首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arrested charnockite formation in southern India and Sri Lanka   总被引:7,自引:3,他引:7  
Arrested prograde charnockite formation in quartzofeldspathic gneisses is widespread in the high-grade terrains of southern India and Sri Lanka. Two major kinds of orthopyroxene-producing reactions are recognized. Breakdown of calcic amphibole by reaction with biotite and quartz in tonalitic/granitic gray gneiss produced the regional orthopyroxene isograd, manifest in charnockitic mottling and veining of mixed-facies exposures, as at Kabbal, Karnataka, and in the Kurunegala District of the Sri Lanka Central Highlands. Chemical and modal analyses of carefully chosen immediately-adjacent amphibole gneiss and charnockite pairs show that the orthopyroxene is produced by an open system reaction involving slight losses of CaO, MgO and FeO and gains of SiO2 and Na2O. Rb and Y are depleted in the charnockite. Another kind of charnockitization is found in paragneisses throughout the southern high-grade area, and involves the reaction of biotite and quartz±garnet to produce orthopyroxene and K-feldspar. Although charnockite formation along shears and other deformation zones at such localities as Ponmudi, Kerala is highly reminiscent of Kabbal, close pair analyses are not as suggestive of open-system behavior. This type of charnockite formation is found in granulite facies areas where no prograde amphibole-bearing gneisses exist and connotes a higher-grade reaction than that of the orthopyroxene isograd. Metamorphic conditions of both Kabbaltype and Ponmudi-type localities were 700°–800° C and 5–6 kbar. Lower P(H2O) in the Ponmudi-type metamorphism was probably the definitive factor.CO2-rich fluid inclusions in quartz from the Kabbaltype localities support the concept that this type of charnockite formation was driven by influx of CO2 from some deep-seated source. The open-system behavior and high oxidation states of the metamorphism are in accord with the CO2-streaming hypothesis. CO2-rich inclusions in graphitebearing charnockites of the Ponmudi type, however, commonly have low densities and compositions not predictable by vapor-mineral equilibrium calculations. These inclusions may have suffered post-metamorphic H2 leakage or some systematic contamination.Neither the close-pair analyses nor the fluid inclusions strongly suggest an influx of CO2 drove charnockite formation of the Ponmudi type. The possibility remains that orthopyroxene and CO2-rich fluids were produced by reaction of biotite with graphite without intervention of fluids of external origin. Further evidence, such as oxygen isotopes, is necessary to test the CO2-streaming hypothesis for the Ponmudi-type localities.  相似文献   

2.
The vein graphite deposits of Sri Lanka are located in a Precambrian high grade metamorphic terrain dominated by granulite facies rocks. The vein graphite has been interpreted as being of solid phase lateral secretion origin, derived by hydrothermal solutions or of biogenic origin. Based on what is known on the composition of the fluids under granulite facies conditions and the role of these fluids in their transport through the crust, the origin of the graphite is proposed to be the direct consequence of granulite facies metamorphism in the presence of a CO2 rich fluid under low fO2 conditions. This CO2 rich fluid could promote hydraulic fracturing and precipitation of vein graphite. Textures and structures of the vein graphite indicate syntectonic deposition by a crack-seal process under granulite facies metamorphic conditions. This model is supported by temperature estimates on graphite based on XRD data and stable carbon isotopes of graphite that suggest a deep-seated crustal origin.  相似文献   

