首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Climate Policy》2013,13(5):435-451
A number of studies have suggested that incentives for carbon sequestration could lead to longer rotation periods for even-aged managed forests. In this article we examine the potential costs and quantity of sequestered carbon from extending rotation ages in softwood forests of the southern and western USA. A model of optimal rotations when carbon is a valued asset was developed to show how optimal rotations adjust when carbon is priced. Data on 324 types and site classes of softwood forests in southern and western states of the USA were used to examine the costs of extending rotations. The results were then aggregated by applying the marginal cost curves to inventory data within each county in these states. The results indicate that in these 12 states, about 15 million tCO2 could be sequestered for less than $7/tCO2 (1 tCO2 = 1,000 kg CO2), although for substantially higher carbon prices of $55/tCO2, up to 209 million tCO2 could be sequestered. Timber prices were found to have an important influence on the marginal costs of carbon sequestration, with site quality being of secondary importance. The results also showed that at $55/tCO2 potentially 1 million ha of softwood forests could be set aside, mostly in the western states.  相似文献   

2.
This paper provides a novel assessment of the role of direct air capture of CO2 from ambient air (DAC) on the feasibility of achieving stringent climate stabilization. We use the WITCH energy-economy-climate model to investigate the long term prospects of DAC, implementing a technological specification based on recent estimates by the American Physical Society (APS 2011). Assuming global cooperation on a stringent climate policy we find that: (1) DAC is deployed only late in century, after other low carbon options, though at a very significant scale; (2) DAC has an impact on the marginal and total abatement costs (reducing them) and on the timing of mitigation (postponing it); (3) DAC also allows for a prolonged use of oil, with a positive welfare impact for energy exporting countries. Finally, we assess the role of DAC in a less than ideal climate policy by exploring its potential for engaging energy exporting countries in climate mitigation activities by means of a “clean oil” market in which oil exporters can sell oil decarbonized via DAC.  相似文献   

3.
Research on air travellers’ willingness to pay (WTP) for climate change mitigation has focussed on voluntary emissions offsetting so far. This approach overlooks policy relevant knowledge as it does not consider that people may value public goods higher if they are certain that others also contribute. To account for potential differences, this study investigates Swedish adults’ WTP for a mandatory air ticket surcharge both for short- and long-distance flights. Additionally, policy relevant factors influencing WTP for air travel emissions reductions were investigated. The results suggest that mean WTP is higher in the low-cost setting associated with short-distance flights (495 SEK/ tCO2; 50 EUR/ tCO2) than for long-distance flights (295 SEK/ tCO2; 30 EUR/t CO2). The respondents were more likely to be willing to pay the air ticket tax if they were not frequent flyers, if they were women, had a left political view, if they had a sense of responsibility for their emissions and if they preferred earmarking revenues from the tax for climate change mitigation and sustainable transport projects.

Key policy insights

  • A mandatory air ticket tax is a viable policy option that might receive majority support among the population.

  • While a carbon-based air ticket tax promises to be an effective tool to generate revenues, its potential steering effect appears to be lower for low cost contexts (short-distance flights) than for high cost contexts (long-distance flights).

  • Policy consistency regarding the tax base and its revenue use may increase public acceptability of (higher) air ticket taxes. Earmarking revenues is clearly preferred to tax recycling or general budget use.

  • Insights about the personal drivers behind WTP for emissions reductions from air travel can help to inform targeting and segmentation of policy interventions.

