首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combining policies to remove carbon dioxide (CO2) from the atmosphere with policies to reduce emissions could decrease CO2 concentrations faster than possible via natural processes. We model the optimal selection of a dynamic portfolio of abatement, research and development (R&D), and negative emission policies under an exogenous CO2 constraint and with stochastic technological change. We find that near-term abatement is not sensitive to the availability of R&D policies, but the anticipated availability of negative emission strategies can reduce the near-term abatement optimally undertaken to meet 2°C temperature limits. Further, planning to deploy negative emission technologies shifts optimal R&D funding from ??carbon-free?? technologies into ??emission intensity?? technologies. Making negative emission strategies available enables an 80% reduction in the cost of keeping year 2100 CO2 concentrations near their current level. However, negative emission strategies are less important if the possibility of tipping points rules out using late-century net negative emissions to temporarily overshoot the CO2 constraint earlier in the century.  相似文献   

2.
Many tools that are helpful for evaluating emissions mitigation measures, such as carbon abatement cost curves, focus exclusively on cost and emissions reduction potential without quantifying the direct and indirect impacts on stakeholders. The impacts of climate change will be the most severe and immediate for billions of poor people, especially for those whose livelihoods are based on agriculture and subsistence activities and are directly dependent on weather patterns. Thus, equity and vulnerability considerations must be central to GHG emissions reduction strategies. A case study of a carbon abatement cost curve for an electricity system in two Nicaraguan rural villages is presented and is complemented with assessments based on the poverty metrics of the poverty headcount, the Gini coefficient, and the Kuznets ratios. Although these metrics are relatively easy to calculate, the study provides a general indication as to how the social impacts of mitigation strategies on the poor (whether they are in rural or urban environments, developed or developing countries) can be revealed and highlights the inequalities that are embedded in them. Further work analysing how mitigation measures affect the various more detailed poverty indices, such as the Human Development, Gender Equality, or Multidimensional Poverty indices, is needed.  相似文献   

3.
4.
This paper explores policies for Negative Emissions Technologies (NETs), in an attempt to move beyond the supply-side focus of the majority of NETs research, as well as the current dominance of carbon pricing as the main NETs policy proposal. The paper identifies a number of existing policies from four key areas – energy/transport, agriculture, sub-soil, and oceans – which will have an impact on three NETs: Bioenergy with Carbon Capture and Storage (BECCS), Direct Air Capture (DAC), and terrestrial Enhanced Rock Weathering (ERW). We propose that non-climate co-benefits may be valuable in terms of the policy ‘demand pull’ for NETs; in particular, we find that ERW may provide multiple co-benefits which can be mandated through existing policy structures. However, interaction with numerous policy areas may also create barriers, particularly where there is tension between the priorities of different government departments. On the basis of existing and analogous policies from a range of geographical contexts and scales, this paper proposes four options for NETs policy that could be reasonably implemented in the near-term. We also argue that ERW demonstrates the importance of scale and framing, because the policy environment depends on whether it is framed as a soil amendment at local scales or as a climate stabilization technique at international scale.

Key policy insights

  • Co-benefits may assist the ‘demand pull’ for novel technologies by providing multiple policy angles for incentivisation rather than relying on a ‘fix-all’ policy such as a high carbon price.

  • DAC with storage might be overly reliant on a high carbon price, because it only provides one core benefit – that of atmospheric carbon reduction.

  • ERW may provide multiple co-benefits which can be mandated through existing policy structures, but should focus on using waste rock rather than mining virgin material.

  • We propose four near-term options for NETs policy: funding for small-scale BECCS demonstration and an international biomass certification mechanism; small-scale loans for ERW on farms and promotion of locally-sourced rock residues; amendment of fertilizer subsidy schemes to include silicate rock; and a clearer framework for licensing sub-soil access for CO2 storage.