3.
Fluid inclusions in quartz grains from five samples of high-grade rocks (two paragneisses, an amphibolite, a mafic gneiss and a tonalite dike) from the 2.7 Ga Kapuskasing structural zone (KSZ), Ontario, were examined with petrographic, microthermometric and laser Raman techniques. Three types of fluid inclusions were observed: CO2-rich, H2O-rich and mixed CO2-H2O. CO2-rich fluid inclusions are pseudosecondary or secondary in nature and are generally pure CO2; a few contain varying amounts of CH4·H2O-rich fluid inclusions are secondary in nature, contain variable amounts of dissolved salts, and generally contain daughter crystals. Mixed CO2-H2O fluid inclusions occur where trails of H2O-rich inclusions intersect trails of CO2-rich inclusions. Isochores for high density (p=1.03 g/cm3) pseudosecondary, pure CO2 inclusions intersect the lower pressure portion of the estimated P-T field for high-grade metamorphism, implying that pure CO2 was the peak metamorphic fluid. The variable CH4 content of CO2 inclusions within graphite-bearing samples suggests that CH4 was introduced locally after the formation of the CO2 inclusions; however the origin of the CH4 remains problematic. An aqueous fluid clearly penetrated the gneisses after the peak metamorphism (during uplift/erosion), forming secondary inclusions and contributing to the minor retrogressive hydration observed in these rocks. The presence of the pseudosecondary, high-density CO2 inclusions in quartz crystals in the KSZ rocks constrains the uplift/ erosion path for the KSZ to one of simultaneous decrease in pressure and temperature.  相似文献   

4.
Abstract Incipient charnockite formation within amphibolite facies gneisses is observed in South India and Sri Lanka both as isolated sheets, associated with brittle fracture, and as patches forming interconnected networks. For each mode of formation, closely spaced drilled samples across charnockite/gneiss boundaries have been obtained and δ13C and CO2 abundances determined from fluid inclusions by stepped-heating mass spectrometry. Isolated sheets of charnockite (c.50 mm wide) within biotite–garnet gneiss at Kalanjur (Kerala, South India) have developed on either side of a fracture zone. Phase equilibria indicate low-pressure charnockite formation at pressures of 3.4 ± 1.0 kbar and temperatures of about 700°C (for XH2O= 0.2). Fluid inclusions from the charnockite are characterized by δ13C values of ?8% and from the gneiss, 2 m from the charnockite, by values of ?15%. The large CO2 abundances and relatively heavy carbon-isotope signature of the charnockite can be traced into the gneiss over a distance of at least 280 mm from the centre of the charnockite, whereas the reaction front has moved only 30 mm. This suggests that fluid advection has driven the carbon-isotope front through the rock more rapidly than the reaction front. The carbon-front/reaction-front separation at Kalanjur is significantly larger than the value determined from a graphite-bearing incipient charnockite nearby, consistent with the predictions of one-dimensional advection models. Incipient charnockites from Kurunegala (Sri Lanka) have developed as a patchy network within hornblende–biotite gneiss. CO2 abundances rise to a peak near one limb of the charnockite, and isotopic values vary from δ13C of c.?5.5% in the gneiss to ?9.5% in the charnockite. The shift to lighter values in the charnockite can be ascribed to the formation of a CO2-saturated partial melt in response to influx of an isotopically light carbonic fluid. Thus, incipient charnockites from the high-grade terranes of South India and Sri Lanka reflect a range of mechanisms. At shallower structural levels non-pervasive CO2 influxed along zones of brittle fracture, possibly associated with the intrusion of charnockitic dykes. At deeper levels, in situ melting occurred under conditions of ductile deformation, leading to the development of patchy charnockites.  相似文献   

5.
Graphite deposits result from the metamorphism of sedimentary rocks rich in carbonaceous matter or from precipitation from carbon-bearing fluids (or melts). The latter process forms vein deposits which are structurally controlled and usually occur in granulites or igneous rocks. The origin of carbon, the mechanisms of transport, and the factors controlling graphite deposition are discussed in relation to their geological settings. Carbon in granulite-hosted graphite veins derives from sublithospheric sources or from decarbonation reactions of carbonate-bearing lithologies, and it is transported mainly in CO2-rich fluids from which it can precipitate. Graphite precipitation can occur by cooling, water removal by retrograde hydration reactions, or reduction when the CO2-rich fluid passes through relatively low-fO2 rocks. In igneous settings, carbon is derived from assimilation of crustal materials rich in organic matter, which causes immiscibility and the formation of carbon-rich fluids or melts. Carbon in these igneous-hosted deposits is transported as CO2 and/or CH4 and eventually precipitates as graphite by cooling and/or by hydration reactions affecting the host rock. Independently of the geological setting, vein graphite is characterized by its high purity and crystallinity, which are required for applications in advanced technologies. In addition, recent discovery of highly crystalline graphite precipitation from carbon-bearing fluids at moderate temperatures in vein deposits might provide an alternative method for the manufacture of synthetic graphite suitable for these new applications.  相似文献   

