首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解自末次间冰期以来这一地区的古海水表层温度变化,应用气相色谱技术对取自冲绳海槽东侧的Z14?6孔的长链(C37)不饱和烯酮进行了分析。结果发现,该孔Uk37在0.83—0.95之间,其变化趋势与两种浮游有孔虫N.dutertrei和G.sacculifer的氧同位素组成一致。根据Uk37重建的SST在24.0—27.5℃之间变化,最高值27.5℃出现在MIS-5,最低值24℃出现在MIS-2(LGM)。从LGM到全新世SST增加约2℃。这与早期在附近地区根据Uk37重建的SST变化趋势一致。根据重建的SST自LGM以来的变化,作者认为现代黑潮洋流系统最晚在约10kaB.P.后已在冲绳海槽重新建立。许多早期研究揭示的黑潮在7.5—7kaB.P.的加强可能与全新世大暖期有关。  相似文献   

2.
We report records of land plant-derived long-chain n-alkanes since 37 ka b.p. from a sediment core in the middle Okinawa Trough, East China Sea. The data show the content and carbon preference index (CPI; degree of freshness) of n-alkanes generally decreasing as sea level rose, which could be explained by coastline retreat resulting in an increased transport route of n-alkanes toward the study site. The n-alkane CPI returned to higher values during the Holocene highstand, however, suggesting sea-level rise was not the only cause for the decline of freshness of n-alkanes. Paleovegetation changes in terms of C3 vs. C4 contributions inferred from n-alkane δ13C are overall consistent with published marine and terrestrial records during two distinct intervals: from 37.0 to 15.2 ka b.p., and from 7.6 ka b.p. to the present. However, n-alkane δ13C excursions from 15.2 to 7.6 ka b.p. are difficult to reconcile with terrestrial signatures. This disagreement, along with other possible causes for the decline of freshness of n-alkanes, and the higher-energy sedimentary environment inferred from increased mean grain sizes and silt/clay ratios during this time period, is consistent with existing knowledge of offshore transport of materials previously stored on the extensive continental shelf during the post-glacial transgression. We therefore suggest that n-alkane records from the Okinawa Trough should be used only cautiously to infer deglacial vegetation and sea-level changes.  相似文献   

3.
Alkenone unsaturation indices (UK37 and UK′37) have long been used as proxies for surface water temperature in the open ocean. Recent studies have suggested that in other marine environments, variables other than temperature may affect both the production of alkenones and the values of the indices. Here, we present the results of a reconnaissance field study in which alkenones were extracted from particulate matter filtered from the water column in Chesapeake Bay during 2000 and 2001. A multivariate analysis shows a strong positive correlation between UK37 (and UK′37) values and temperature, and a significant negative correlation between UK37 (and UK′37) values and nitrate concentrations. However, temperature and nitrate concentrations also co-vary significantly. The temperature vs. UK37 relationships (UK37=0.018 (T)−0.162, R2=0.84, UK′37=0.013 (T)−0.04, R2=0.80) have lower slopes than the open-ocean equations of Prahl et al. [1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta 52, 2303–2310] and Müller et al. [1998. Calibration of the alkenone paleotemperature index UK′37 based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochimica et Cosmochimica Acta 62, 1757–1772], but are similar to the relationships found in controlled studies with elevated nutrient levels and higher nitrate:phosphate (N:P) ratios. This implies that high nutrient levels in Chesapeake Bay have either lowered the UK37 vs. temperature slope, or nutrient levels are the main controller of the UK37 index. In addition, particularly high abundances (>5% of total C37 alkenones) of the tetra-unsaturated ketone, C37:4, were found when water temperatures reached 25 °C or higher, thus posing further questions about the controls on alkenone production as well as the biochemical roles of alkenones.  相似文献   