  相似文献   

5.
The idea of market-based carbon emission trading and carbon taxes is gaining in popularity as a global climate change policy instrument. However, these mechanisms might not necessarily have a positive outcome unless their value reflects socioeconomic and environmental impacts and regulations. Moreover, the fact that they have various inherent exogenous and endogenous uncertainties raises serious concerns about their ability to reduce emissions in a cost-effective way. This paper aims to introduce a simple stochastic model that allows the robustness of economic mechanisms for emission reduction under multiple natural and human-related uncertainties to be analyzed. Unlike standard equilibrium state analysis, the model shows that the explicit introduction of uncertainties regarding emissions, abatement costs, and equilibrium states makes it almost impossible for existing market-based trading and carbon taxes to be environmentally safe and cost-effective. Here we propose a computerized multi-agent trading model. This can be viewed as a prototype to simulate an emission trading market that is regulated in a decentralized way. We argue that a market of this type is better equipped to deal with long-term emission reductions, their direct regulation, irreversibility, and “lock-in” equilibria.  相似文献   

6.
In the context of the negotiations under the United Nations Framework Convention on Climate Change and its accompanying Kyoto Protocol, participating nations have recognized the need for formulating Nationally Appropriate Mitigation Actions (NAMAs). These NAMAs allow countries to take into account their national circumstances and to construct measures to mitigate GHG emissions across economic sectors. Israel has declared to the UN that it would strive to reduce its GHG emissions by 20% in the year 2020 relative to a ‘business as usual' scenario. With its growing population and an expanding economy, the national GHG mitigation plan was developed to draw a course for steering the Israeli economy into a low-carbon future while accommodating continued economic growth. The article describes relevant policy measures, designed to aid in the implementation of the plan and compares them with measures being undertaken by different countries. Emphasis is placed on analysing the progress to date, opportunities and barriers to attaining the ultimate GHG emissions reduction goals. The objective of this article is to contribute to the knowledge base of effective approaches for GHG emissions reduction. We emphasize the integrated approach of planning and implementation that could be especially useful for developing countries or countries with economies in transition, as well as for developed countries. Yet, in the article we argue that NAMAs’ success hinges on structured tracking of progress according to emerging global consensus standards such as the GHG Protocol Mitigation Goals Standard.

Policy relevance:

The study is consistent with the NAMA concept, enabling a country to adopt a ‘climate action plan’ that contributes to its sustainable development, while enabled by technology and being fiscally sound.

The analysis shows that although NAMAs have been framed in terms of projects, policies, and goals, current methodologies allow only the calculation of emission reductions that can be attributed to distinct projects. Currently, no international guidance exists for quantifying emissions reduction from policy-based NAMAs, making it difficult to track and validate progress. This gap could be addressed by an assessment framework that we have tested, as part of a World Resources Institute pilot study for an emerging voluntary global standard.  相似文献   

7.
Scientists are now being asked to recommend measures to reduce the risks of climatic change due to anthropogenic greenhouse gases. Considerably less effort, however, has been allotted to understanding the efficacy of controlling these gases than to their effects. This paper briefly describes and applies an energy-economic model to assess the effectiveness of carbon dioxide control policies that theoretically could be enacted in China, a large, developing nation with an energy inefficient and carbon-intensive economy. The paper also assesses the effectiveness of similar international efforts, as well as the effect of each initiative on Chinese income levels. Carbon dioxide control measures are contained in scenarios drawn to the year 2075 and include family planning, fossil fuel taxes, mandatory or technical energy efficiency improvements, and a combination of these.The results suggest, not surprisingly, that no nation alone, not even China, can decisively affect the global CO2 problem. More importantly, however, the potential for energy efficiency improvements in China is found to be both very large and economically attractive. Scenario analysis suggests that energy efficiency measures could both reduce carbon emissions significantly and increase Chinese per capita incomes. Similar conclusions are drawn regarding worldwide energy-efficiency measures. Thus, appropriate public policy measures to capture the existing energy-efficiency potential might both reduce the risk of climatic change and improve economic standards of living.  相似文献   

8.
Carbon dioxide removal (CDR) is the only geoengineering technique that allows negative emissions and the reduction of anthropogenic carbon in the atmosphere. Since the time scales of the global carbon cycle are largely driven by the exchanges with the natural oceanic stocks, the implementation of CDR actions is anticipated to create outgassing from the ocean that may reduce their efficiency. The adjustment of the natural carbon cycle to CDR was studied with a numerical Earth System Model, focusing on the oceanic component and considering two idealized families of CDR policies, one based on a target atmospheric concentration and one based on planned negative emissions. Results show that both actions are anticipated to release the anthropogenic carbon stored in the surface ocean, effectively increasing the required removal effort. The additional negative emissions are expected to be lower when the CDR policy is driven by planned removal rates without prescribing a target atmospheric CO2 concentration.  相似文献   