6.
Arrested charnockite formation at Kottavattam, southern India   总被引:7,自引:0,他引:7  
Abstract At Kottavattam, southern Kerala (India), late Proterozoic homogeneous leptynitic garnet–biotite gneisses of granitic composition have been transformed on a decimetric scale into coarse-grained massive charnockite sensu stricto along a set of conjugate fractures transecting the gneissic foliation. Charnockitization post-dates the polyphase deformation, regional high-grade metamorphism and anatexis, and evidently occurred at a late stage of the Pan-African tectonothermal history. Geothermobarometric and fluid inclusion data document textural and chemical equilibration of the gneiss and charnockite assemblages at similar PlithT conditions (650–700°C, 5–6 kbar) in the presence of carbonic fluids internally buffered by reaction with graphite and opaque mineral phases (XCO2= 0.7–0.6; XH2O= 0.2–0.3; XN2= 0.1; log fO2= -17.5). Mineralogical zonation indicates that charnockitization of the leptynitic gneiss involved first the breakdown of biotite and oxidation of graphite in narrow, outward-migrating transition zones adjacent to the gneiss, followed by the breakdown of garnet and the neoblastesis of hypersthene in the central charnockite zone. Compared to the host gneiss, the charnockite shows higher concentrations of K, Na, Sr, Ba and Zn and lower concentrations of Mg, Fe, Ti, V, Y, Zr and the HREE, with a complementary pattern in the narrow transition zones of biotite breakdown. The PlithT–XH2O data and chemical zonation patterns indicate charnockitization through subsolidus-dehydration reaction in an open system. Subsequent residence of the carbonic fluids in the charnockite resulted in low-grade alteration causing modification of the syn-charnockitic elemental distribution patterns and the properties of entrapped fluids. We favour an internally controlled process of arrested charnockitization in which, during near-isothermal uplift, the release of carbonic fluids from decrepitating inclusions in the host gneiss into simultaneously developing fracture zones led to a change in the fluid regime from ‘fluid-absent’in the gneiss to ‘fluid-present’in the fracture zones and to the development of an initial fluid-pressure gradient, triggering the dehydration reaction.  相似文献   

7.
Fluid inclusions from a biotite-garnet schist in the Southern Aravalli Mountain Belt (India) give information on both peak metamorphic conditions and post-peak metamorphic processes during uplift. A combination of careful petrography, microthermometry and Raman spectroscopy reveals the presence of at least five generations of enclosed fluids. Lower amphibolite-facies pressure-temperature conditions of the growth of garnet rims are reproduced by the highest fluid density of the relatively oldest inclusion type of CO2 (±N2)-rich compositions. A calculated fluid composition in the COH system, in equilibrium with the graphite buffer corresponds to a CO2-rich fluid at metamorphic conditions. However, the results of these calculations are very sensitive to small fluctuations in oxygen fugacity and the accuracy of thermodynamic properties of mineral equilibria. Re-equilibration, conceived by specific size-density distribution and the absence of an aqueous phase in inclusions that contain nahcolite crystals, is monitored in these inclusions as post-peak metamorphic processes, like partial decrepitation and preferential leakage. The other fluid types represent heterogeneous fluid trapping of coexisting aqueous NaCl-bearing solutions with CO2-CH4-rich vapour bubbles in healed cracks, and probably the introduction of external fluids containing high salinity aqueous CaCl2-rich solutions in nearly pure N2 vapour bubbles, at lower P-T conditions. This study illustrates that fluid inclusions remain a valuable database of peak metamorphic conditions, moreover, alterations of the entrapped fluids and surrounding crystals are illustrative for specific exhumation evolutions. Received: 24 March 1999 / Accepted: 13 January 2000  相似文献   