4.
Within the framework of the European project EROS 21, a biogeochemical study of particles transported from the Danube Delta to the Northwestern Black Sea whose carbon cycle is dominated by riverine inputs was carried out in spring off the Sulina branch of the Danube Delta. The distribution of particulate organic carbon (POC), chlorophyll a (Chl a), C/N, and δ13C evidenced an omnipresent contribution of terrestrial organic matter throughout the study area together with a dilution of these inputs by freshwater and marine organisms. Four lipid series, n-alkanoic acids, n-alkanes, n-alkanols, and sterols were analyzed by gas chromatography and gas chromatography/mass spectrometry. Several signature compounds were selected to delineate dispersion of terrestrial organic carbon: (1) long-chain n-alkanoic acids in the range C24–C34, long-chain n-alkanes in the range C25–C35, long-chain n-alkanols in the range C22–C30, 24-ethylcholesta-5,22-dien-3β-ol (29Δ5,22) and 24-ethylcholesterol (29Δ5) for vascular plant-derived material and (2) coprostanol (27Δ0,5β) for faecal contamination associated with sewage effluents. A marked decrease was observed between the concentrations of different vascular plant markers characterizing the two end members: riverine at salinity 0.3 and marine at salinity 15.5. The decrease observed for marine/riverine end members (expressed as a function of organic carbon) varied in a large range, from 4% for n-alkanes to 18.6%, 20.4% and 24% for n-fatty acids, n-alkanols and sterols, respectively. These values reflect a combination of various processes: size-selective particle sedimentation, resuspension of different particle pools of different sizes and ages, and/or selective biological utilization. The multi-marker approach also suggested the liberation in the mixing zone of terrestrial moieties, tightly trapped in macromolecular structures of the riverine material. The greatest decrease for marine/riverine end members was observed for coprostanol (0.9%), underlining the efficiency of the mixing zone as a sink for sewage-derived carbon.  相似文献   

5.
本文对白令海北部陆坡B2-9站位沉积物岩芯开展了高分辨率的生物标志物分析,获得了研究区近一万年来陆源长链正构烷烃(简写为烷烃)的输入及其源区植被结构的变化等相关记录。结果表明,nC27是烷烃中最高的主碳峰,对烷烃总量的贡献也最大,这可能与源区木本植物的丰度及其分布有关;nC23的含量也较高,可能主要是来源于北半球沿海地区广泛分布的一类沉水植物。全新世期间,烷烃总量分别在7.8 ka B.P.,6.7 ka B.P.和5.4 ka B.P.经历了三次阶梯状的下降过程,呈现出四个相对稳定的阶段,可能主要受控于早全新世海平面上升以及源区气候环境和植被分布的变化。烷烃的分子组合特征各参数(如CPI、ACL以及nC31/nC27等)的变化则表明,烷烃主要来自陆生高等植物,且全新世期间植被结构较为稳定,木本植物占据优势。此外,在几个较短的时期内,烷烃总量及其分子组合特征等参数的变化具有同步性,表明在这些时期特殊的气候条件下,源区木本植物烷烃对烷烃总量的贡献率的增加可能低于草本植物烷烃和化石烷烃。  相似文献   

6.
The optimum conditions were selected for the chromatographic separation of model mixtures of C12–C40 n-alkanes. For one of the samples of hydrothermal deposits, the extraction conditions of the hydrocarbons were studied and a sample preparation procedure was selected. A procedure is proposed to determine the n-alkanes in samples of hydrothermal deposits by means of gas chromatography-mass spectrometry (GC-MS). The detection limit for the n-alkanes amounted to 3 × 10−9 to 10−8% depending on the components. On the basis of the procedure proposed, the composition of the n-alkanes was studied in the samples of hydrothermal deposits collected at the Mid-Atlantic Ridge (the Broken Spur, Lost City, and Rainbow fields). The analysis performed showed that the samples treated contained C14-C35 n-alkanes. The concentrations of the n-alkanes considered were rather low and varied from 0.002 to 0.038 μg/g. Hypotheses concerning the genesis of the n-alkanes identified were formed.  相似文献   

