首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
3.
Predicting transient inflow rates into a tunnel is an important issue faced by hydrogeologists. Most existing analytical solutions overestimate the initial discharge due to the assumption that drilling was instantaneous over the entire tunnel length. In addition, they assume a homogeneous system. An alternative model was recently developed for tunnels intersecting heterogeneous formations, but its application was reduced to the case of confined flow to deep tunnels in weakly diffusive aquifers. In this paper, we adapt existing analytical solutions for drainage systems to the specific case of a tunnel progressively drilled in a highly diffusive heterogeneous unconfined aquifer. The case of a tunnel overlying an impervious layer is analytically solved by applying the superposition principle, while the case of a tunnel constructed some distance above an impervious layer is solved by discretizing the tunnel length into subsectors. Both models can simulate transient discharge into a tunnel drilled at various speeds through a heterogeneous unconfined aquifer, and allow the prediction of discharge rates in shallow tunnels located in highly diffusive aquifers. We successfully applied this approach to a tunnel in heterogeneous volcanic rock.  相似文献   

4.
5.
The Rainfall/Water-Table Level Relationship of an Unconfined Aquifer   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
8.
9.
—The paper presents results of experiments designed to measure the actual dynamic magnification of the Wiechert 1000 kg horizontal seismometer when excited by seismic waves. This is accomplished by comparing 51 digital records of seismic events recorded by the Wiechert and a well calibrated reference seismometer. The results obtained indicate that the magnification of the Wiechert seismometer is influenced by the interaction of its mass and frame, especially for high frequencies. This interaction has been modeled by considering a system of two coupled pendulums, yielding a theoretical dynamic magnification curve which exhibits main features of the observed magnification. The dis crepancy between the nominal and the actual response of the Wiechert seismograph may lead to errors in studies involving spectral analyses of recorded seismograms, and to overestimation of local earth quake magnitudes.  相似文献   

10.
11.
Water table temperatures inferred from dissolved noble gas concentrations (noble gas temperatures, NGT) are useful as a quantitative proxy for air temperature change since the last glacial maximum. Despite their importance in paleoclimate research, few studies have investigated the relationship between NGT and actual recharge temperatures in field settings. This study presents dissolved noble gas data from a shallow unconfined aquifer heavily impacted by agriculture. Considering samples unaffected by degassing, NGT calculated from common physically based interpretive gas dissolution models that correct measured noble gas concentrations for "excess air" agreed with measured water table temperatures (WTT). The ability to fit data to multiple interpretive models indicates that model goodness-of-fit does not necessarily mean that the model reflects actual gas dissolution processes. Although NGT are useful in that they reflect WTT, caution is recommended when using these interpretive models. There was no measurable difference in excess air characteristics (amount and degree of fractionation) between two recharge regimes studied (higher flux recharge primarily during spring and summer vs. continuous, low flux recharge). Approximately 20% of samples had dissolved gas concentrations below equilibrium concentration with respect to atmospheric pressure, indicating degassing. Geochemical and dissolved gas data indicate that saturated zone denitrification caused degassing by gas stripping. Modeling indicates that minor degassing (<10% ΔNe) may cause underestimation of ground water recharge temperature by up to 2°C. Such errors are problematic because degassing may not be apparent and degassed samples may be fit by a model with a high degree of certainty.  相似文献   

12.
13.
Modeling the Response of a Karstic Spring at Arteta Aquifer in Spain   总被引:2,自引:0,他引:2  
  相似文献   