8.
The occurrence of a charnockitised felsic gneiss adjacent to a marble/calc-silicate horizon at Nuliyam, southern India, has been cited in recent literature as a classic example of the dehydration of crustal rocks resulting from the advective infiltration of CO2-rich fluids generated from a local carbonate source. Petrographic study of the Nuliyam calc-silicate, however, reveals it to consist of abundant wollastonite and scapolite and contain locally discordant veins rich in wollastonite. At the pressure—temperature conditions proposed for charnockite formation in recent studies, 5 kbar and 725°C, this wollastonite-bearing mineral assemblage was stable in the presence of a fluid phase only if X CO2 was near 0.25 and could not have coexisted with the fluid causing biotite breakdown and charnockite development in adjacent rocks (X CO2>0.85). The stable coexistence of wollastonite and scapolite prohibits the calc-silicate from being a source for fluid driving charnockitisation at the required P-T conditions. Textural observations such as the limited replacement of wollastonite by calcite+quartz symplectites and mosaics, are consistent with late fluid infiltration into the calc-silicate. The extensive isotopic, chemical and mineral abundance data of Jackson and Santosh (1992) are re-interpreted and integrated with these observations to develop a model involving the infiltration of an externally derived CO2-rich fluid during high-temperature decompression. Increased charnockite development next to the calc-silicate has arisen because the calc-silicate acted as a relatively unreactive and impermeable barrier to fluid transport and caused fluid ponding beneath antiformal closures. The Nuliyam charnockite/calc-silicate locality is an example of a structural trap in a metamorphic setting rather than a site where charnockite formation can be attributed to local fluid sources.  相似文献   

9.
Abstract Fluid inclusion studies of rocks from the late Archaean amphibolite-facies to granulite-facies transition zone of southern India provide support for the hypothesis that CO2,-rich H2O-poor fluids were a major factor in the origin of the high-grade terrain. Charnockites, closely associated leucogranites and quartzo-feldspathic veins contain vast numbers of large CO2-rich inclusions in planar arrays in quartz and feldspar, whereas amphibole-bearing gray gneisses of essentially the same compositions as adjacent charnockites in mixed-facies quarries contain no large fluid inclusions. Inclusions in the northernmost incipient charnockites, as at Kabbal, Karnataka, occasionally contain about 25 mol. % of immiscible H2O lining cavity walls, whereas inclusions from the charnockite massif terrane farther south do not have visibile H2O Microthermometry of CO2 inclusions shows that miscible CH4 and N2 must be small, probably less than 10mol.%combined. Densities of CO2 increase steadily from north to south across the transitional terrane. Entrapment pressures calculated from the CO2 equation of state range from 5 kbar in the north to 7.5 kbar in the south at the mineralogically inferred average metamorphic temperature of 750°C, in quantitative agreement with mineralogic geobarometry. This agreement leads to the inference that the fluid inclusions were trapped at or near peak metamorphic conditions. Calculations on the stability of the charnockite assemblage biotite-orthopyroxene-K-feldspar-quartz show that an associated fluid phase must have less than 0.35 H2O activity at the inferred P and T conditions, which agrees with the petrographic observations. High TiO2 content of biotite stabilizes it to lower H2O activities, and the steady increase of biotite TiO2 southward in the area suggests progressive decrease of aH2O with increasing grade. Oxygen fugacities calculated from orthopyroxene-magnetite-quartz are considerably higher than the graphite CO2-O2 buffer, which explains the absence of graphite in the charnockites. The present study quantifies the nature of the vapours in the southern India granulite metamorphism. It remains to be determined whether CO2-flushing of the crust can, by itself, create large terranes of largeion lithophile-depleted granulites, or whether removal of H2O-bearing anatectic melts is essential.  相似文献   

