首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8′E) close to a hydrothermal vent (49°39′E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at ~9.0 km is the bottom of a layer (2–3 km thick); the Moho (at depth of ~6–7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by ~15 km, the 660 discontinuity is elevated by ~18 km, and a positive thermal anomaly between 182 and 237 K is inferred.  相似文献   

2.
Morphotectonic analysis of the inside corner intersection (14.0°S) between the southern Mid-Atlantic Ridge and the Cardno fracture zone indicate a young rough massif emerging after the termination of a previous oceanic core complex. The massif, which hosts an off-axis hydrothermal field, is characterized by a magmatic inactive volcanic structure, based on geologic mapping and sample studies. Mineralogical analyses show that the prominent hydrothermal deposit was characterized by massive pyrite-marcasite breccias with silica-rich gangue minerals. Geochemical analyses of the sulfide breccias indicate two element groups: the Fe-rich ore mineral group and silica-rich gangue mineral group. Rare earth element distribution patterns showing coexistence of positive Eu anomalies and negative Ce anomalies suggest that sulfides were precipitated from diffused discharge resulted from mixing between seawater and vent fluids. Different from several low temperature hydrothermal systems occurring on other intersection dome-like massifs that are recognized as detachment fault surfaces associated with variably metamorphosed ultramafic rocks, the 14.0°S field, hosted in gabbroic-basaltic substrate, is inferred to be of a high temperature system and likely to be driven by deep high temperature gabbroic intrusions. Additionally, the subsurface fossil detachment fault is also likely to play an important role in focusing hydrothermal fluids.  相似文献   

3.
“潜龙二号”水下自主航行器(QianlongⅡ AUV)为深海资源尤其是海底多金属硫化物调查而设计,其已在西南印度洋脊热液区进行成功的调查运用。本文系统地概述了“潜龙二号”的热液系统探测功能实现、数据管理、快速成图等工作;阐述了如何利用AUV转圈数据有效的校正载体对磁测干扰的。基于“潜龙二号”获取的热液异常,发展了热液喷口快速定位方法。以具体一潜次为例,系统地展示了热液探测数据的处理分析与热液异常定位工作,证实了该方法的有效性。  相似文献   

4.
We interpret seven two-dimensional deep-penetration and long-offset multi-channel seismic profiles in the northernmost South China Sea area, which were collected by R/V Marcus G. Langseth during the TAIwan GEodynamics Research (TAIGER) project in 2009. To constrain the crustal characteristics, magnetic inversion and forward magnetic modeling were also performed. The seismic results clearly show tilted faulting blocks in the upper crust and most of the fault plane connects downward to a quasi-horizontal detachment as its bottom in the south of the Luzon-Ryukyu transform plate boundary. North of the plate boundary, a small-scale failed rifted basin (minimum 5 km in crustal thickness) with negative magnetization probably indicates an extended continental origin. Significant lower crustal material (LCM) was imaged under a crustal fracture area which indicated a continent and ocean transition origin. The thickest LCM (up to 6.5 km) is located at magnetic isochron C15 that is probably caused by the magma supply composite of a Miocene syn-rift volcanic event and Pliocene Dongsha volcanic activity for submarine volcanoes and sills in the surrounding area. The LCM also caused Miocene crustal blocks to be uplifted reversely as 17 km crustal thickness especially in the area of magnetic isochron C15 and C16. In addition, the wide fault blocks and LCM co-existed on the magnetic striped area (i.e. C15–C17) in the south of the Luzon-Ryukyu transform plate boundary. Magnetic forward modeling suggests that the whole thick crustal thickness (>12 km thick) needs to be magnetized in striped way as oceanic crust. However, the result also shows that the misfit between observed and synthetic magnetic anomaly is about 40 nT, north of isochron C16. The interval velocity derived from pre-stack time migration suggests that the crust is composed of basaltic intrusive upper crust and lower crustal material. The crustal nature should refer to a transition between continent and ocean. Thus, the magnetic reversals may be produced in two possible ways: basaltic magma injected along the crustal weak zone across magnetic reversal epoch and because some undiscovered ancient piece of oceanic crust existed. The crustal structure discrimination still needs to be confirmed by future studies.  相似文献   

5.
6.
Near-bottom magnetic prospecting is considered to be an efficient method for investigating inactive hydrothermal areas and the study of the spatial structure of hydrothermal systems. Furthermore, geophysical forward modeling is widely used to simulate the anomalous characteristics of geological bodies. To understand the magnetic and magnetic structure features of hydrothermal sulfide deposits at mid-ocean ridges, we built 3D forward models for both mafic- and ultramafic-hosted hydrothermal sulfide deposits to simulate the near-bottom magnetic field. Our modeling results showed a low amplitude magnetic anomaly above the mafic-hosted hydrothermal sulfide deposits, and a high amplitude magnetic anomaly above the ultramafic-hosted deposits. These features allow us to identify and classify the host rocks of hydrothermal sulfide deposits. Moreover, we can recognize the edge of the magnetic anomalies using the intensity of the spatial differential vector method, considering variables such as the width of the alteration zone, the height of the observation platform, and the magnetic inclination and declination. Therefore, we propose the intensity of the spatial differential vector method as an effective approach to define the boundaries of hydrothermal sulfide deposits.  相似文献   