9.
As land use change (LUC), including deforestation, is a patchy process, estimating the impact of LUC on carbon emissions requires spatially accurate underlying data on biomass distribution and change. The methods currently adopted to estimate the spatial variation of above- and below-ground biomass in tropical forests, in particular the Brazilian Amazon, are usually based on remote sensing analyses coupled with field datasets, which tend to be relatively scarce and often limited in their spatial distribution. There are notable differences among the resulting biomass maps found in the literature. These differences subsequently result in relatively high uncertainties in the carbon emissions calculated from land use change, and have a larger impact when biomass maps are coded into biomass classes referring to specific ranges of biomass values. In this paper we analyze the differences among recently-published biomass maps of the Amazon region, including the official information used by the Brazilian government for its communication to the United Nation Framework on Climate Change Convention of the United Nations. The estimated average pre-deforestation biomass in the four maps, for the areas of the Amazon region that had been deforested during the 1990–2009 period, varied from 205?±?32 Mg ha?1 during 1990–1999, to 216?±?31 Mg ha?1 during 2000–2009. The biomass values of the deforested areas in 2011 were between 7 and 24 % higher than for the average deforested areas during 1990–1999, suggesting that although there was variation in the mean value, deforestation was tending to occur in increasingly carbon-dense areas, with consequences for carbon emissions. To summarize, our key findings were: (i) the current maps of Amazonian biomass show substantial variation in both total biomass and its spatial distribution; (ii) carbon emissions estimates from deforestation are highly dependent on the spatial distribution of biomass as determined by any single biomass map, and on the deforestation process itself; (iii) future deforestation in the Brazilian Amazon is likely to affect forests with higher biomass than those deforested in the past, resulting in smaller reductions in carbon dioxide emissions than expected purely from the recent reductions in deforestation rates; and (iv) the current official estimate of carbon emissions from Amazonian deforestation is probably overestimated, because the recent loss of higher-biomass forests has not been taken into account.  相似文献   

10.
Climate change mitigation has two main characteristics that interact to make it an extremely demanding challenge of governance: the complexity of the socio-technical systems that must be transformed to avoid climate change and the presence of profound uncertainties. A number of tools and approaches exist, which aim to help manage these challenges and support long-term decision making. However, most tools and approaches assume that there is one decision maker with clearly defined objectives. The interaction between decision makers with differing perspectives and agency is an additional uncertainty that is rarely addressed, despite the wide recognition that action is required at multiple scales and by multiple actors. This article draws inspiration from dynamic adaptive policy pathways to build on current decision support methods, extending analysis to include the perspectives and agency of multiple actors through a case study of the UK construction sector. The findings demonstrate the importance of considering alignment between perspectives, agency and potential actions when developing plans; the need for mobilizing and advocacy actions to build momentum for radical change; and the crucial influence of interaction between actors. The decision support approach presented could improve decision making by reflecting the diversity and interaction of actors; identifying short-term actions that connect to long-term goals and keeping future options open.

Key policy insights
  • Multiple actors, with differing motivations, agency and influence, must engage with climate change mitigation, but may not do so, if proposed actions do not align with their motivations or if they do not have agency to undertake specific actions.

  • Current roadmaps, which assume there is one decision maker with control over a whole system, might overstate how effective proposed actions could be.

  • Decision making under deep uncertainty needs to account for the motivations and agency of diverse decision makers and the interaction between these decision makers.

  • This could increase the implementation and effectiveness of mitigation activities.

  相似文献   

11.
Greenhouse gases emission inventories are computed with rather low precision. Moreover, their uncertainty distributions may be asymmetric. This should be accounted for in the compliance and trading rules. In this paper we model the uncertainty of inventories as intervals or using fuzzy numbers. The latter allows us to better shape the uncertainty distributions. The compliance and emission trading rules obtained generalize the results for the symmetric uncertainty distributions that were considered in the earlier papers by the present authors (Nahorski et al., Water Air & Soil Pollution. Focus 7(4–5):539–558, 2007; Nahorski and Horabik, 2007, J Energy Eng 134(2):47–52, 2008). However, unlike in the symmetric distribution, in the asymmetric fuzzy case it is necessary to apply approximations because of nonlinearities in the formulas. The final conclusion is that the interval uncertainty rules can be applied, but with a much higher substitutional noncompliance risk, which is a parameter of the rules.  相似文献   