10.
The investigation of the Kolvitsa gabbro-anorthosite massif showed that its melanocratic layers conformable with metamorphic banding are mafic differentiates transformed into eclogite-like rocks during prograde metamorphism. During the peak and retrograde stage of the Svecofennian metamorphism in the White Sea region at t = 910–750°C and P = 14-7 kbar, the infiltration of Fe-, CO2-, Si-, and Na-bearing fluids with XH2 O < 0.4X_{H_2 O} < 0.4 resulted in metasomatic alterations of the melanocratic gabbro-anorthosite interlayers, dissolution of a number of elements, and their reprecipitation with the formation of cross-cutting zoned metasomatic veins with abundant magnetite and ilmenite. The high content of hematite in the ilmenite suggests that the veins were formed at an increase in oxygen fugacity from logfO2 = - 14.5\log f_{O_2 } = - 14.5 to logfO2 = - 11\log f_{O_2 } = - 11, which caused the Fe2+ → Fe3+ transition and iron precipitation. The increase in at the conditions corresponding to the metamorphic peak was probably related to the neutralization of solutions during their infiltration through the gabbro-anorthosites. The reprecipitation of components and the formation of cross-cutting veins occurred owing to interaction between the melanocratic layers in the gabbro-anorthosites and a fluid phase and, contrary to previous models, did not involve the fluid transport of components from the zones of charnockite formation and granitization located far away from the sites of reprecipitation. This is demonstrated by the similarity of mineral compositions and major component contents in the melanocratic gabbro-anorthosite layers and cross-cutting metasomatic veins and regular distribution of trace elements.  相似文献   

11.
Fluid inclusions in mineralized graphite-sillimanite-mica schist from the Rampura-Agucha Pb-Zn-(Ag) deposit, Rajasthan, northwest India, have been investigated by microthermometry and Raman microspectrometry. Three different main types of fluid inclusions in quartz can be distinguished: (1) gaseous (CO2, partially mixed with CH4-N2), (2) low salinity aqueous inclusions (0–8 eq. wt% NaCl) and (3) high salinity aqueous inclusions (NaCl ± MgCl2-CaCl2). Low density CO2-rich and low salinity H2O inclusions are contemporaneous and occur, together with CH4-N2 inclusions, in close association with sulfide mineral inclusions. This indicates immiscibility between the gaseous and aqueous phase and participation of these fluids during the deposition or remobilization of the ore, which occurred over a wide P (1220 to 200 bar) and T (450 to 250 °C). Raman spectra of graphite indicate upper greenschist-facies metamorphic conditions, although host rocks have been metamorphosed at upper amphibolite-facies metamorphic conditions. This indicates that graphite re-equilibrated with the CO2-rich phase during retrograde metamorphism.  相似文献   

12.
CO2–CH4 fluid inclusions are present in anatectic layer-parallel leucosomes from graphite-bearing metasedimentary rocks in the Skagit migmatite complex, North Cascades, Washington. Petrological evidence and additional fluid inclusion observations indicate, however, that the Skagit Gneiss was infiltrated by a water-rich fluid during high-temperature metamorphism and migmatization. CO2-rich fluid inclusions have not been observed in Skagit metasedimentary mesosomes or melanosomes, meta-igneous migmatites, or unmigmatized rocks, and are absent from subsolidus leucosomes in metasedimentary migmatites. The observation that CO2-rich inclusions are present only in leucosomes interpreted to be anatectic based on independent mineralogical and chemical criteria suggests that their formation is related to migmatization by partial melting. Although some post-entrapment modification of fluid inclusion composition may have occurred during decompression and deformation, the generation of the CO2-rich fluid is attributed to water-saturated partial melting of graphitic metasedimentary rocks by a reaction such as biotite + plagioclase + quartz + graphite ± Al2SiO5+ water-rich fluid = garnet + melt + CO2–CH4. The presence of CO2-rich fluid inclusions in leucosomes may therefore be an indication that these leucosomes formed by anatexis. Based on the inferences that (1) an influx of fluid triggered partial melting, and (2) some episodes of fluid inclusion trapping are related to migmatization by anatexis, it is concluded that a free fluid was present at some time during high-temperature metamorphism. The infiltrating fluid was a water-rich fluid that may have been derived from nearby crystallizing plutons. Because partial melting took place at pressures of at least 5 kbar, abundant free fluid may have been present in the crust during orogenesis at depths of at least 15 km.  相似文献   

