首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
DNDC模型的研究进展及其在高寒生态系统的应用展望   总被引:1,自引:0,他引:1  
刘放  吴明辉  杨梅学  陈生云 《冰川冻土》2020,42(4):1321-1333
DNDC(Denitrification-Decomposition, 反硝化-分解)模型是建立在元素丰度、 耦合、 循环和动力四个概念之上的生物地球化学模型。作为将生物地球化学理论应用于当前生态环境问题的桥梁, DNDC模型通过计算反硝化和有机质分解来模拟生态系统中碳氮循环过程, 其最终目的是计算目标生态系统中不同库间的温室气体排放通量。经过二十多年的发展, DNDC模型已成为目前国际上最成功的生物地球化学模型之一。文章阐述了DNDC模型的发展历程、 科学结构、 模型验证及校正, 总结了DNDC模型在生态系统应用中的主要研究进展及不足之处, 并对DNDC模型在高寒生态系统中的应用提出展望。  相似文献   

2.
Biochemical composition of surface sediment samples from off major and minor rivers along the east coast of India revealed that spatial distribution of sediment organic carbon (SOC) composition was mainly governed by differential characteristics of discharged water and associated biogeochemical processes in the water column. The northwest (NW) region of coastal Bay of Bengal was influenced by discharges from Ganges river while peninsular (monsoonal) rivers influenced the southwest (SW) region. The NW region characterized by low nutrients suspended particulate matter (SPM), high phytoplankton biomass in the water column and high SOC while contrasting to that observed in the SW region. The isotopic ratios of SOC (?22 ‰) in the NW region were close to that of organic matter derived from phytoplankton (?23 ‰) suggesting in situ production is the major source whereas terrigeneous source contributed significantly in the SW region (?19.6 ‰). Though low in situ biological production in the SW region, relatively higher total carbohydrates (TCHO) were found than in the NW and insignificant difference of total and free amino acid concentrations between NW and SW were resulted from faster removal of organic matter to the sediment in association with SPM in the SW region. Higher proteins concentrations than total amino acids indicate that nitrogenous organic matter is preserved in the former form. The protein to TCHO ratio was lower in the SW suggesting significant contribution of aged and non-living organic matter in this region.  相似文献   

3.
海洋生物地球化学模式研究进展   总被引:4,自引:1,他引:3  
海洋生物地球化学模式是定量认识物质的海洋生物地球化学循环、理解其控制机制以及预测体系变动的重要手段。20世纪90年代以来,该研究领域的进展主要体现在海洋生物地球化学循环的物理输送和生态动力学过程以及年际、年代际变动的模拟3个方面。物理过程模拟方面的进展,集中在寡营养海区上层海水营养盐的供应机制问题上,在经典的上升流、垂直扩散之外,提出涡旋可能构成一种重要的物理输入过程。而生态动力学过程的模拟方面,90年代前期考虑食物网基本结构,由浮游植物、浮游动物和细菌三大类群构成生物状态变量,氮和磷营养盐以及颗粒碎屑构成其他状态变量;90年代后期,开始引入铁和硅的限制问题,考虑不同浮游植物和浮游动物群落结构的影响,特别是浮游植物粒级结构变化的预测可能是未来该领域力图解决的一个技术问题。年际变化的模拟,多围绕ENSO事件对初级生产的影响及其机制问题展开;年代际和地质年代尺度的体系变动问题仍存在争论,相对缺乏有效的数值模拟研究。该研究领域未来应加强生物—化学过程的函数表达、物理模式、中尺度过程、边界交换以及资料获取技术等方面的研究,以应对目前面临的诸多问题与挑战。  相似文献   

4.
《Applied Geochemistry》2002,17(4):337-352
Organic C burial rates and C–S relationships were investigated in the Holocene sediment sequences of 3 shallow polymictic coastal lagoons in the southern Baltic Sea to better understand the biogeochemical cycling of C and S in these environmental systems. The results show that these lagoons may have a considerable influence on the environmental status of the southern Baltic Sea area in having the potential to act as a temporary sink or source for heavy metals. High organic C accumulation rates (Corg-AR) can be observed in the sediments due to a high organic matter supply from land and a high productivity of the water bodies as a result of eutrophication. However, organic C burial does not increase as a result of increasing sediment accumulation rates (SAR). Even when high sedimentation rates do occur, there appears to be a thorough recycling and resuspension of the sediment enhancing the biological decay of organic matter before burial or the removal of organic matter from the system by transport. That is why high SAR in the coastal lagoons do not enhance pyrite formation, and thereby permanent fixing of heavy metals in the sediments, to the extent that could be expected from their magnitude. Initially there is a high potential for a temporary binding of heavy metals, but the latter are likely to be subject to mobilization and redistribution within the sediments and the water column. The patterns of burial of organic and mineral matter are different from those observed in the present-day Baltic Proper, implying possible important links in deposition between the central and coastal areas of the Baltic Sea and implications for C cycling in the ecosystem of the Baltic Sea.  相似文献   