7.
We analysed the alkenone unsaturation ratio (UK′37) in 87 surface sediment samples from the western South Atlantic (5°N–50°S) in order to evaluate its applicability as a paleotemperature tool for this part of the ocean. The measured UK′37 ratios were converted into temperature using the global core-top calibration of Müller et al. (1998) and compared with annual mean atlas sea-surface temperatures (SSTs) of overlying surface waters. The results reveal a close correspondence (<1.5°C) between atlas and alkenone temperatures for the Western Tropical Atlantic and the Brazil Current region north of 32°S, but deviating low alkenone temperatures by −2° to −6°C are found in the regions of the Brazil–Malvinas Confluence (35–39°S) and the Malvinas Current (41–48°S). From the oceanographic evidence these low UK′37 values cannot be explained by preferential alkenone production below the mixed layer or during the cold season. Higher nutrient availability and algal growth rates are also unlikely causes. Instead, our results imply that lateral displacement of suspended particles and sediments, caused by strong surface and bottom currents, benthic storms, and downslope processes is responsible for the deviating UK′37 temperatures. In this way, particles and sediments carrying a cold water UK′37 signal of coastal or southern origin are transported northward and offshore into areas with warmer surface waters. In the northern Argentine Basin the depth between displaced and unaffected sediments appears to coincide with the boundary between the northward flowing Lower Circumpolar Deep Water (LCDW) and the southward flowing North Atlantic Deep Water (NADW) at about 4000 m.  相似文献   

8.
To examine the source and preservation of organic matter in the shelf sediments of the East China Sea (ECS), we measured bulk C/N and isotopes, organic biomarkers (n-alkanes and fatty acids) and compound-specific (fatty acids) stable carbon isotope ratios in three sediment cores collected from two sites near the Changjiang Estuary and one in the ECS shelf. Contrasting chemical and isotopic compositions of organic matter were observed between the estuarine and shelf sediments. The concentrations of total n-alkanes and fatty acids in the shelf surface sediments (0–2 cm) were 5–10 times higher than those in estuarine surface sediments but they all decreased rapidly to comparable levels below the surface layer. The compositions of n-alkanes in the estuarine sediments were dominated by C26-C33 long-chain n-alkanes with a strong odd-to-even carbon number predominance. In contrast, the composition of n-alkanes in the shelf sediment was dominated by nC15 to nC22 compounds. Long-chain (>C20) fatty acids (terrestrial biomarkers) accounted for a significantly higher fraction in the estuarine sediments compared to that in the shelf sediment, while short-chain (<C20) saturated and unsaturated fatty acids were more abundant in the shelf surface sediments than in the estuarine sediments. Stable carbon isotopic ratios of individual fatty acids showed a general positive shift from estuarine to shelf sediments, consistent with the variations in bulk δ 13CTOCTOC. These contrasts between the estuarine and shelf sediments indicate that terrestrial organic matter was mainly deposited within the Changjiang Estuary and inner shelf of ECS. Post-depositional diagenetic processes in the surface sediments rapidly altered the chemical compositions and control the preservation of organic matter in the region.  相似文献   