  相似文献   

4.
The Scoping Plan for compliance with California Assembly Bill 32 (Global Warming Solutions Act of 2006; AB 32) proposes a substantial reduction in 2020 greenhouse gas (GHG) emissions from all economic sectors through energy efficiency, renewable energy, and other technological measures. Most of the AB 32 Scoping Plan measures will simultaneously reduce emissions of traditional criteria pollutants along with GHGs leading to a co-benefit of improved air quality in California. The present study quantifies the airborne particulate matter (PM2.5) co-benefits of AB 32 by comparing future air quality under a Business as Usual (BAU) scenario (without AB 32) to AB 32 implementation by sector. AB 32 measures were divided into five levels defined by sector as follows: 1) industrial sources, 2) electric utility and natural gas sources, 3) agricultural sources, 4) on-road mobile sources and 5) other mobile sources. Air quality throughout California was simulated using the UCD source-oriented air quality model during 12 days of severe air pollution and over 108 days of typical meteorology representing an annual average period in the year 2030 (10 years after the AB 32 adoption deadline). The net effect of all AB 32 measures reduced statewide primary PM and NOx emissions by ~1 % and ~15 %, respectively. Air quality simulations predict that these emissions reductions lower population-weighted PM2.5 concentrations by ~6 % for California. The South Coast Air Basin (SoCAB) experienced the greatest reductions in PM2.5 concentrations due to the AB 32 transportation measures while the San Joaquin Valley (SJV) experiences the smallest reductions or even slight increases in PM2.5 concentrations due to the AB 32 measures that called for increased use of dairy biogas for electricity generation. The ~6 % reduction in PM2.5 exposure associated with AB 32 predicted in the current study reduced air pollution mortality in California by 6.2 %, avoiding 880 (560–1100) premature deaths per year for the conditions in 2030. The monetary benefit from this avoided mortality was estimated at $5.4B/yr with a weighted average benefit per tonne of $35 k/tonne ($23 k/tonne–$45 k/tonne) of PM, NOx, SOx, and NH3 emissions reduction.  相似文献   

5.
This paper derives a notional future carbon budget for UK agriculture, land use, land use change and forestry sectors (ALULUCF). The budget is based on a bottom-up marginal abatement cost curve (MACC) derived for a range of mitigation measures for specified adoption scenarios for the years 2012, 2017 and 2022. The results indicate that in 2022 around 6.36 MtCO2e could be abated at negative or zero cost. Furthermore, in the same year, over 17% of agricultural GHG emissions (7.85 MtCO2e) could be abated at a cost of less than the 2022 Shadow Price of Carbon (£34 (tCO2e)???1). The development of robust MACCs faces a range of methodological hurdles that complicate cost-effectiveness appraisal in ALULUCF relative to other sectors. Nevertheless, the current analysis provides an initial route map of efficient measures for mitigation in UK agriculture.  相似文献   

6.
Climate change mitigation via a reduction in the anthropogenic emissions of carbon dioxide (CO2) is the principle requirement for reducing global warming, its impacts, and the degree of adaptation required. We present a simple conceptual model of anthropogenic CO2 emissions to highlight the trade off between delay in commencing mitigation, and the strength of mitigation then required to meet specific atmospheric CO2 stabilization targets. We calculate the effects of alternative emission profiles on atmospheric CO2 and global temperature change over a millennial timescale using a simple coupled carbon cycle-climate model. For example, if it takes 50 years to transform the energy sector and the maximum rate at which emissions can be reduced is ?2.5% $\text{year}^{-1}$ , delaying action until 2020 would lead to stabilization at 540 ppm. A further 20 year delay would result in a stabilization level of 730 ppm, and a delay until 2060 would mean stabilising at over 1,000 ppm. If stabilization targets are met through delayed action, combined with strong rates of mitigation, the emissions profiles result in transient peaks of atmospheric CO2 (and potentially temperature) that exceed the stabilization targets. Stabilization at 450 ppm requires maximum mitigation rates of ?3% to ?5% $\text{year}^{-1}$ , and when delay exceeds 2020, transient peaks in excess of 550 ppm occur. Consequently tipping points for certain Earth system components may be transgressed. Avoiding dangerous climate change is more easily achievable if global mitigation action commences as soon as possible. Starting mitigation earlier is also more effective than acting more aggressively once mitigation has begun.  相似文献   