12.
13.
Lei Zhu  Pan Peng  Ying Fan 《Climate Policy》2018,18(6):781-793
After the successful conclusion of the Paris Climate Conference (Conference of the Parties (COP) 21), countries are now attempting to identify implementation measures. An important consensus has been reached on the necessity of putting in place both mitigation and adaptation measures. In this context, this article builds a three-sector China and rest of the world model based on the DE-carbonization Model with Endogenous Technologies for Emission Reductions (DEMETER) and World Induced Technical Change Hybrid (WITCH) models. It assesses China’s mitigation and adaptation investment strategies by 2050 with an optimization including climate externalities. By making the 450?ppm target and China’s 2030 CO2 emissions peak exogenous, it assesses two scenarios: (1) investment only in mitigation and (2) investment in both mitigation and adaptation. The article finds the following: First, the policy package with investment in both mitigation and adaptation can ensure lower CO2 emissions and avoid more climate damage. Second, investment in adaptation should be massively injected by around 2040, whereas mitigation efforts should be continuous. Third, the CO2 emissions peak in the tertiary sector should come prior to 2030 while the emissions pathway of the secondary sector could be allowed to increase slowly until 2035.

POLICY RELEVANCE
  • The necessity of engaging in both mitigation and adaptation has been widely accepted since the Paris Climate Conference (COP21), yet few studies exist in this regard concerning China.

  • Substantial investment in adaptation needs to be introduced by 2040 while the investment on mitigation should peak by 2030.

  • The CO2 emissions peak in the tertiary sector would be reached prior to 2030 while the peak in the secondary sector is achieved around 2035.

  • This provides an alternative in China to the existing argument of an earlier peak in the secondary sector.

  相似文献   

14.
The Sustainable Development Goals (SDGs) and the Paris Agreement are the two transformative agendas, which set the benchmarks for nations to address urgent social, economic and environmental challenges. Aside from setting long-term goals, the pathways followed by nations will involve a series of synergies and trade-offs both between and within these agendas. Since it will not be possible to optimise across the 17 SDGs while simultaneously transitioning to low-carbon societies, it will be necessary to implement policies to address the most critical aspects of the agendas and understand the implications for the other dimensions. Here, we rely on a modelling exercise to analyse the long-term implications of a variety of Paris-compliant mitigation strategies suggested in the recent scientific literature on multiple dimensions of the SDG Agenda. The strategies included rely on technological solutions such as renewable energy deployment or carbon capture and storage, nature-based solutions such as afforestation and behavioural changes in the demand side. Results for a selection of energy-environment SDGs suggest that some mitigation pathways could have negative implications on food and water prices, forest cover and increase pressure on water resources depending on the strategy followed, while renewable energy shares, household energy costs, ambient air pollution and yield impacts could be improved simultaneously while reducing greenhouse gas emissions. Overall, results indicate that promoting changes in the demand side could be beneficial to limit potential trade-offs.  相似文献   

15.
Stabilization of atmospheric CO2 concentrations below a pre-industrial doubling (~550 ppm) is a commonly cited target in climate policy assessment. When the rate at which future emissions can fall is assumed to be fixed, the peak atmospheric concentration – or the stabilization “frontier” – is an increasing and convex function of the length of postponement. Here we find that a decline in emissions of 1% year?1 beginning today would place the frontier near 475 ppm and that when mitigation is postponed, options disappear (on average) at the rate of ~9 ppm year?1, meaning that delays of more than a decade will likely preclude stabilization below a doubling. When constraints on the future decline rate of emissions are relaxed, a particular atmospheric target can be realized in many ways, with scenarios that allow longer postponement of emissions reductions requiring greater increases in the intensity of future mitigation. However, the marginal rate of substitution between future mitigation and present delay becomes prohibitively large when the balance is shifted too far toward the future, meaning that some amount of postponement cannot be fully offset by simply increasing the intensity of future mitigation. Consequently, these results suggest that a practical transition path to a given stabilization target in the most commonly cited range can allow, at most, one or two decades of delay.  相似文献   

16.
The social cost of carbon – i.e., the marginal present-value cost imposed by greenhouse gas emissions – is determined by a complex interaction between factual assumptions, modeling methods, and value judgments. Among the most crucial factors is society's willingness to tolerate potentially catastrophic environmental risks. To explore this issue, the present analysis employs a stochastic climate–economy model that accounts for uncertainties in baseline economic growth, baseline emissions, greenhouse gas mitigation costs, carbon cycling, climate sensitivity, and climate change damages. In this model, preferences are specified to reflect the high degree of risk aversion revealed by private investment decisions, signaled by the large observed gap between the average rates of return paid by safe and risky financial instruments. In contrast, most climate–economy models assume much lower risk aversion. Given high risk aversion, the analysis finds that investment in climate stabilization yields especially large net benefits by forestalling low-probability threats to long-run human well-being. Accordingly, the social cost of carbon attains the markedly high value of $25,700 per metric ton of carbon dioxide in a baseline scenario in which emissions are unregulated. This value falls to just $4 per ton as the stringency of control measures is successively increased. These results cast doubt on the idea that the social cost of carbon takes on a uniquely defined, objective value that is independent of policy decisions. This does not, however, rule out the use of carbon prices to achieve the benefits of climate stabilization using least-cost mitigation measures.  相似文献   

