular clouds. The inferred dust polarization fraction is unprecedented  ( f pol∼ 30 per cent)  which, coupled with the brief time-scale available for grain alignment (<300 yr), suggests that supernova dust differs from that seen in other Galactic sources (where   f pol= 2−7  per cent) or that a highly efficient grain alignment process must operate in the environment of a supernova remnant.  相似文献   

15.
16.
17.
18.
19.
The variation in properties of Type Ia supernovae, the thermonuclear explosions of Chandrasekhar-mass carbon–oxygen white dwarfs, is caused by different nucleosynthetic outcomes of these explosions, which can be traced from the distribution of abundances in the ejecta. The composition stratification of the spectroscopically normal but rapidly declining SN 2004eo is studied by performing spectrum synthesis of a time-series of spectra obtained before and after maximum, and of one nebular spectrum obtained about eight months later. Early-time spectra indicate that the outer ejecta are dominated by oxygen and silicon, and contain other intermediate-mass elements, implying that the outer part of the star was subject only to partial burning. In the inner part, nuclear statistical equilibrium (NSE) material dominates, but the production of 56Ni was limited to  ∼0.43 ± 0.05   M  . An innermost zone containing  ∼0.25   M  of stable Fe-group material is also present. The relatively small amount of NSE material synthesized by SN 2004eo explains both the dimness and the rapidly evolving light curve of this supernova.  相似文献   

20.
As part of the European Supernova Collaboration, we obtained extensive photometry and spectroscopy of the Type Ia supernova (SN Ia) SN 2002dj covering epochs from 11 d before to nearly two years after maximum. Detailed optical and near-infrared observations show that this object belongs to the class of the high-velocity gradient events as indicated by Si, S and Ca lines. The light curve shape and velocity evolution of SN 2002dj appear to be nearly identical to SN 2002bo. The only significant difference is observed in the optical to near-infrared colours and a reduced spectral emission beyond 6500 Å. For high-velocity gradient SNe Ia, we tentatively identify a faster rise to maximum, a more pronounced inflection in the V and R light curves after maximum and a brighter, slower declining late-time B light curve as common photometric properties of this class of objects. They also seem to be characterized by a different colour and colour evolution with respect to 'normal' SNe Ia. The usual light curve shape parameters do not distinguish these events. Stronger, more blueshifted absorption features of intermediate-mass elements and lower temperatures are the most prominent spectroscopic features of SNe Ia displaying high-velocity gradients. It appears that these events burn more intermediate-mass elements in the outer layers. Possible connections to the metallicity of the progenitor star are explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号