7.
A coupled general circulation model has been used to perform a set of experiments with high CO2 concentration (2, 4, 16 times the present day mean value). The experiments have been analyzed to study the response of the climate system to strong radiative forcing in terms of the processes involved in the adjustment at the ocean–atmosphere interface. The analysis of the experiments revealed a non-linear response of the mean state of the atmosphere and ocean to the increase in the carbon dioxide concentration. In the 16 × CO2 experiment the equilibrium at the ocean–atmosphere interface is characterized by an atmosphere with a shut off of the convective precipitation in the tropical Pacific sector, associated with air warmer than the ocean below. A cloud feedback mechanism is found to be involved in the increased stability of the troposphere. In this more stable condition the mean total precipitation is mainly due to large-scale moisture flux even in the tropics. In the equatorial Pacific Ocean the zonal temperature gradient of both surface and sub-surface waters is significantly smaller in the 16 × CO2 experiment than in the control experiment. The thermocline slope and the zonal wind stress decrease as well. When the CO2 concentration increases by about two and four times with respect to the control experiment there is an intensification of El Niño. On the other hand, in the experiment with 16 times the present-day value of CO2, the Tropical Pacific variability weakens, suggesting the possibility of the establishment of permanent warm conditions that look like the peak of El Niño.  相似文献   

8.
Increasing concentrations of atmospheric CO2 influence climate, terrestrial biosphere productivity and ecosystem carbon storage through its radiative, physiological and fertilization effects. In this paper, we quantify these effects for a doubling of CO2 using a low resolution configuration of the coupled model NCAR CCSM4. In contrast to previous coupled climate-carbon modeling studies, we focus on the near-equilibrium response of the terrestrial carbon cycle. For a doubling of CO2, the radiative effect on the physical climate system causes global mean surface air temperature to increase by 2.14 K, whereas the physiological and fertilization on the land biosphere effects cause a warming of 0.22 K, suggesting that these later effects increase global warming by about 10 % as found in many recent studies. The CO2-fertilization leads to total ecosystem carbon gain of 371 Gt-C (28 %) while the radiative effect causes a loss of 131 Gt-C (~10 %) indicating that climate warming damps the fertilization-induced carbon uptake over land. Our model-based estimate for the maximum potential terrestrial carbon uptake resulting from a doubling of atmospheric CO2 concentration (285–570 ppm) is only 242 Gt-C. This highlights the limited storage capacity of the terrestrial carbon reservoir. We also find that the terrestrial carbon storage sensitivity to changes in CO2 and temperature have been estimated to be lower in previous transient simulations because of lags in the climate-carbon system. Our model simulations indicate that the time scale of terrestrial carbon cycle response is greater than 500 years for CO2-fertilization and about 200 years for temperature perturbations. We also find that dynamic changes in vegetation amplify the terrestrial carbon storage sensitivity relative to a static vegetation case: because of changes in tree cover, changes in total ecosystem carbon for CO2-direct and climate effects are amplified by 88 and 72 %, respectively, in simulations with dynamic vegetation when compared to static vegetation simulations.  相似文献   

9.
The eddy covariance technique was used to measure the CO2 flux over four differently grazed Leymus chinensis steppe ecosystems (ungrazed since 1979 (UG79), winter grazed (WG), continuously grazed (CG), and heavily grazed (HG) sites) during four growing seasons (May to September) from 2005 to 2008, to investigate the response of the net ecosystem exchange (NEE) over grassland ecosystems to meteorological factors and grazing intensity. At UG79, the optimal air temperature for the half-hourly NEE occurred between 17 and 20 °C, which was relatively low for semi-arid grasslands. The saturated NEE (NEEsat) and temperature sensitivity coefficient (Q 10) of ecosystem respiration (RE) exhibited clear seasonal and interannual variations, which increased with canopy development and the soil water content (SWC, at 5 cm). The total NEE values for the growing seasons from 2005 to 2008 were ?32.0, ?41.5, ?66.1, and ?89.8 g C m?2, respectively. Both the amounts and distribution of precipitation during the growing season affected the NEE. The effects of grazing on the CO2 flux increased with the grazing intensity. During the peak growth stage, heavy grazing and winter grazing decreased NEEsat and gross primary production (45 % for HG and 34 % for WG) due to leaf area removal. Both RE and Q 10 were clearly reduced by heavy grazing. Heavy grazing changed the ecosystem from a CO2 sink into a CO2 source, and winter grazing reduced the total CO2 uptake by 79 %. In the early growing season, there was no difference in the NEE between CG and UG79. In addition to the grazing intensity, the effects of grazing on the CO2 flux also varied with the vegetation growth stages and SWC.  相似文献   

