首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The reduction in light emission of the marine bacterium Vibrio fischeri used in the standard Microtox® bioassay was measured for the metals copper and mercury. The concentration at which the light emission was reduced by 50% (EC50) was determined to be (3.43 ± 0.83) μmol/L for Cu2+ and (0.66 ± 0.01) μmol/L for Hg2+. The reduction of the toxicity of these metals by humic and fulvic acids were studied using IHSS Standard and Reference Materials. Copper toxicity was reduced 17...20% by the soil and peat fulvic acids and 9...20% by the aquatic fulvic acids. While there appeared to be little difference in the reduction of Cu toxicity by fulvic acids from soils, peats, or aquatic systems, Hg toxicity was reduced 3.6...7.3% by the soils and peats, while aquatic fulvic acids reduced Hg toxicity 14...16%. Soil fulvic acids appear to have significantly less capacity to reduce Hg toxicity than Cu toxicity. Humic acids had much higher reductions of Cu toxicity (44...124%) compared to the fulvic acids, with little difference between aquatic and soil or peat humic acids, 44...124% and 67...100%, respectively. However, humic and fulvic acids, regardless of origin, had approximately the same effect on Hg toxicity with 3.5...16% reduction by fulvic acids and 8...20% reduction by humic acids. Unlike the fulvic acids, no clear trend was observed relative to origin of the humic acids. There was no correlation between percent reduction of Cu or Hg toxicity by the organic compounds and copper binding capacity (CuBC), C/N ratio, or carboxyl content of the materials. Examination of natural organic matter (NOM) isolated by reverse osmosis techniques from three water sources had reductions of both Cu and Hg toxicity that were most similar to the Suwannee River and Nordic fulvic acids.  相似文献   

2.
This article describes laboratory batch sorption and column transport experiments that were conducted using heterogeneous alluvial sediments with a wide physical characteristic from wells, located between Lake Mogan and Lake Eymir, Gölbaşı, Ankara. The batch sorption experiment was conducted in two separate systems, that is, single and multicomponents. Single batch experiment was performed to determine equilibrium condition between the heavy metal ions and the soil adsorption sites. The sorption isotherms data from multibatch experiments were used to calculate the sorption parameters. Single batch experiment indicated that equilibrium was attained within 9 days from the start of the sorption test. As a result of multicomponents batch experiments, for Zn and Mn, the sorption process was well described by the Freundlich or Langmuir isotherm model, whereas sorption of Cu was better described by the linear isotherm model. The Kd of Cu were found to be highest in soil 1 (32550.350 L kg−1) and lowest in soil 5 (18170.76 L kg−1). The maximum and minimum sorption capacity values for Zn were found to be in soil 1 (10985.148 mg kg−1) and in soil 2 (8597.14 mg kg−1) units, respectively. [Correction added after online publication 15 July, 2010: In the preceding sentence, the words “minimum” and “maximum” were initially switched.] Similarly, soil 1 (7587.391 mg kg−1) and soil 5 (4908.695 mg kg−1) units provided the maximum and minimum values for Mn. In the column experiments, flow and tracer transport was studied under saturated conditions using conservative tracer to determine the transport parameters. Transport parameter values were obtained by curve-fitting using the nonlinear least-squares optimization code CXTFIT. Results of the column experiments indicated that the dispersivity values obtained for soil samples were in the range of 0.024 to 1.13 cm.  相似文献   

3.
The present work investigated the biosorption of nickel from synthetic and electroplating industrial effluents using a green marine algae Ulva reticulata. Preliminary batch results imply that pH 4.5 was optimum for nickel uptake and the isotherm experiments conducted at this pH condition indicated that U. reticulata can biosorb 62.3 mg g–1 nickel ions from synthetic solutions, according to the Langmuir model. Desorption was effective and practical using 0.1 M CaCl2 (pH 2.5, HCl) and the biomass was regenerated and reused for three cycles. Continuous biosorption experiments were performed in an upflow packed column (2 cm I.D and 35 cm height). Among the two electroplating effluents used, effluent‐1 is characterized by excess co‐ions and high nickel ion content. This influenced the column nickel uptake with U. reticulata exhibiting 52.1 mg g–1 in the case of effluent‐1 compared to 56.5 mg g–1 in the case of synthetic solution. On the other hand U. reticulata performed well in effluent‐2 with uptakes of 53.3 and 54.3 mg g–1 for effluent‐2 and synthetic solution, respectively. Mathematical modeling of column experimental data was performed using nonlinear forms of the Thomas‐ and modified dose‐response models, with the latter able to simulate breakthrough curves with high correlation coefficients.  相似文献   