13.
Fluid inclusions in the leucosomes of Wadi Feiran migmatites showed that CO 2 , H2O and (H2O-CO2) fluids were likely to have been present when partial melting began in these rocks. Low salinity, aqueous fluid, to a lesser extent, CO2-rich fluids are the most abundant fluids. The present study suggests that high-density CO2 inclusions were formed at the earliest stage, while H2O inclusions were formed at the late stage. In an intermediate stage, low-density CO2 and H2O, CO2 inclusions were formed. At the early stage of uplift and during melt crystallization, the CO2-bearing vapour was trapped at grain boundaries. At the late stage of uplift, H2O released at the time of crystallization of the melt was trapped as inclusions.  相似文献   

14.
The system KAlO2–MgO–SiO2–H2O–CO2 has long been used as a model for the processes of granulite-facies metamorphism and the development of orthopyroxene-bearing mineral assemblages through the breakdown of biotite-bearing assemblages. There has been considerable controversy regarding the role of carbon dioxide in metamorphism and partial melting. We performed new experiments in this system (at pressures of 342 to 1500 MPa with T between 710 and 1045 °C and X Fl H2O between 0.05 and 1.00), accurately locating most of the dehydration and melting equilibria in P-T-X Fl H2O space. The most important primary result is that the univariant reaction Phl + Qtz + Fl = En + Sa + melt must be almost coincident with the fluid-absent reaction (Phl + Qtz = En + Sa + melt) in the CO2-free subsystem. In conjunction with the results of previous measurements of CO2 solubility in silicate melts and phase equilibrium experiments, our theoretical analysis and experiments suggest that CO2 cannot act as a flux for partial melting. Crustal melting in the presence of H2O–CO2 mixed fluids will always occur at temperatures higher than with pure H2O fluid present. Magmas produced by such melting will be granitic (s.l.) in composition, with relatively high SiO2 and low MgO contents, irrespective of the H2O–CO2 ratio in any coexisting fluid phase. We find no evidence that lamprophyric magmas could be generated by partial fusion of quartz-saturated crustal rocks. The granitic melts formed will not contain appreciable dissolved CO2. The channelled passage of hot CO2-rich fluids can cause local dehydration of the rocks through which they pass. In rock-dominated (as opposed to fluid-dominated) systems, minor partial melting can also occur in veins initially filled with CO2-rich fluid, as dehydration and local disequilibrium drive the fluid towards H2O-rich compositions. However, CO2 is unlikely to be a significant agent in promoting regional granulite-grade metamorphism, melting, magma generation, metasomatism or long-range silicate mass transfer in Earth's crust. The most viable model for the development of granulite-facies rocks involves the processes of fluid-absent partial melting and withdrawal of the melt phase to higher crustal levels. Received: 28 November 1996 / Accepted: 25 June 1997  相似文献   

15.
Metamorphosed pelitic rocks from Mica Creek, British Columbia contain sillimanite, kyanite with minor fibrolite and andalusite-bearing quartz pods. Mineral equilibria were used to infer peak P-T conditions and fluid compositions in equilibrium with the solid phases. Fluid inclusions in three schist samples appear to be good indicators of conditions affecting those rocks during and after peak metamorphic conditions. In samples from two localities, fluid inclusions from schist and quartz-rich segregations have densities appropriate to the peak metamorphic conditions. The observed compositions for these fluids (low salinity with 12 mole % dissolved CO2) agree with calculated values of 0.84 to 0.85, based upon paragonite-quartz-albite-Al2SiO5 equilibria. The fluids unmixed as the schists were uplifted and cooled; fluid inclusions trapped during this stage outline a solvus in the CO2-H2O-NaCl system. A later influx of fluids containing CH4 and N2 accompanied formation of andalusite-bearing plagioclaserich segregations. The restricted association of andalusite-bearing pods and low density fluids suggest a localized but pervasive fluid influx during uplift. Preservation of high density fluid inclusions during uplift and erosion, coupled with evidence for unmixing of H2O- and CO2-rich fluids on the solvus, provide constraints on the P-T uplift path.  相似文献   