10.
Emissions from the production of iron and steel could constitute a significant share of a 2°C global emissions budget (around 19% under the IEA 2DS scenario). They need to be reduced, and this could be difficult under nationally based climate policy approaches. We compare a new set of nationally based modelling (the Deep Decarbonization Pathways Project) with best practice and technical limit benchmarks for iron and steel and cement emissions. We find that 2050 emissions from iron and steel and cement production represent an average 0.28?tCO2 per capita in nationally based modelling results, very close to the technical limit benchmark of 0.21?tCO2 per capita, and over 2.5 times lower than the best practice benchmark of 0.72?tCO2 per capita. This suggests that national projections may be overly optimistic about achievable emissions reductions in the absence of global carbon pricing and an international research and development effort to develop low emissions technologies for emissions-intensive products. We also find that equal per capita emissions targets, often the basis of proposals for how global emissions budgets should be allocated, would be inadequate without global emissions trading. These results show that a nationally based global climate policy framework, as has been confirmed in the Paris Agreement, could lead to risks of overshooting global emissions targets for some countries and carbon leakage. Tailored approaches such as border taxes, sectoral emissions trading or carbon taxes, and consumption-based carbon pricing can help, but each faces difficulties. Ultimately, global efforts are needed to improve technology and material efficiency in emissions-intensive commodities manufacturing and use. Those efforts could be supported by technology standards and a globally coordinated R&D effort, and strengthened by the adoption of global emissions budgets for emissions-intensive traded goods.

Policy relevance

This article presents new empirical findings on global iron and steel and cement production in a low-carbon world economy, demonstrates the risks associated with a nationally based global climate policy framework as has been confirmed in the Paris Agreement, and analyses policy options to deal with those risks.  相似文献   

11.
Modelling studies predicted that climate change will have strong impacts on the coffee crop, although no information on the effective impact of elevated CO2 on this plant exists. Here, we aim at providing a first glimpse on the effect of the combined impact of enhanced [CO2] and high temperature on the leaf mineral content and balance on this important tropical crop. Potted plants from two genotypes of Coffea arabica (cv. Icatu and IPR 108) and one from C. canephora (cv. Conilon Clone 153) were grown under 380 or 700 μL CO2 L?1 air, for 1 year, after which were exposed to an stepwise increase in temperature from 25/20 °C (day/night) up to 42/34 °C, over 8 weeks. Leaf macro???(N, P, K, Ca, Mg, S) and micronutrients (B, Cu, Fe, Mn, Zn) concentrations were analyzed at 25/20 °C (control), 31/25 °C, 37/30 °C and 42/34 °C. At the control temperature, the 700 μL L?1 grown plants showed a moderate dilution effect (between 7 % and 25 %) in CL 153 (for N, Mg, Ca, Fe) and Icatu (for N, K and Fe), but not in IPR 108 (except for Fe) when compared to the 380 μL L?1 plants. For temperatures higher than control most nutrients tended to increase, frequently presenting maximal contents at 42/34 °C (or 37/30 °C), although the relation between [CO2] treatments did not appreciably change. Such increases offset the few dilution effects observed under high growth [CO2] at 25/20 °C. No clear species responses were found considering [CO2] and temperature impacts, although IPR 108 seemed less sensitive to [CO2]. Despite the changes promoted by [CO2] and heat, the large majority of mineral ratios were kept within a range considered adequate, suggesting that this plant can maintain mineral balances in a context of climate changes and global warming.  相似文献   