9.
We have measured helium isotopic ratios of thirty-seven Pacific water samples from various depths collected in adjacent regions of Honshu, Japan. The 3He/4He ratios vary significantly from 0.989 R atm to 1.208 R atm where R atm is the atmospheric ratio of 1.39 × 10−6. The mid-depth (750–1500 m) profile of 3He/4He ratios at ST-1 located Northwestern Pacific Ocean east of Japan (Off Joban; 37°00′ N, 142°40′ E) is significantly different from that at ST-2 of the Northern Philippine Sea south of Japan (Nankai Trough; 33°07′ N, 139°59′ E), suggesting that these waters were separated by a topographic barrier, the Izu-Ogasawara Ridge. Taking 3He/4He data of the Geosecs expeditions in the western North Pacific, an extensive plume of 15% excess 3He relative to the air may be traced at ST-1 over 12,000 kilometers to the northwest of the East Pacific Rise where the mantle helium may originate. The 20% excess found at ST-2 may be attributable to the additional source of the subduction-type mantle helium in the Okinawa Trough. A 15% excess of 3He has also been discovered at a depth of about 1000∼1500 m at ST-3 adjacent to Miyakejima Island (33°57′ N, 139°22′ E) and ST-4 of Sagami Bay (35°00′ N, 139°22′ E). It is confirmed that mid-depth all over the western North Pacific water is affected by the mantle helium with a high 3He/4He ratio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The \textU\textK37 {\text{U}}^{{{\text{K}}\prime}}_{{37}} index has been widely applied for sea surface temperature (SST) reconstruction in open ocean environments, but has inherently limited applications at smaller, regional scales including some marginal seas where both historical and reconstructed SST records are urgently needed for understanding regional climate evolution. We determined the spatial distribution of alkenone contents in surface sediments from the southern Yellow Sea to assess the regional \textU37\textK {\text{U}}_{{{37}}}^{{{\text{K'}}}} —SST relationship for paleo-SST reconstructions. C37:2 and C37:3 alkenones were detected at all 36 sites covering most of the southern Yellow Sea. Alkenone content ranges from 17 to 1,063 ng/g, with high values (ca. 400 to 1,000 ng/g) at deep water sites and a decreasing trend shoreward. For six samples at shallower depths near the coast and further offshore, the values were too low for statistical evaluation. This spatial pattern of alkenone contents is consistent with existing knowledge on the spatial distribution and productivity of alkenone-producing coccolithophorid species in the region. There is a significant positive relationship ( \textU37\textK = 0.059\textSST - 0.350 {\text{U}}_{{{37}}}^{{{\text{K'}}}} = 0.059{\text{SST}} - 0.350 , R = 0.912, n = 30) between the \textU37\textK {\text{U}}_{{{37}}}^{{{\text{K'}}}} values and satellite-derived annual mean SSTs (0 m) for the last 27 years, providing support for the application of a region-specific \textU37\textK {\text{U}}_{{{37}}}^{{{\text{K'}}}} index as paleothermometer in the southern Yellow Sea. However, the slope of the southern Yellow Sea calibration (0.059) is considerably larger than that of the well-known global core-top calibration (0.033). This implies that global SST trends may not adequately encompass regional SST patterns and/or that environmental factors other than temperature may gain importance in explaining coccolithophore dynamics in marginal seas.  相似文献   

11.
A series of molecular organic markers were determined in surface sediments from the Gulf of Genoa (Ligurian Sea) in order to evaluate their potential for palaeo-environmental reconstructions. Allochthonous input can be characterized by the distributions of n-C29 and n-C31 alkanes, n-C26 and n-C28 alkanols and branched glycerol dialkyl glycerol tetraethers (GDGTs), whose concentrations are generally highest near the river mouths. In the open basin however, terrestrial n-alkanes and n-alkanols may have an additional, eolian source. Autochthonous input is represented by crenarchaeol and isoprenoid GDGTs. Their concentrations are highest in the open basin showing the preference of Thaumarchaeota for oligotrophic waters. Indications of a significant degradation of sterols and C37 alkenones exclude these lipids as reliable productivity proxies. Using terrestrial and aquatic lipids as end-members allows estimating the percentage of terrestrial organic matter between 20% and 58% in the coastal area decreasing to 1–30% in the deep basin. The spatial distribution of sea surface temperature (SST) estimates using the alkenone-based UK′37 index is very similar to the autumnal (November) mean satellite-based SST distribution. Conversely, TEXH86-derived SST estimates are close to winter SSTs in the coastal area and summer SSTs in the open basin. This pattern reflects presumably a shift in the main production of Thaumarchaeota from the coastal area in winter to the open basin in summer. This study represents a major prerequisite for the future application of lipid biomarkers on sediment cores from the Gulf of Genoa.  相似文献   

12.
Feeding periodicity, consumption rate, absorption efficiency, respiration rate and ammonia excretion were measured as functions of wet body mass in abalone collected from the western and southern Cape coasts. A well developed diel feeding rhythm was evident, consumption being restricted to the period 16h00–08h00. Food intake averaged 8,1 per cent of wet flesh mass·d?1 at 14°C and 11,4 percent at 19°C. The daily consumption rate was related to body mass by the relationships C(g) = 0,54 W(g)0,67 at 14°C and C(g) = 0,35 W(g)0,77 at 19°C. Absorption efficiency averaged 37 per cent and was independent of body size. Equations relating respiration rate to wet body mass were R(m? O2·h?1) = 0,03 W(g)0,83 at 14°C and R = 0,03 W(g)0,94 at 19°C. No significant differences were detected between day and night rates or between fed and starved individuals. The rate of ammonia excretion (μmole·h?1) was related to wet body mass (g) by the equations U = 0,22 W0,43 at 14°C and U = 0,03 W0,85 at 19°C.  相似文献   