5.
Coupling of the C–N–P biogeochemical cycles is effected by the dependence of the land and aquatic primary producers on the availability of N and P. In general, the Redfield ratios C:P and N:P in the reservoirs supplying nutrients for primary production on land, in the oceanic coastal zone, and in the surface ocean differ from these ratios in the land phytomass and aquatic plankton. When N:P in the source is higher than in primary producers, this results in a potential accumulation of some excess nitrogen in soil water and coastal water, and increased denitrification flux to the atmosphere. The oceanic coastal zone plays an important role in the coupled C–N–P cycles and their dynamics because of its intermediate position between the land and oceanic reservoirs. These coupled cycles were analyzed for the last 300 years of exposure to four human-generated forcings (fossil fuel emissions, land use change, chemical fertilization of land, and sewage discharge to the coastal zone) and global temperature rise. In the period from 1700 to 2000, there has been a net loss of C, N, and P primarily from the land phytomass and soil humus, despite the rise in atmospheric CO2, increased recycling of nutrients from humus, chemical fertilization, and re-growth of forests on previously disturbed land. The main mechanisms responsible for the net loss were increased riverine transport to the coastal zone of dissolved and particulate materials and, for N, increased denitrification on land. The oceanic coastal zone gained N and P, resulting in their accumulation in the organic pool of living biomass and dissolved and reactive particulates, as well as in their accumulation in coastal sediments from land-derived and in situ produced organic matter. Pronounced shifts in the rates and directions of change in some of the major land reservoirs occurred near the mid-1900s. Denitrification removes N from the pool available for primary production. It is the strongest on land, accounting for 73–83% of N removal from land by the combined mechanisms of denitrification and riverine export.  相似文献   

6.
Coastal upwelling zones support some of the highest rates of primary production in the oceans. The settling and subsequent decomposition of this organic matter promotes oxygen depletion. In the Eastern tropical North and South Pacific and the Arabian Sea, large tracts of anoxic water develop, where intensive N2 production through denitrification and anammox accounts for about 1/3 of the total loss of fixed nitrogen in the marine realm. It is curious that despite extensive denitrification in these waters, complete nitrate removal and the onset of sulfate reduction is extremely rare. A simple box model is constructed here to reproduce the dynamics of carbon, oxygen and nutrient cycling in coastal upwelling zones. The model is constructed with five boxes, where water is exchanged between the boxes by vertical and horizontal mixing and advection. These primary physical drivers control the dynamics of the system. The model demonstrates that in the absence of nitrogen fixation, the anoxic waters in a coastal upwelling system will not become nitrate free. This is because nitrate is the limiting nutrient controlling primary production, and if nitrate concentration becomes too low, primary production rate drops and this reduces rates of nitrate removal through N2 production. With nitrogen fixation, however, complete nitrate depletion can occur and sulfate reduction will ensue. This situation is extremely rare in coastal upwelling zones, probably because nitrogen-fixing bacteria do not prosper in the high nutrient, turbid waters as typically in these areas. Finally, it is predicted here that the chemistry of the upwelling system will develop in a similar matter regardless whether N2 production is dominated by anaerobic ammonium oxidation (anammox) or canonical heterotrophic denitrification.  相似文献   

7.
We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ∼5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ∼25% of DOC and ∼50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.  相似文献   

8.

Background  

Early diagenetic processes involved in natural organic matter (NOM) oxidation in marine sediments have been for the most part characterized after collecting sediment cores and extracting porewaters. These techniques have proven useful for deep-sea sediments where biogeochemical processes are limited to aerobic respiration, denitrification, and manganese reduction and span over several centimeters. In coastal marine sediments, however, the concentration of NOM is so high that the spatial resolution needed to characterize these processes cannot be achieved with conventional sampling techniques. In addition, coastal sediments are influenced by tidal forcing that likely affects the processes involved in carbon oxidation.  相似文献   