12.
In this paper we study the impact of alternative metrics on short- and long-term multi-gas emission reduction strategies and the associated global and regional economic costs and emissions budgets. We compare global warming potentials with three different time horizons (20, 100, 500 years), global temperature change potential and global cost potentials with and without temperature overshoot. We find that the choice of metric has a relatively small impact on the CO2 budget compatible with the 2° target and therefore on global costs. However it substantially influences mid-term emission levels of CH4, which may either rise or decline in the next decades as compared to today’s levels. Though CO2 budgets are not affected much, we find changes in CO2 prices which substantially affect regional costs. Lower CO2 prices lead to more fossil fuel use and therefore higher resource prices on the global market. This increases profits of fossil-fuel exporters. Due to the different weights of non-CO2 emissions associated with different metrics, there are large differences in nominal CO2 equivalent budgets, which do not necessarily imply large differences in the budgets of the single gases. This may induce large shifts in emission permit trade, especially in regions where agriculture with its high associated CH4 emissions plays an important role. Furthermore it makes it important to determine CO2 equivalence budgets with respect to the chosen metric. Our results suggest that for limiting warming to 2 °C in 2100, the currently used GWP100 performs well in terms of global mitigation costs despite its conceptual simplicity.  相似文献   

13.
Global cooling: increasing world-wide urban albedos to offset CO2   总被引:2,自引:0,他引:2  
Increasing urban albedo can reduce summertime temperatures, resulting in better air quality and savings from reduced air-conditioning costs. In addition, increasing urban albedo can result in less absorption of incoming solar radiation by the surface-troposphere system, countering to some extent the global scale effects of increasing greenhouse gas concentrations. Pavements and roofs typically constitute over 60% of urban surfaces (roof 20–25%, pavements about 40%). Using reflective materials, both roof and pavement albedos can be increased by about 0.25 and 0.15, respectively, resulting in a net albedo increase for urban areas of about 0.1. On a global basis, we estimate that increasing the world-wide albedos of urban roofs and paved surfaces will induce a negative radiative forcing on the earth equivalent to offsetting about 44 Gt of CO2 emissions. At ~$25/tonne of CO2, a 44 Gt CO2 emission offset from changing the albedo of roofs and paved surfaces is worth about $1,100 billion. Furthermore, many studies have demonstrated reductions of more than 20% in cooling costs for buildings whose rooftop albedo has been increased from 10–20% to about 60% (in the US, potential savings exceed $1 billion per year). Our estimated CO2 offsets from albedo modifications are dependent on assumptions used in this study, but nevertheless demonstrate remarkable global cooling potentials that may be obtained from cooler roofs and pavements.  相似文献   

14.
The allocation of CO2 emissions to specific sources is a major policy issue for international aviation, especially for determining allocations for emissions trading schemes. This paper addresses the problem by recommending a possible methodology to allocate emissions to specific sources using detailed air traffic data. The basis for the calculations is an air traffic sample for one full-day of traffic from the UK. In order to analyse aircraft fuel burn use and hence CO2 emissions, the Reorganized Air Traffic Control Mathematical Simulator (RAMS Plus) and the Advanced Emission Model (AEM III) are used. The results from these detailed simulations are compared with two of the most widely-used aviation CO2 emission estimates to have been made for the UK: the SERAS study and NETCEN estimate. Their estimates for the year 2000 are 26.1 and 31.4 Mt, respectively. In addition, the most recent NETCEN estimate for the year 2003 is 34.1 Mt of CO2. Our estimate of total aviation CO2 emissions, using detailed simulations and real air traffic data, is 34.7 Mt for the year 2004. In addition, emission estimates are compared with two global aviation emission inventories: AERO2K and SAGE. Contributions of the highest-emitting flights and aircraft types are identified. International departures dominate; 6% of flights account for 50% of total emissions. The largest aircraft emit the most per flight-km, although not per passenger-km. Different methodologies and their implications are also discussed.  相似文献   