13.
Different methods have been used to examine minerals and/or solid bitumens in three adjacent Carpathian regions of Poland, Ukraine and Slovakia. The minerals fill smaller and larger veins and cavities, where they occur either together or separately. They usually co-occur with the solid bitumens. All δ13CPDB values measured for calcite lie in a relatively wide interval between −6.25‰ and +1.54‰, while most values fall into the narrower interval from below 0 to about −3‰. The general range of calcite δ18O results for the whole studied region is between +17.13‰ and +25.23‰ VSMOW or from about −11 to −5‰ VPDB, while the majority of these values are between +20.0 and 23.5‰ VSMOW (−10.53 and −8.00‰ PDB, respectively). δ18OVSMOW results for quartz vary between +23.2 and 27.6. The carbonate percentage determined in some samples falls between from <2% CaCO3 to >90% CaCO3, while the TOC values changes from 0.09% to over 70%.The aliphatic fraction predominates in all studied samples, mainly in bitumens and oils. The composition of the aliphatic fraction is relatively homogeneous and points to a strong aliphatic, oil-like paraffin character of the bitumens. Such a composition is characteristic of the Carpathian oils and different from the rocks studied that contain the higher percentage of a polar fraction. The content of the aliphatic fraction in bitumens is only slightly higher than that in two oils used for comparison. The distribution of n-alkanes is variable in rocks, solid bitumens as well as inclusions in quartz and calcite. Two groups of bitumens may be distinguished. Those with a predominance of long-chain n-alkanes in the C25–C27 interval (in some cases from C23–C25 and without or with a very low concentration of short-chain n-alkanes in the interval of C14–C21) show also a high content of isoprenoids i.e. of pristane (Pr) and phytane (Ph). In all but one bitumen samples, Pr predominates over Ph. The second group comprises oils and rock samples with a characteristic predominance of short-chain n-alkanes in the interval from C13–C19 and a low percentage of the long-chain n-alkanes from the n-C27n-C33 interval. Pristane and phytane exhibit a concentration comparable to that of C17 and C18 n-alkanes with a Pr predominance over Ph. Due to high maturity, only small amounts of the most stable compounds from the hopane group have been observed in the samples, also oleanane in one case. Among the aromatic hydrocarbons, phenanthrene and its methyl- and dimethyl-derivatives are dominant in bitumens, source rocks and inclusions in calcite and quartz. Occurrence of cyclohexylbenzene and its alkyl-derivatives as well as cyclohexylfluorenes in solid bitumens suggest that they formed from oil accumulations under the influence of relatively high temperatures in oxidizing conditions.Homogenization temperatures for aqueous/brine inclusions in quartz within the Dukla and Silesian units (Polish and Ukrainian segments) are between 125 and 183.9 °C, while salinities are low in the interval of 0.2–5.5 wt% NaCl eq. The inclusions in calcite homogenize at higher temperatures of almost 200 °C and the brine displays higher salinity than the fluid in the quartz. Two quartz generations may be distinguished by inclusion and isotope characteristics and the macroscopic diversity. Oil inclusions homogenize at 95 °C. One phase inclusions in quartz contain methane, CO2 and nitrogen in variable proportions.  相似文献   

14.
Using time series of hydrographic data in the wintertime and summertime obtained along 137°E from 1971 to 2000, we found that the average contents of nutrients in the surface mixed layer showed linear decreasing trends of 0.001∼0.004 μmol-PO4 l−1 yr−1 and 0.01∼0.04 μmol-NO3 l−1 yr−1 with the decrease of density. The water column Chl-a (CHL) and the net community production (NCP) had also declined by 0.27∼0.48 mg-Chl m−2 yr−1 and 0.08∼0.47 g-C-NCP m−2 yr−1 with a clear oscillation of 20.8±0.8 years. These changes showed a strong negative correlation with the Pacific Decadal Oscillation Index (PDO) with a time lag of 2 years (R = 0.89 ± 0.02). Considering the recent significant decrease of O2 over the North Pacific subsurface water, these findings suggest that the long-term decreasing trend of surface-deep water mixing has caused the decrease of marine biological activity in the surface mixed layer with a bidecadal oscillation over the western North Pacific.  相似文献   