4.
A new separation and preconcentration technique based on coprecipitation of Cu(II) and Ni(II) ions by the aid of Mo(VI)/di‐tert‐butyl{methylenebis[5‐(chlorobenzyl)‐4H‐1,2,4‐triazol‐3,4‐diyl]}biscarbamate (BUMECTAC) precipitate has been established. The Mo(VI)/BUMECTAC precipitate was dissolved by concentrated HNO3 and the solution was completed to 5.0 mL with distilled/deionized water. The levels of the analyte ions were determined by flame atomic absorption spectrometer. The effects of experimental conditions like HNO3 concentration, amount of BUMECTAC and Mo(VI), sample volume, etc. and also the influences of some foreign ions were investigated in detail on the quantitative recoveries of analyte ions. The preconcentration factors were found to be 40 for Cu(II) and 100 for Ni(II) ions. The detection limits for Cu(II) and Ni(II) ions based on 3σ (N:10) were 0.43 and 0.70 µg L?1, respectively. The relative standard deviations were found to be lower than 4.0% for both analyte ions. The accuracy of the method was checked by spiked/recovery tests and the analysis of two certified reference materials (Environment Canada TM‐25.3 and CRM‐SA‐C Sandy Soil C). The procedure was successfully applied to sea water and stream water as liquid samples and baby food as solid sample in order to determine the levels of Cu(II) and Ni(II) ions.  相似文献   

5.
Nymphaea rubra stem was used as a low cost and easily available biosorbent for the removal of Reactive Red 2 dye from an aqueous solution. Initially, the effects of biosorbent dosage (0.2–1.0 g L–1), pH (1–6), and dye concentration (30–110 mg L–1) on dye removal were studied. Batch experiments were carried out for biosorption kinetics and isotherm studies. The results showed that dye uptake capacity was found to increase with a decrease in biosorbent dosage. Equilibrium uptake capacity was found to be greatest at a pH value of 2.0, when compared to all other pH values studied. The equilibrium biosorption isotherms were analyzed by the Freundlich and Langmuir models. The equilibrium data was found to fit very well with the Freundlich isotherm model when compared to the Langmuir isotherm model. The kinetic data was analyzed using pseudo-first order and pseudo-second order kinetic models. From the results, it was observed that the kinetic data was found to fit the pseudo-second order kinetic model very well. The surface morphology of the stem of the N. rubra biosorbent was exemplified by scanning electron microscopy. Fourier transform infrared analysis was employed to confirm the existence of an amine group in the stem of N. rubra.  相似文献   

6.
Initial coagulation rates of colloidal hematite (-Fe2O3) particles (diameter less than 0.1 µm) were measured experimentally in well-defined laboratory systems at constant temperature. The relative stability ratio,W, was obtained at various ionic strengths in NaCl medium and at pH values in the range from 3 to 12. ExperimentalW values ranged from 1 to 104 in various systems. The results delineate the roles ofspecific andgeneralized coagulation mechanisms for iron oxides. Among the specifically-interacting species (G ads 0 >G coul 0 ) studied were phosphate, monomeric organic acids of various structures, and polymeric organic acids. The critical coagulation-restabilization concentrations of specifically-interacting anions (from 10–7 to 10–4 molar) can be compared with the general effects of non-specific electrolyte coagulants (10–3 to 10–1 molar). The laboratory results are interpreted with the help of a Surface Complex Formation/Diffuse Layer Model (SCF/DLM) which describes variations of interfacial charge and potential resulting from variations of coagulating species in solution. Comparison of these laboratory experiments with observations on iron behavior in estuarine and lake waters aids in understanding iron removal mechanisms and coagulation time scales in natural systems.  相似文献   