15.
Temperature and CO2 are two of the main environmental factors associated with climate change. It is generally expected that elevated [CO2] will increase crop production. However, other environmental factors such as temperature along with management practices could further modify a crop’s response to CO2. The goal of this study was to determine the interactive effects of elevated [CO2] and above-optimum temperature on growth, development and yield of two peanut (Arachis hypogaea L.) cultivars, e.g., Pronto and Georgia Green. One of the objectives was to determine if there was any variation in response between these two cultivars with respect to possible adaptation to climate change. Peanut plants were grown in controlled environment chambers in the University of Georgia Envirotron under conditions of non-limiting water and nutrient supply. Plants were exposed to day/night air temperatures of 33/21°C (T A), 35.5/23.5°C (T A + 2.5°C), and 38/26°C (T A + 5°C) along with CO2 treatments of 400 and 700 μmol CO2 mol???1 air. The selected range of temperatures was based on the temperatures that are common for southwest Georgia during the summer months. The results showed that LAI of both cultivars responded positively, e.g., 28.3% for Pronto and 49.3% for Georgia Green to elevated [CO2]. Overall, elevated [CO2] alone resulted in a significant increase in total biomass at final harvest across all temperatures (P?< 0.0001), but decreased final seed yield (P?< 0.0005), except for Georgia Green at (T A + 5°C). The higher temperatures compared to T A reduced the relative response of total biomass to CO2 for both cultivars. It can be concluded that final seed yield response to CO2 depends on the sensitivity of individual cultivars to temperature, especially during the reproductive development stage.  相似文献   

16.
The reversibility of the Atlantic meridional overturning circulation (AMOC) is investigated in multi-model experiments using global climate models (GCMs) where CO2 concentrations are increased by 1 or 2 % per annum to 2× or 4× preindustrial conditions. After a period of stabilisation the CO2 is decreased back to preindustrial conditions. In most experiments when the CO2 decreases, the AMOC recovers before becoming anomalously strong. This "overshoot" is up to an extra 18.2Sv or 104 % of its preindustrial strength, and the period with an anomalously strong AMOC can last for several hundred years. The magnitude of this overshoot is shown to be related to the build up of salinity in the subtropical Atlantic during the previous period of high CO2 levels. The magnitude of this build up is partly related to anthropogenic changes in the hydrological cycle. The mechanisms linking the subtropical salinity increase to the subsequent overshoot are analysed, supporting the relationship found. This understanding is used to explain differences seen in some models and scenarios. In one experiment there is no overshoot because there is little salinity build up, partly as a result of model differences in the hydrological cycle response to increased CO2 levels and partly because of a less aggressive scenario. Another experiment has a delayed overshoot, possibly as a result of a very weak AMOC in that GCM when CO2 is high. This study identifies aspects of overshoot behaviour that are robust across a multi-model and multi-scenario ensemble, and those that differ between experiments. These results could inform an assessment of the real-world AMOC response to decreasing CO2.  相似文献   

17.
As the number of instruments applied in the area of energy and climate policy is rising, the issue of policy interaction needs to be explored further. This article analyses the interdependencies between the EU Emissions Trading Scheme (EU ETS) and the German feed-in tariffs (FITs) for renewable electricity in a quantitative manner using a bottom-up energy system model. Flexible modelling approaches are presented for both instruments, with which all impacts on the energy system can be evaluated endogenously. It is shown that national climate policy measures can have an effect on the supranational emissions trading system by increasing emission reduction in the German electricity sector by up to 79 MtCO2 in 2030. As a result, emission certificate prices decline by between 1.9 €/tCO2 and 6.1 €/tCO2 and the burden sharing between participating countries changes, but no additional emission reduction is achieved at the European level. This also implies, however, that the cost efficiency of such a cap-and-trade system is distorted, with additional costs of the FIT system of up to €320 billion compared with lower costs for ETS emission certificates of between €44 billion and €57 billion (cumulated over the period 2013–2020).