15.
Seasonal and depth variations in alkenone flux and molecular and isotopic composition of sinking particles were examined using a 21-month time-series sediment trap experiment at a mooring station WCT-2 (39°N, 147°E) in the mid-latitude NW Pacific to assess the influences of seasonality, production depth, and degradation in the water column on the alkenone unsaturation index UK′37. Analysis of the underlying sediments was also conducted to evaluate the effects of alkenone degradation at the water–sediment interface on UK′37. Alkenone sinking flux and UK′37-based temperature showed strong seasonal variability. Alkenone fluxes were higher from spring to fall than they were from fall to spring. During periods of high alkenone flux, the UK′37-based temperatures were lower than the contemporary sea-surface temperatures (SSTs), suggesting alkenone production in a well-developed thermocline (shallower than 30 m). During low alkenone flux periods, the UK′37-based temperatures were nearly constant and were higher than the contemporary SSTs. The nearly constant carbon isotopic ratios of C37:2 and C38:2 alkenones suggest that alkenones produced in early fall were suspended in the surface water until sinking. The alkenone sinking flux decreased exponentially with increasing depth. The decreasing trend was enhanced during the periods of high alkenone flux, suggesting that fresh and labile particles sank from spring to fall, while old and stable particles sank from fall to spring. The UK′37-based temperature usually increased with increasing depth. The preservation efficiency of alkenones was ∼2.7–5.2% at the water–sediment interface. Despite the significant degradation of the alkenones, there was little difference in UK′37 levels between sinking particles and the surface sediment.  相似文献   

16.
The habitat quality of Chub mackerel (Scomber japonicus) in the East China Sea has been a subject of concern in the last 10 years due to large fluctuations in annual catches of this stock. For example, the Chinese light-purse seine fishery recorded 84000 tons in 1999 compared to 17000 tons in 2006. The fluctuations have been attributed to variability in habitat quality. The habitat suitability Index (HSI) has been widely used to describe fish habitat quality and in fishing ground forecasting. In this paper we use catch data and satellite derived environmental variables to determine habitat suitability indices for Chub mackerel during July to September in the East China Sea. More than 90% of the total catch was found to come from the areas with sea surface temperature of 28.0°–29.4°C, sea surface salinity of 33.6–34.2 psu, chlorophyll-a concentration of 0.15–0.50 mg/m3 and sea surface height anomaly of −0.1–1.1 m. Of the four conventional models of HSI, the Arithmetic Mean Model (AMM) was found to be most suitable according to Akaike Information Criterion analysis. Based on the estimation of AMM in 2004, the monthly HSIs in the waters of 123°–125°E and 27°30′–28°00′ N were more than 0.6 during July to September, which coincides with the catch distribution in the same time period. This implies that AMM can yield a reliable prediction of the Chub mackerel’s habitat in the East China Sea.  相似文献   

17.
Elemental (TOC, TN, C/N) and stable carbon isotopic (δ13C) compositions and n-alkane (nC16–38) concentrations were measured for Spartina alterniflora, a C4 marsh grass, Typha latifolia, a C3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. δ13C values of organic matter preserved in the upper fresh water site sediment were more negative (−23.0±0.3‰) as affected by the C3 plants than the values of organic matter preserved in the sediments of middle (−18.9±0.8‰) and mud flat sites (−19.4±0.1‰) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC21 to nC33 long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC29 was the most abundant homologue in all samples measured. Both δ13C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters.  相似文献   