9.
富营养化对海洋生态系统的影响及其围隔实验研究   总被引:17,自引:1,他引:16  
陆源的营养盐输入引起海洋中的富营养化,提高了水体中营养盐含量,改变了水体中营养盐比例,引起浮游植物水华甚至赤潮。水华发生时由于沿传统食物链的能流在浮游植物环节阻塞,能量过多地分配到微生物环,细菌大量繁殖分解有机物,导致水体缺氧,造成鱼虾贝类窒息死亡。围隔系统是物质相对守恒的系统,围隔与自然海水没有水交换,利用现场围隔实验可以定量地、系统地研究海洋生态系统对富营养化的响应。围隔实验现已成为全球海洋生态系统动力学研究的重要手段。  相似文献   

10.
The natural isotopic composition of suspended particulate organic nitrogen was determined in the Southern Bight of the North Sea and in the Scheldt estuary. These data show that δ15N constitutes a convenient tracer of the origin of the suspended matter.In the winter, in the absence of intensive primary production, the suspended organic matter of the Scheldt estuary is a mixture of two components: a continental detrital component characterized by a low δ value of 1.5%. and a marine component with a mean δ value of 8%..During the phytoplankton flowering period, lasting from early May to October, intensive primary production occurs throughout the estuary giving rise to a third source of organic matter. This material is characterized by high δ values reflecting the isotopic composition of ammonia, the nitrogenous nutrient assimilated by phytoplankton in the estuary.The nitrification process occuring in the mixing area of the Scheldt estuary leads to higher downstream δ values of ammonia (>20%.) which permits the distinction between estuarine from fresh-water phytoplankton. Simple isotopic budget calculations show that, both in the upstream part and in the downstream part, autochthonous phytoplanktonic material contributes a major part of the total suspended matter in the Scheldt estuary during summer.  相似文献   

11.
Groundwater discharge is increasingly recognized as a significant source of nutrient input to coastal waters, relative to surface water inputs. There remains limited information, however, on the extent to which nutrients and organic matter from each of these two flowpaths influence the functional responses of coastal microbial communities. As such, this study determined dissolved organic carbon (DOC) and nutrient concentrations of surface water runoff and groundwater from both an urbanized and a relatively pristine forested drainage basin near Myrtle Beach, South Carolina, and quantified the changes in production rates and biomass of phytoplankton and bacterioplankton in response to these inputs during two microcosm incubation experiments (August and October, 2011). Rainwater in the urbanized basin that would otherwise enter the groundwater appeared to be largely rerouted into the surface flowpath by impervious surfaces, bypassing ecosystem buffers and filtration mechanisms. Surface runoff from the developed basin was most enriched in nutrients and DOC and yielded the highest production rates of the various source waters upon addition to coastal waters. The metabolic responses of phytoplankton and bacterioplankton were generally well predicted as a function of initial chemical composition of the various source waters, though more so with bacterial production. Primary and bacterial productivities often correlated at reciprocal time points (24-h measurement of one with the 72-h measurement of the other). These results suggest human modification of coastal watersheds enhances the magnitude of dissolved constituents delivered to coastal waters as well as alters their distributions between surface and groundwater flowpaths, with significant implications for microbial community structure and function in coastal receiving waters.  相似文献   

12.
浮游植物水华作为近海重要的生物过程,其动态变化对生态系统内的能童传递、生产力水平和各生源要素的循环等均有重要影响.随着气候变化对生态系统影响研究的深入,浮游植物水华生物气候学研究已成为当前生物海洋学研究的热点.综述了浮游植物水华的研究历史、研究方法及其发生发展的动力学机制,重点评述了气候变化对浮游植物水华动态的影响及国...  相似文献   

13.
The Fitzroy River delivers large amounts of nutrients and fine sediments to Keppel Bay (contiguous with the Great Barrier Reef Lagoon) during intermittent flow events. This study explores sources, forms and transformations of nutrients in Keppel Bay, and develops a functional process zonation that integrates seabed geochemistry and water column nutrient characteristics which are controlled by suspended sediment. The water column and seabed properties were investigated over two dry seasons, with supplementary core incubations taken to measure carbon decomposition rates and nutrient fluxes. Keppel Bay can be divided into three zones, the: zone of maximum resuspension (ZMR); coastal transitional zone (CTZ); and blue water zone (BWZ). Mineralisation of predominantly terrestrial organic matter occurs in the ZMR where nutrient uptake by phytoplankton is light limited. The CTZ and BWZ had higher light penetration and phytoplankton growth was likely limited by N and P, respectively. The identified zones conform to the bathymetry and hydrodynamic characteristics of the bay, allowing for the development of an integrated conceptual model accounting for the benthic and pelagic biogeochemical processes. Recognition of these different zones shows that considerable variation in benthic and water column properties is possible within a small system with the bathymetric and hydrodynamic characteristics of the fluidized bed reactor.  相似文献   