Policy relevance

In order to fulfil ambitious emission reduction targets a large variety of climate policy instruments are being implemented in Europe. While some, like the EU ETS, directly address CO2 emissions, others aim to promote specific low-carbon technologies. The quantitative analysis of the interactions between the EU ETS and the German FIT scheme for renewable sources in electricity generation presented in this article helps to understand the importance of such interaction effects. Even though justifications can be found for the implementation of both types of instrument, the impact of the widespread use of support mechanisms for renewable electricity in Europe needs to be taken into account when fixing the reduction targets for the EU ETS in order to ensure a credible long-term investment signal.  相似文献   

18.
S. Lovejoy 《Climate Dynamics》2014,42(9-10):2339-2351
Although current global warming may have a large anthropogenic component, its quantification relies primarily on complex General Circulation Models (GCM’s) assumptions and codes; it is desirable to complement this with empirically based methodologies. Previous attempts to use the recent climate record have concentrated on “fingerprinting” or otherwise comparing the record with GCM outputs. By using CO2 radiative forcings as a linear surrogate for all anthropogenic effects we estimate the total anthropogenic warming and (effective) climate sensitivity finding: ΔT anth  = 0.87 ± 0.11 K, $\uplambda_{{2{\text{x}}{\text{CO}}_{2} ,{\text{eff}}}} = 3.08 \pm 0.58\,{\text{K}}$ . These are close the IPPC AR5 values ΔT anth  = 0.85 ± 0.20 K and $\uplambda_{{2{\text{x}}{\text{CO}}_{2} }} = 1.5\!-\!4.5\,{\text{K}}$ (equilibrium) climate sensitivity and are independent of GCM models, radiative transfer calculations and emission histories. We statistically formulate the hypothesis of warming through natural variability by using centennial scale probabilities of natural fluctuations estimated using scaling, fluctuation analysis on multiproxy data. We take into account two nonclassical statistical features—long range statistical dependencies and “fat tailed” probability distributions (both of which greatly amplify the probability of extremes). Even in the most unfavourable cases, we may reject the natural variability hypothesis at confidence levels >99 %.  相似文献   

19.
This article illustrates the main difficulties encountered in the preparation of GHG emission projections and climate change mitigation policies and measures (P&M) for Kazakhstan. Difficulties in representing the system with an economic model have been overcome by representing the energy system with a technical-economic growth model (MARKAL-TIMES) based on the stock of existing plants, transformation processes, and end-use devices. GHG emission scenarios depend mainly on the pace of transition in Kazakhstan from a planned economy to a market economy. Three scenarios are portrayed: an incomplete transition, a fast and successful one, and even more advanced participation in global climate change mitigation, including participation in some emission trading schemes. If the transition to a market economy is completed by 2020, P&M already adopted may reduce emissions of CO2 from combustion by about 85 MtCO2 by 2030 – 17% of the emissions in the baseline (WOM) scenario. One-third of these reductions are likely to be obtained from the demand sectors, and two-thirds from the supply sectors. If every tonne of CO2 not emitted is valued up to US$10 in 2020 and $20 in 2030, additional P&M may further reduce emissions by 110 MtCO2 by 2030.  相似文献   

20.
We present and apply a simple bottom–up model for estimating non-energy use of fossil fuels and resulting CO2 (carbon dioxide) emissions. We apply this model for the year 2000: (1) to the world as a whole, (2) to the aggregate of Annex I countries and non-Annex I countries, and (3) to the ten non-Annex I countries with the highest consumption of fossil fuels for non-energy purposes. We find that worldwide non-energy use is equivalent to 1,670 ± 120 Mt (megatonnes) CO2 and leads to 700 ± 90 Mt CO2 emissions. Around 75% of non-energy use emissions is related to industrial processes. The remainder is attributed to the emission source categories of solvent and other product use, agriculture, and waste. Annex I countries account for 51% (360 ± 50 Mt CO2) and non-Annex I countries for 49% (340 ± 70 Mt CO2) of worldwide non-energy use emissions. Among non-Annex I countries, China is by far the largest emitter of non-energy use emissions (122 ± 18 Mt CO2). Our research deepens the understanding of non-energy use and related CO2 emissions in countries for which detailed emission inventories do not yet exist. Despite existing model uncertainties, we recommend NEAT-SIMP to inventory experts for preparing correct and complete non-energy use emission estimates for any country in the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号