7.
Trivalent chromium in the form of basic chromium sulfate (BCS) is used for tanning hides/skins and is a strong pollutant of the soil and water bodies. Significant quantities of unutilized chemicals, such as sulfates, chlorides, are also discharged, contributing to high levels of total dissolved solids (TDS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), etc. Though many treatment techniques are being practiced, biotechnological methods are gaining importance. Biosorption is recognized as a cost‐effective technology worldwide; one potential sorbent being blue–green algae (BGA), for treating metal‐bearing effluents. This work studies the feasibility of using a species each of Spirulina, Oscillatoria, and Synechocystis, individually and as a consortium, as sorbents to remove Cr3+ from a segregated stream, viz. exhaust chrome liquor (ECL) and synthetic BCS solution. The species studied were found to be effective in removing Cr3+ considerably at varying concentrations, besides reducing sulfates, BOD, COD, etc. The results of ECL experiments were more encouraging than those for BCS solution. The kinetic data on Cr3+ sorption onto algal biomass fit well into the pseudo‐second order model. The equilibrium data were analyzed using the classic Langmuir and Freundlich isotherm models, yielding good fits. The results of the experiments indicate that algal consortia could be good alternatives to the conventional treatment methods for leather and other industrial wastewaters containing chromium.  相似文献   

8.
A stable extractor of metal ions was synthesized through azo linking of o‐hydroxybenzamide (HBAM) with Amberlite XAD‐4 (AXAD‐4) and was characterized by elemental analyses, IR spectral, and thermal studies. Its water regain value and hydrogen ion capacity were found to be 12.93 and 7.68 mmol g?1, respectively. The optimum pH range (with the half‐loading time [min], t1/2) for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were 2.0–4.0 (5.5), 2.0–4.0 (7.0), 2.0–4.0 (8.0), 4.0–6.0 (9.0), 4.0–6.0 (12.0), and 2.0–4.0 (15.0), respectively. Comparison of breakthrough and overall capacities of the metals ascertains the high degree of column utilization (>70%). The overall sorption capacities for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were found to be 0.29, 0.22, 0.20, 0.16, 0.13, and 0.11 mmol g?1 with the corresponding preconcentration factor of 400, 380, 380, 360, 320, and 320, respectively. The limit of preconcentration was in the range of 5.0–6.3 ng mL?1. The detection limit for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) were found to be 0.39, 0.49, 0.42, 0.59, 0.71, and 1.10 ng mL?1, respectively. The AXAD‐4‐HBAM has been successfully applied for the analysis of natural water, multivitamin formulation, infant milk substitute, hydrogenated oil, urine, and fish.  相似文献   

9.
Fractured aquifers are some of the most poorly characterized subsurface environments despite posing one of the highest risks to the protection of potable groundwater. This research was designed to improve the understanding of the factors affecting particle transport through fractures by developing a phenomenological model based on laboratory‐scale transport data. The model presented in this research employed data from over 70 particle tracer tests conducted in single, saturated, variable‐aperture fractures that were obtained from the natural environment and fractured in the laboratory or cast from epoxy in the laboratory. The particles employed were Escherichia coli RS2‐GFP and microspheres. The tracer experiments were conducted in natural (dolomitic limestone and granite) as well as epoxy replicas of the natural fractures. The multiple linear regression analysis revealed that the most important factors influencing particle retention in fractures are the ratio of the ionic strength of solution to collector charge, the ratio of particle to collector charge, and the ratio of advective to diffusive forces as described by the Peclet number. The model was able to reasonably (R2 = 0.64) predict the fraction of particles retained; however, it is evident that some factors not accounted for in the model also contributed to retention. This research presents a novel approach to understanding particle transport in fractures, and illustrates the relative importance of various factors affecting the transport mechanisms. The utility of this model lies in the increased understanding of particle transport in fractures, which is extremely useful for directing future research.  相似文献   

10.
Pot experiments were conducted in glasshouse under controlled conditions. The effect of copper in alluvial soil on the growth and yield of Triticum aestivum L. (wheat) was worked out. Copper was applied in soil at 5–100 mg L?1, along with iron supplement. Inhibitory response of copper was significant (p < 0.05) confirmed by the plant growth parameters viz., plant height, fresh and dry weight, moisture content, pigment contents, protein, sugar contents followed by increased catalase and peroxidase activity in the harvest at 30, 60, and 90 days, of treatment, respectively. The plants grown on copper treated soil along with 5 mg L?1 Cu and iron application showed significant effects (p < 0.05) regarding the increase in plant biomass, plant height (shoot only), pigment contents, protein, sugar contents, grain yield followed by decreased catalase and peroxidase activity in wheat after 30, 60, and 90 days of treatment, respectively. The accumulation of metal in plant tissues was found in order of Fe > Cu coupled by less translocation in grain as compared to the whole plant.  相似文献   