17.
In public debate surrounding climate change, scientific uncertainty is often cited in connection with arguments against mitigative action. This article examines the role of uncertainty about future climate change in determining the likely success or failure of mitigative action. We show by Monte Carlo simulation that greater uncertainty translates into a greater likelihood that mitigation efforts will fail to limit global warming to a target (e.g., 2 °C). The effect of uncertainty can be reduced by limiting greenhouse gas emissions. Taken together with the fact that greater uncertainty also increases the potential damages arising from unabated emissions (Lewandowsky et al. 2014), any appeal to uncertainty implies a stronger, rather than weaker, need to cut greenhouse gas emissions than in the absence of uncertainty.  相似文献   

18.
More and more organizations are compensating the greenhouse gas emissions caused by their products and services through carbon offset programs. From the customers’ perspective, the mitigation of negative externalities associated with their demand may increase the utility derived from the (then guilt-free) consumption. In particular in settings where consumers do not pay for the marginal cost of consumption, this may lead to higher levels of resource use. This article empirically examines how the announcement of an organizational carbon offset program affects consumption in a CO2-intensive everyday activity (showering). We further evaluate the provision of real-time feedback as a strategy to counteract potential increases in consumption. For this purpose, we conducted an eight-week randomized controlled natural field experiment in a German youth hostel (full 2 × 2 factorial design; N = 9,999 observations). Consumption in the group with the offset program was statistically significantly higher than in the control group (by 5.4 to 15.5%). However, participants who additionally received real-time feedback on their consumption did not increase their resource use compared to the control group. While the results suggest that carbon offset programs may increase resource use, the findings provide evidence that organizations can counteract these adverse effects by making the individual’s resource use salient.  相似文献   

19.
2016年10月制定的《关于消耗臭氧层物质的蒙特利尔议定书(基加利修正案)》将三氟甲烷(HFC-23)纳入了其附件F第二类管控物质名单,并要求缔约国自2020年1月1日起以缔约方核准的技术对HFC-23进行销毁。伴随中国二氟一氯甲烷(HCFC-22)原料用途需求增长,其副产物HFC-23的产生量呈上升趋势,尽管HCFC-22生产工艺不断优化,HFC-23的副产率逐步下降,预测2050年HFC-23产生量将达到2.47万t(或365.56 Mt CO2-eq),2020—2050年HFC-23累计产生量约56.3万t,折合约8332.40 Mt CO2-eq。截至2015年,通过清洁发展机制以及国家发展和改革委员会减排专项的资助,中国以焚烧分解技术销毁HFC-23累计54585 t,为全球温室气体减排做出了重要贡献,但这一减排也花费了巨额资金投资焚烧设备和支付焚烧运行费用,提高了企业的生产成本、浪费了氟资源。研究显示,HFC-23资源化利用技术路线是可行的且中国相关技术专利正在逐步增加,鼓励和推进HFC-23资源化利用技术开发与应用是消除HFC-23排放可行的技术途径,也是未来中国加入并履行《基加利修正案》关键的技术路线选择。  相似文献   

20.
Land-use, land-use change and forestry (LULUCF) activities will play an important role in global climate change mitigation. Many carbon schemes require the delivery of both climate and rural development benefits by mitigation activities conducted in developing countries. Agroforestry is a LULUCF activity that is gaining attention because of its potential to deliver climate benefits as well as rural development benefits to smallholders. There is hope that agroforestry can deliver co-benefits for climate and development; however experience with early projects suggests co-benefits are difficult to achieve in practice. We review the literature on agroforestry, participatory rural development, tree-based carbon projects and co-benefit carbon projects to look at how recommended project characteristics align when trying to generate different types of benefits. We conclude that there is considerable tension inherent in designing co-benefit smallholder agroforestry projects. We suggest that designing projects to seek ancillary benefits rather than co-benefits may help to reduce this tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号