18.
We measured the ammonium excretion, phosphate excretion and respiration rates of the scyphomedusa Aurelia aurita from Ondo Strait, in the central part of the Inland Sea of Japan, at 28 and 20°C. The rates measured at 28°C were converted to those at 20°C using the Q10 values, i.e. 1.56, 1.57 and 2.80, for ammonium excretion, phosphate excretion and respiration rates, respectively. The composite relationships between metabolic rates and wet weight of a medusa (WW, g, range 11–1330 g) at 20°C were expressed by the following allometric equations. For ammonium excretion rate (N, μmoles N medusa−1d−1): N = 0.497WW 1.09, phosphate excretion rate (P, μmoles P medusa−1d−1): P = 0.453WW 0.84, and respiration rate (R, μmoles O2 medusa−1d−1): R = 96.9WW 1.06. Mean O:N ratios (i.e. atomic ratios of 16.9 and 11.0 at 28 and 20°C, respectively) indicated that the metabolism of A. aurita medusae was protein-dominated. These metabolic parameters enabled us to estimate the nitrogen and phosphorus regeneration rates of an A. aurita medusa population typical of early summer in the Ondo Strait (means of water temperature, medusa individual weight and population biomass: 20°C, 200 g WW and 50.8 g WW m−3, respectively). Regenerated nitrogen and phosphorus were equivalent to 10.0 and 21.6% of phytoplankton uptake rates, respectively, nearly twice that estimated for mesozooplankton, demonstrating that A. aurita medusae are key components of the plankton community, influencing the trophic and nutrient dynamics in the Ondo Strait during early summer.  相似文献   

19.
Six newly developed floats, which were set to drift on the 26.7 σθ isopycnal surface and to profile temperature, salinity and pressure above 1000 dbar once a week, were deployed in the Oyashio and Kuroshio Extension (KE) in order to examine the circulation, formation site and time scale of newly formed North Pacific Intermediate Water (NPIW). The floats were deployed in February or May 2001, and the data from their deployments to December 2002 are analyzed here. Four of the six floats were deployed near the KE axis at around the first meander crest, and they moved eastward to 157°E–176°W at latitudes of 30°N–45°N. The other two floats deployed in the Oyashio water with low-potential vorticity near the south coast of Hokkaido moved southward to reach the KE front and then moved eastward to the same region as the first four floats. The temperature and salinity at 26.7 σθ measured by the profiling floats indicate that the source waters of NPIW, Oyashio and Kuroshio waters are drastically mixed and modified in the mixed water region west of 160°E. The floats were separated into the three paths east of 160°E between the Kuroshio Extension front and the north of Water-Mass front (nearly subarctic front). New NPIW is judged to be formed along these three paths since the vertical profiles of temperature and salinity are quite smooth, having a salinity minimum at about 26.7σθ along each path. Kuroshio-Oyashio isopycnal mixing ratios of the new NPIW are 7:3, 6:4 and 5:5 at 26.7σθ along the southern, middle and northern paths, respectively. Potential vorticity converges to about 14–15 × 10−11 m−1s−1 along these paths. The time scale of new NPIW formation is estimated to be 1–1.5 years from the merger of Oyashio and Kuroshio waters to the formation of the new NPIW. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Rates of respiration and ammonia excretion of Euphausia hanseni and Nematoscelis megalops were determined experimentally at four temperatures representative of conditions encountered by these euphausiid species in the northern Benguela upwelling environment. The respiration rate increased from 7.7 µmol O2 h?1 gww ?1 at 5 °C to 18.1 µmol O2 h?1 gww ?1 at 20 °C in E. hanseni and from 7.0 µmol O2 h?1 gww ?1 (5 °C) to 23.4 µmol O2 h?1 gww ?1 (20 °C) in N. megalops. The impact of temperature on oxygen uptake of the two species differed significantly. Nematoscelis megalops showed thermal adaptations to temperatures between 5 °C and 10 °C (Q10 = 1.9) and metabolic constraint was evident at higher temperatures (Q10 = 2.6). In contrast, E. hanseni showed adaptations to temperatures of 10–20 °C (Q10 = 1.5) and experienced metabolic depression below 10 °C (Q10 = 2.6). Proteins were predominantly metabolised by E. hanseni in contrast to lipids by N. megalops. Carbon demand of N. megalops between 5 and 15 °C was lower than in E. hanseni versus equal food requirements at 20 °C. It is concluded that the two species display different physiological adaptations, based on their respective temperature adaptations, which are mirrored in their differential vertical positioning in the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号