11.
Laboratory experiments to determine the maximum size of sediment transported in shallow, rain-impacted flow were conducted in a recirculating flume 4·80 m long and 0·50 m wide. Rainfall intensities were varied between 51 and 138 mm h−1, flow was introduced from a header tank into the flume at rates ranging from 0 to 0·64 l s−1, and experiments were conducted on gradients between 3·5 and 10°. The following equation was developed: ML = (REFE)1·6363 in which M is particle mass, L is distance moved in unit time (cm min−1), RE is rainfall energy (J m−2 s−1) and FE is flow energy (J m−2 s−1). This equation can be used to predict sediment-transport competence of interrill overland flow. The equation is limited in its utility insofar as it has been developed using quartz grains and takes no account of variations in absorption of rain energy by natural ground surfaces. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
A three-dimensional mesoscale numerical model is used to investigate mesoscale circulation over a Gulf Stream filament. Two numerical experiments are performed with different initial uniform ambient wind speeds (U=0.1 m s–1, 3.5 m s–1 and 7 m s–1) for a typical winter day. It is found that for both low and moderate winds, a closed mesoscale circulation forms over the Gulf Stream filament. When the Gulf Stream filament was removed, the model did not predict a mesoscale circulation. The modeled circulation over the filament is in agreement with the observations, suggesting that the atmospheric circulations over the filaments may be an important mechanism in the U.S. East Coast cyclogenesis.  相似文献   

13.
An on‐line solid phase extraction method for the preconcentration and determination of Cu(II) by flame atomic absorption spectrometry has been described. The procedure is based on the retention of Cu(II) ions at pH 6.0 on a minicolumn packed with Amberlite XAD‐1180 resin impregnated with chrome azurol S. After preconcentration, Cu(II) ions adsorbed on the impregnated resin were eluted by 1 mol L?1 HNO3 solution. Several parameters, such as pH, type of eluent, flow rates of sample and eluent solutions, amount of resin were evaluated. At optimized conditions, for 3.5 min of preconcentration time, the system achieved a detection limit of 1.0 µg L?1, and a relative standard deviation of 1.2% at 0.2 µg mL?1 copper. An enrichment factor of 56‐fold was obtained with respect to the copper determination. The proposed method was successfully validated by the analysis of standard reference material (TMDA 54.4 lake water) and recovery studies. The method was applied to the preconcentration of Cu(II) in natural water samples.  相似文献   

14.
The influence of pH on the adsorption equilibria of a-picolin and phenol from aqueous solution on activated carbon is studied experimentally for the single solutes and their mixtures. For these weak bases and weak acids the effect of pH on adsorption capacity is contrary, thus allowing an efficient separation by adsorption. A model based on the concept of competitive adsorption of ionic and molecular forms of the organic electrolytes represents the experimental data qualitatively. Deviations between theoretical and experimental results are discussed on the basis of possible interactions of the organic solutes and the activated carbon with components of the buffer used in the experiments.  相似文献   

15.
The manufacturing of phosphoric acid from natural calcium phosphate generates a solid residue containing 25–30% humidity. This solid residue (phosphogypsum) generates acidic solution (pH ≈ 2.5) containing several toxic ionic species, that coat its grains. Fluorides and heavy metals such as cadmium are considered the most harmful species contained in the released solution from phosphogypsum. The purpose of this work is to study the trapping of fluorides and cadmium in phosphogypsum as well as effluent neutralization before its discharge into natural recipient. Therefore, calcium carbonate finely ground was added and fully mixed with wet phosphogypsum. A four factors central composite design was used to model and to optimize the operating parameters that govern the process. The studied factors were temperature, reaction time, mass, and grains size of CaCO3. Considered responses were pH, F, and Cd2+ concentrations in the released solution after reaction with CaCO3. The optimum operating conditions were quite efficient to trap, respectively, 99% Cd2+ and 97% of F with a final pH of 6.66. So an original, easy, simple, and cost effective method to trap some toxic species on phosphogypsum through CaCO3 addition would likely to be integrated in phosphoric acid manufacturing plant.  相似文献   