14.
大气污染物向海洋的输入及其生态环境效应   总被引:7,自引:3,他引:7  
纵观20年来,特别是近几年来逐渐成为生物地球化学循环研究热点之一的大气对海洋物质输入的研究,从大气物质入海通量,大气物质入海对海洋生态系统和环境的影响,大气物质入海的科学研究计划和项目等方面分析了这一领域的研究现状和未来趋势。给出了不同海区各种主要大气入海物质的通量或在同类物质入海总量中的比例,讨论了氮、磷、铁等营养物质和持续性有毒污染物,如PAH、PCBs、杀虫剂和重金属对海洋生态系统和环境的不同影响。  相似文献   

15.
海岸带潮滩生源要素生物地球化学循环过程是国际地圈生物圈计划(IGBP)、海岸带陆海交互作用(LOICZ)研究的重要内容,也是全球变化区域响应研究中的重要组成部分。在过去的10~20年之间,潮滩生源要素氮的生物地球化学循环研究得到了长足的发展。基于此,较为全面、系统地总结和分析了有关潮滩氮营养盐的来源、潮滩氮素的物理、化学和生物迁移转化过程及氮素地球化学循环过程中底栖生物效应等一系列研究成果,并提出了今后潮滩生源要素氮的生物地球化学循环研究重点和发展趋向。  相似文献   

16.
Fluvial effects on nutrient and phytoplankton dynamics were evaluated in southern Kaneohe Bay, Oahu, Hawaii. Fluvial inputs occurred as small, steady baseflows interrupted by intense pulses of storm runoff. Baseflow river inputs only affected restricted areas around stream mouths, but the five storm events sampled during this study produced transient runoff plumes of much greater spatial extent. Nutrient loading via runoff generally led to an increase of the phytoplankton biomass and gross primary productivity in southern Kaneohe Bay, but the rapid depletion of nutrients resulted in a decline of the algal populations in the relatively short time of days. Under baseline conditions, water column primary productivity in southern Kaneohe Bay is normally nitrogen limited. Following storm events, the high ratio of dissolved inorganic nitrogen to dissolved inorganic phosphorus (DIN:DIP, 25–29) fluxes of runoff nutrients drove bay waters towards phosphorus limitation. A depletion of phosphate relative to DIN in surface waters was observed following all storm events. Due to high flushing rates, recovery times of bay waters from storm perturbations ranged from 3 to 8 d and appeared to be correlated with tidal range. Storm inputs have a significant effect on the water column ecosystem and biogeochemistry in southern Kaneohe Bay. The perturbations were only transient events and the system rapidly recovered to prestorm conditions.  相似文献   

17.
Seagrasses are indicators of ecosystem state because they are sensitive to variations in water composition and clarity resulting from watershed-level impacts. A simulation model designed to studyZostera marina (eelgrass) habitat dynamics in a variable littoral zone environment was used to address the potential ecological responses to eutrophication in lower Chesapeake Bay. The adjacent channel boundary environment is a source of dissolved and particulate materials to the littoral zone. In the simulations, concentrations of key water quality variables in the adjacent estuarine channel boundary were either halved or doubled relative to the base case to investigate light versus nitrogen effects. The role of the seagrass meadow in littoral zone carbon and nitrogen dynamics was evaluated when meadow size was changed in the model. Particulate and dissolved organic carbon accounted for 83% of the submarine light attenuation in the seagrass meadow. In all model runs, the water column concentrations of chlorophylla and dissolved inorganic nitrogen (DIN) were below the habitat criteria proposed as critical to seagrass survival. Eelgrass community production was carefully regulated by the interactive effects of light, nitrogen, and grazing on epiphyte growth. Increased eelgrass coverage in the littoral zone led to a simulated doubling of ecosystem primary production but reduced the fraction of production by planktonic and sediment microalgae. The simulation model presented here demonstrated the importance of material input from the channel in littoral zone biogeochemical dynamics. Submarine ligh regulated primary production more strongly than inorganic nitrogen concentrations in the model. External DIN concentrations influenced seagrass survival indirectly: enrichment stimulated growth of epiphytes and phytoplankton and promoted shading of the seagras leaf. The model was based upon a unimpacted ecosystem and deteriorated water quality negatively influenced primary production greater than the increases triggered by improved condition. Increased material loading to the littoral zone reduced submarine light availability, increased phytoplankton production, lowered ecosystem production, and reduced subtidal vegetated habitat. This simulation model of the estuarine littoral zone model combines hydrodynamics, biogeochemical sources and sinks, and living resources in order to better understand structure, function, and change in aquatic ecosystems.  相似文献   