16.
Understanding Neoproterozoic crustal evolution is fundamental to reconstructing the Gondwana supercontinent, which was assembled at this time. Here we report evidence of Cryogenian crustal reworking in the Madurai Block of the Southern Granulite Terrane of India. The study focuses on a garnet-bearing granite–charnockite suite, where the granite shows in situ dehydration into patches and veins of incipient charnockite along the contact with charnockite. The granite also carries dismembered layers of Mg–Al-rich granulite. Micro-textural evidence for dehydration of granite in the presence of CO2-rich fluids includes the formation of orthopyroxene by the breakdown of biotite, neoblastic zircon growth in the dehydration zone, at around 870°C and 8 kbar. The zircon U–Pb ages suggest formation of the granite, charnockite, and incipient charnockite at 836 ± 73, 831 ± 31, and 772 ± 49 Ma, respectively. Negative zircon εHf (t) (?5 to ?20) values suggest that these rocks were derived from a reworked Palaeoproterozoic crustal source. Zircon grains in the Mg–Al-rich granulite record a spectrum of ages from ca. 2300 to ca. 500 Ma, suggesting multiple provenances ranging from Palaeoproterozoic to mid-Neoproterozoic, with neoblastic zircon growth during high-temperature metamorphism in the Cambrian. We propose that the garnet-bearing granite and charnockite reflect the crustal reworking of aluminous crustal material indicated by the presence of biotite + quartz + aluminosilicate inclusions in the garnet within the granite. This crustal source can be the Mg–Al-rich layers carried by the granite itself, which later experienced high-temperature regional metamorphism at ca. 550 Ma. Our model also envisages that the CO2 which dehydrated the garnet-bearing granite generating incipient charnockite was sourced from the proximal massive charnockite through advection. These Cryogenian crustal reworking events are related to prolonged tectonic activities prior to the final assembly of the Gondwana supercontinent.  相似文献   

17.
Fine-grained peraluminous synkinematic leuco-monzogranites (SKG), of Cambro-Ordovician age, occur as veins and sills (up to 20–30 m thick) in the Deep Freeze Range, within the medium to high-grade metamorphics of the Wilson Terrane. Secondary fibrolite + graphite intergrowths occur in feldspars and subordinately in quartz. Four main solid and fluid inclusion populations are observed: primary mixed CO2+H2O inclusions + Al2SiO5 ± brines in garnet (type 1); early CO2-rich inclusions (± brines) in quartz (type 2); early CO2+CH4 (up to 4 mol%)±H2O inclusions + graphite + fibrolite in quartz (type 3); late CH4+CO2+N2 inclusions and H2O inclusions in quartz (type 4). Densities of type 1 inclusions are consistent with the crystallization conditions of SKG (750°C and 3 kbar). The other types are post-magmatic: densities of type 2 and 3 inclusions suggest isobaric cooling at high temperature (700–550°C). Type 4 inclusions were trapped below 500°C. The SKG crystallized from a magma that was at some stage vapour-saturated; fluids were CO2-rich, possibly with immiscible brines. CO2-rich fluids (±brines) characterize the transition from magmatic to post-magmatic stages; progressive isobaric cooling (T<670°C) led to a continuous decrease off O 2 can entering in the graphite stability field; at the same time, the feldspars reacted with CO2-rich fluids to give secondary fibrolite + graphite. Decrease ofT andf O 2 can explain the progressive variation in the fluid composition from CO2-rich to CH4 and water dominated in a closed system (in situ evolution). The presence of N2 the late stages indicates interaction with external metamorphic fluids.Contribution within the network Hydrothermal/metamorphic water-rock interactions in crystalline rocks: a multidisciplinary approach on paleofluid analysis. CEC program: Human Capital and Mobility  相似文献   