16.
Colors of plinian pumices were measured by spectrocolorimetry, and their quantitative color parameters in the L*a*b* color space were determined. A series of heating experiments of obsidian was conducted to simulate the color-change processes of rhyolitic glasses. In these experiments, following three stages of color-change processes were observed. Stage I showed a rapid b* (yellowishness) increase associated with fast dehydration controlled by water diffusivity (D water). In stage II, a* (reddishness) increase was accompanied by Fe2+ decrease. Both a* increase and Fe2+ decrease can be simulated by a diffusion model. Obtained diffusivity D oxidation were about two orders of magnitude smaller than D water . The a*-value increase after the oxidation in stage III appeared to be quasi-linear with time, indicating the zeroth order reaction corresponding to the formation of hematite-like structures in rhyolitic glasses. The diffusion-limited a* increase model in stage II was applied to a natural plinian pumice fall unit to evaluate time periods of color-change processes through oxidation by air of fragmented rhyolitic materials.  相似文献   

17.
The intertidal copeopod Tigriopus japonicus, which is abundant and widely distributed along the coasts of Western Pacific, has been suggested to be a good marine ecotoxicity testing organism. In this study, a series of experiments were conducted to investigate the reproducibility and variability of copper (Cu) sensitivity of T. japonicus so as to evaluate its potential to serve as an appropriate test species. To understand the seasonal variation of Cu sensitivity, individuals of T. japonicus were collected from the field in summer and winter, and subjected to standard 96 h acute (static renewal) toxicity tests. 96 h-LC50 values of T. japonicus collected from the two seasons were marginally different (p = 0.05), with an overall coefficient of variation (CV) of 33%. Most importantly, our results indicated that chronic Cu sensitivity of T. japonicus was highly reproducible. The CVs of intrinsic rates of increase in the population of the control and Cu treatment (10 μg Cu l−1) groups were only 10–11% between 10 runs of a standardised complete life-cycle test. Moreover, different Cu(II) salts generally resulted in a similar 96 h-LC50 value while Cu(I) chloride was consistently slightly less toxic than Cu(II) salts. Given such a high reproducibility of toxic responses, it is advocated to use T. japonicus as a routine testing organism.  相似文献   

18.
19.
Complex formation reactions with the interaction of fulvic and humic acids with zinc and iron ions in a model aqueous system. The complexing ability of humic acids was experimentally proved to be much higher than that of fulvic acids. The complexing ability of fulvic acids is found to decrease over time. The dependence of the complexing ability of heavy metals on the types of ion and humic substances and the proportions of components in the solution is examined. The obtained experimental results on the occurrence forms of heavy metals were compared with their theoretical estimates calculated for natural water bodies.  相似文献   

20.
The effects of various parameters such as initial concentration, adsorbent loading, pH, and contact time on kinetics and equilibrium of adsorption of Cd2+ metal ion from its aqueous solution by castor seed hull (CSH) and also by activated carbon have been investigated by batch adsorption experiments. The amount of adsorption increases with initial metal ion concentration, contact time, solution pH, and the loading of adsorbent for both the systems. Kinetic experiments indicate that adsorption of cadmium metal ion on both CSH and on activated carbon consists of three steps – a rapid adsorption of cadmium metal ion, a transition phase, and an almost flat plateau region. This has also been confirmed by the intraparticle diffusion model. The lumped kinetic results show that the cadmium adsorption process follows a pseudo‐second order rate law. The kinetic parameters including the rate constant are determined at different initial metal ion concentrations, pH, amount, and type of adsorbent, respectively. The Langmuir and Freundlich adsorption isotherm models are used to describe the experimental data. The Langmuir model yields a better correlation coefficient than the other model. A comparison of the monolayer adsorption capacity (qm) of CSH, activated carbon, and several other reported adsorbents has been provided. The value of separation factor (RL) calculated from the Langmuir equation also gives an indication of favorable adsorption of the metal ion. From comparative studies, it has been found that CSH is a potentially attractive adsorbent than commercial activated carbon for cadmium metal ion (Cd2+) removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号