14.
Contaminant plumes whose characteristic length is smaller than the horizontal integral scale of the hydraulic conductivity, K, are abundant in shallow, phreatic aquifers. In such cases, the aquifer can be regarded as layered, with K being only a function of the vertical coordinate. The heterogeneity of K has a critical role upon the efficiency of remediation of such sites, for example, by Pump and Treat schemes. The expected efficiency is a random variable, with uncertainty. Quantifying this uncertainty can be of great importance to decision making. In this study, we focus on a case study in the coastal aquifer of Israel and compare two different approaches for constructing realizations of K: continuous and indicator. We observe a significant difference between the constructed realizations, which results in a considerable difference in the predicted remediation efficiency and its uncertainty. Furthermore, we study the effect of conditioning the realizations by a rather limited number of K data points. We find that the conditioning results in a major reduction of the uncertainty. In addition, we compare the results of the transport model to a simplified semi‐analytical solution that is based on assuming radial flow. We find a good agreement with the three‐dimensional numerical model. This result illustrates that the simplified solution can be used for prediction of the remediation efficiency when the flow at the plume vicinity can be regarded as radial.  相似文献   

15.
This study compares the accuracy of two types of water table maps both of which were constructed with the object of optimizing future mapping efforts in similar environments. The. first type of map is based solely on office information, with no field verification. The second type of map is based on careful field mapping using numerous measurement points.
The office-derived maps were based on topography, surface water features, existing reports, maps and data in the files of the Wisconsin Geological and Natural History Survey; the data were not field-verified. The field-derived maps used a dense network of 236 piezometers at 176 sites in an area of approximately 170 square miles. The field project was much more expensive and labor-intensive than was the construction of office-derived maps for the same area.
The two methods produce water table maps which agree to an appreciable extent, the greatest agreement being in areas having ground water-fed streams. Differences in water table elevations indicated by the two methods range from negligible to approximately 5 feet. Thus, depending upon the availability of existing information, relatively accurate water table elevations can be delineated in similar sandy unconfined aquifers without time-consuming and expensive field work that drilling and piezometer installation entails.
Preliminary construction of office-derived water table maps enables researchers to use their resources efficiently. In some situations, expensive installation of wells and piezometers for a regional monitoring network may add little accuracy to the regional map. For localized problems, collection of additional field data will always be necessary, but can be guided by the office-derived maps. The authors caution that this technique may only be applicable to sandy, unconfined aquifers in humid climates.  相似文献   

16.
Approximately 190 kg of 2 μm‐diameter zero‐valent iron (ZVI) particles were injected into a test zone in the top 2 m of an unconfined aquifer within a trichloroethene (TCE) source area. A shear‐thinning fluid was used to enhance ZVI delivery in the subsurface to a radial distance of up to 4 m from a single injection well. The ZVI particles were mixed in‐line with the injection water, shear‐thinning fluid, and a low concentration of surfactant. ZVI was observed at each of the seven monitoring wells within the targeted radius of influence during injection. Additionally, all wells within the targeted zone showed low TCE concentrations and primarily dechlorination products present 44 d after injection. These results suggest that ZVI can be directly injected into an aquifer with shear‐thinning fluids to induce dechlorination and extends the applicability of ZVI to situations where other emplacement methods may not be viable.  相似文献   

17.
18.
19.
Water Resources - Formulation of effective water management based on the understanding of the interaction between climate and sub-surface components as well as its causative consequences to...  相似文献   

20.
Contaminants have been threatening the Engelse Werk wellfield located between the town of Zwolle and the IJssel River in the Netherlands. Chemical analysis of water samples taken in production wells, both at the IJssel River and near the Zwolle railway station, indicated elevated concentrations of mainly organic contaminants including benzene, bentazon, acenaftene, trichloroethane, and bromacil. Immediate contaminant prevention and remediation measures are needed to safeguard the production wells. Ground water flow and transport models were developed to assist in the design of remediation strategies. Ground water flow models indicated that the IJssel River and a waste disposal ditch at the railway station are within the capture zone of the wellfield. A chloride transport model simulated minimum travel times in the order of four to 13 years for contaminants in the IJssel River to reach the production wells of the wellfield. A transport model for benzene was set up to advise on the remediation measures to be taken at the waste disposal ditch to clean up the contamination in the upper aquifer between this site and the Engelse Werk wellfield. The designed remediation system consists of 12 pumping wells with a combined capacity of 1650 m3/day. The system is capable of reducing the benzene levels at the threatened production wells at the Engelse Werk wellfield to a permissible level below 0.1 μg/L within a period of 5 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号