18.
Nutrient dynamics in estuaries are temporally variable in response to changing physical–chemical conditions and biogeochemical processes involving primary producer groups such as phytoplankton, microphytobenthos, seagrass and macroalgae. In order to reveal intra-annual changes in the biomass of primary producer groups and associated changes in estuarine nutrient dynamics, we developed a box model, coupling water inflows and outflows and nitrogen dynamics in Wilson Inlet, a large, central-basin-dominated, intermittently closed estuary exposed to a Mediterranean climate in Western Australia. The model is calibrated and validated with monitoring data, aquatic plant biomass estimates and biogeochemical rate measurements. Macrophytes and their microalgal epiphytes appear to rapidly assimilate nutrients from the first flush from the catchment in winter, but this buffer capacity then ceases, and a phytoplankton ‘bloom’ develops in response to subsequent river runoff events in spring. Significant amounts of bioavailable nitrogen are exported to the ocean because phytoplankton predominance occurs while the sand bar is breached. Surface sediments play a key role for nitrogen dynamics: In late spring to autumn, high light availability at the sediment surface stimulates high primary production by microphytobenthos, leading to reduced benthic ammonium fluxes particularly in the deep basin. Microphytobenthos contributes about 60% of annual whole-system primary production. Despite high benthic primary production, nitrogen release from sediments is the biggest nitrogen source to the estuary.  相似文献   

19.
Nutrient mass balance analyses are a way of obtaining ‘whole system’ viewpoints on coastal biogeochemical functions and their forcing. Seasonal mass balances are presented for four large bay systems in New Zealand (NZ), with the aim of showing how they can inform coastal management. Freshwater volumes, and surface and groundwater, wastewater and atmospheric inorganic and organic nitrogen (N) and phosphorus (P) were balanced with levels of salinity, N and P from ocean surveys, used to determine non-conservative N and P fluxes and, via stoichiometry, carbon (C) fluxes. For Golden and Tasman Bays and Hauraki Gulf, exchange with adjacent shelf waters usually dominated total N supply (80–85%). In contrast, for the Firth of Thames, 51% of total N and 85% of dissolved inorganic N supply originated from its agricultural catchment. Net ecosystem metabolism (NEM; balance of autotrophy and heterotrophy) of Golden and Tasman Bays and Hauraki Gulf was usually nearly balanced. In contrast, Firth NEM was highly seasonally variable, often exhibiting strong heterotrophy coincident with expression of respiration-related stressors (low O2 and high DIC/low pH). Denitrification accounted for about 51% of total N export across the four systems, signifying its importance as a eutrophication-regulating ecosystem service. Budgets made 12 years apart in the Firth showed decreased denitrification efficiency, coincident with large increases in system N and phytoplankton. The findings for land-ocean nutrient balance, NEM and denitrification showed how mass balance budgeting can inform coastal management, including inventories of nutrient inputs, balances of oceanic and terrestrial nutrient loading, and potential for risk associated with biogeochemical responses.  相似文献   

20.
Glacial-interglacial sea level changes have caused drastic variations in the surface hydrography, ventilation and ecosystem structure in the Japan Sea. Previous reconstructions using microfossils and geochemical proxies suggested decreased productivity and a more calcareous plankton community during glacial periods. However, the inferred community structure change is not consistent with significantly lower salinity in the Japan Sea during the glacials, which would have had a deleterious effect on calcareous plankton growth. Here, biomarker records of ODP Site 797 are generated to further evaluate phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr. Although the contents of the phytoplankton biomarkers changed by two to three orders of magnitude, there were no clear glacial-interglacial patterns as sediment biomarker contents reflected the combined effect of production and water column degradation. The collective assessments of our biomarker records and published records support previous conclusions of decreased productivity in the Japan Sea during the glacials. However, a community structure proxy based on the alkenone/brassicasterol ratio reveals a shift from a diatom-dominated community during the glacials to a coccolithophorid-dominated community during the interglacials, mainly as a result of surface salinity variations in the Japan Sea controlled by sea-level changes. Previous community structure reconstruction using biogenic carbonate/silica ratio could have been complicated by the different environmental factors governing silica and CaCO3 dissolution in the Japan Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号