18.
Investigation of fluid inclusions in granitic and cale-silicate gneisses from the Adirondack Mountains, New York, has revealed the presence of various types, including: (1) CO2-rich, (2) mixed H2O–CO2±salt and (3) aqueous inclusions with no visible CO2. Many, if not all, of these inclusions were trapped or modified after the peak of granulite facies metamorphism, as shown by textural relations or by the lack of agreement between the composition of the fluids found in some inclusions and the composition of the peak-metamorphic fluid as estimated from mineral equilibria. Many fluid inclusions record conditions attained during retrograde cooling and uplift, with minimum pressures and temperatures of 2 to 3 kbar and 200 to 300°C. The temperatures and pressures derived from the investigation of these inclusions constrain the retrograde P-T path, and the results indicate that a period of cooling with little or no decompression.  相似文献   

19.
Non-aqueous CO2 and CO2-rich fluid inclusions are found in the vein quartz hosting mesothermal gold-sulphide mineralization at Bin Yauri, northwestern Nigeria. Although mineralizing fluids responsible for gold mineralization are thought to be CO2-rich, the occurrence of predominantly pure to nearly pure CO2 inclusions is nevertheless unusual for a hydrothermal fluid system. Many studies of similar CO2-rich fluid inclusions, mainly in metamorphic rocks, proposed preferential loss (leakage) of H2O from H2O-CO2 inclusions after entrapment. In this study however, it is proposed that phase separation (fluid immiscibility) of low salinity CO2-rich hydrothermal fluids during deposition of the gold mineralization led to the loss of the H2O phase and selective entrapment of the CO2. The loss of H2O to the wallrocks resulted in increasing oxidizing effects. There is evidence to suggest that the original CO2-rich fluid was intrinsically oxidized, or perhaps in equilibrium with oxidizing conditions in the source rocks. The source of the implicated fluid is thought to be subducted metasediments, subjected to dehydration and devolatilization reactions along a transcurrent Anka fault/shear system, which has been described as a Pan-African (450–750 Ma) crustal suture.  相似文献   

20.
Fluid inclusions in quartz veins within Proterozoic metamorphic rocks in the Black Hills, South Dakota, were examined by microthermometry and Raman spectroscopy to assess the evolution of fluid compositions during regional metamorphism of organic-rich shales and late-orogenic magmatism, both of which were related to the collision of the Wyoming and Superior crustal blocks. Fluid inclusions occur in veins that began to be generated before or during regional compression and metamorphism that reached at least garnet-grade conditions, and in veins within the aureole of the Harney Peak Granite (HPG), where temperatures reached second-sillimanite grade conditions. Early veins in the schists have undergone recrystallization during heating and deformation that modified the composition of early CH4 or CO2 and N2-dominated inclusions. These fluids were apparently trapped under conditions of immiscibility with a saline aqueous fluid phase. They are interpreted to represent components generated during maturation of organic matter and dehydration of phyllosilicates during incipient metamorphism at reducing fO2 conditions. Most inclusions in the quartz veins are, however, secondary CO2-bearing. They imply a transition to higher fO2 conditions with increasing temperature of regional metamorphism. The fO2 conditions may have been controlled by the mineral assemblage in the host metapelites. The prevalence of bimodal distributions of trapped CO2-N2 and aqueous endmembers in the biotite and garnet zones also suggests that two immiscible fluid phases existed during the regional metamorphism.In the aureole of the HPG, graphite was evidently consumed by influx of magmatic fluids. CO2-H2O fluid inclusions dominate, but they have significantly less N2 than inclusions at lower metamorphic grades. All inclusions define secondary trails in mostly unstrained quartz. The bimodality of inclusion compositions is not as well defined as at lower grades, with many inclusions containing intermediate CO2-H2O compositions. This suggests that a single fluid phase existed at the high temperatures in the granite aureole, but then unmixed during cooling. A set of late quartz veins with graphitized and tourmalinized selvages in the granite aureole contains CH4-bearing inclusions with little N2. The existence of CH4 in these inclusions is attributed to complexing of magmatic B with hydroxyl anions taken from the CO2-H2O fluid phase, effectively causing reduction in fO2 and promoting precipitation of graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号