7.
A new hydrothermal vent site in the Southern Mariana Trough has been discovered using acoustic and magnetic surveys conducted by the Japan Agency for Marine-Earth Science and Technology's (JAMSTEC) autonomous underwater vehicle (AUV), Urashima. The high-resolution magnetic survey, part of a near-bottom geophysical mapping around a previously known hydrothermal vent site, the Pika site, during the YK09-08 cruise in June–July 2009, found that a clear magnetization low extends ∼500 m north from the Pika site. Acoustic signals, suggesting hydrothermal plumes, and 10 m-scale chimney-like topographic highs were detected within this low magnetization zone by a 120 kHz side-scan sonar and a 400 kHz multibeam echo sounder. In order to confirm the seafloor sources of the geophysical signals, seafloor observations were carried out using the deep-sea manned submersible Shinkai 6500 during the YK 10-10 cruise in August 2010. This discovered a new hydrothermal vent site (12°55.30′N, 143°38.89′E; at a depth of 2922 m), which we have named the Urashima site. This hydrothermal vent site covers an area of approximately 300 m×300 m and consists of black and clear smoker chimneys, brownish-colored shimmering chimneys, and inactive chimneys. All of the fluids sampled from the Urashima and Pika sites have chlorinity greater than local ambient seawater, suggesting subseafloor phase separation or leaching from rocks in the hydrothermal reaction zone. End-member compositions of the Urashima and Pika fluids suggest that fluids from two different sources feed the two sites, even though they are located on the same knoll and separated by only ∼500 m. We demonstrate that investigations on hydrothermal vent sites located in close proximity to one another can provide important insights into subseafloor hydrothermal fluid flow, and also that, while such hydrothermal sites are difficult to detect by conventional plume survey methods, high-resolution underwater geophysical surveys provide an effective means.  相似文献   

8.
The ultraslow-spreading Southwest Indian Ridge(SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. Jourdanne hydrothermal field(27°51′S, 63°56′E) in 1998. During the COMRA DY115-20 cruise in2009, two additional hydrothermal fields(i.e., the Tiancheng(27°51′S, 63°55′E) and Tianzuo(27°57′S, 63°32′E)fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible Jiaolong in 2014–2015. The Tiancheng filed can be characterized as a lowtemperature(up to 13.2°C) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.  相似文献   

9.
Nisyros island is a volcano at the eastern edge of the Aegean volcanic arc within the Hellenic arc and trench system along the convergence zone of the Eurasian and African plates. Several fault zones have been mapped and analyzed on the island with fault displacements reaching 100?C150 m as deduced from the morphology and the offset of the stratigraphic formations of the volcano. Seismic activity during 1995?C1998 affected the island with damage along the western edge of the Mandraki town, related to the Mandraki fault. The geological, tectonic and morphological data on land show that the Mandraki fault throw is 80?C100 m and its length about 2 km. Its continuation northwards under the sea was studied within a systematic survey of the broader area of the Kos-Nisyros-Tilos islands; and the bathymetric and lithoseismic data showed the existence of some active tectonic structures. In the area of the Yali-Nisyros Channel the prolongation of the Mandraki fault has a 100 m high submarine scarp between the two sides of the fault. Morphological slopes along the fault are high between 20 and 50% in contrast to slopes of 1?C5% observed on top of the two adjacent tectonic blocks. The general structure both on land and offshore shows a westward tilt contemporaneous to the extension in the E-W direction observed in this area. Observations of the submarine fault during a dive with submersible Thetis showed spectacular landslides and loose rocks along the fault scarp and very abrupt linear topographic change along the strike of the fault. The synthesis of the onshore and offshore data on a digital topographic map shows that the Mandraki fault is a secondary structure of the major F3 fault zone of Nisyros which separates the neotectonic block/horst of Prophitis Ilias in the west from the Emborio/Nikia block in the east. The GPS data from the period 1997?C2001 show excellent agreement with the neotectonic block structure of Nisyros. The seismic hazard of the F3/Mandraki fault zone is discussed together with the volcanic hazard of Yali-Nisyros area with the general conclusion that the expected seismic magnitude of 6.1?C6.3 is significantly higher than that observed in 1995?C1998. The ascent of magma from a chamber 7.5?C8.5 km deep between the Yali and Nisyros islands may trigger tectonovolcanic activity similar to that observed at the end of the 19th century.  相似文献   

10.
Seafloor acoustic and photographic imagery combined with high- resolution bathymetry are used to investigate the geologic and tectonic relations between active and relict zones of hydrothermal venting in the TAG (Trans-Atlantic Geotraverse) hydrothermal field at 26°08N on the Mid-Atlantic Ridge (MAR). The TAG field consists of a large, currently active, high-temperature mound, two relict zones (the Alvin and Mir zones), and an active low-temperature zone. The active mound and the Alvin relict zone lie along a series of closely-spaced, axis-parallel (NNE-trending) faults in an area of active extension east of the neovolcanic zone. The Alvin zone extends for 2.5 km along these faults from the valley floor onto the eastern wall, and consists of at least five mounds identified using DSL-120 sidescan sonar and bathymetric data. The existence of sulfide structures on most of these mounds is verified with near-bottom electronic still camera (ESC) images from the Argo-II deep-towed vehicle, and is confirmed in at least one case with collected samples. Two of these mounds were previously unidentified. The existence of these mounds extends the length of the Alvin zone by ~0.5 km to the south. Much of the Alvin relict zone appears to be buried by debris from a large mass wasting event on the eastern wall of the median valley. The Mir zone, located on normal fault blocks of the eastern valley wall, cannot be clearly identified in the sidescan data and no structural connections from it to the active mound or Alvin zone can be discerned. The active mound is located at the intersection of an older oblique fault set with the younger axis- parallel faults which extend into the Alvin relict zone, and no fresh volcanics are observed in the vicinity of the mound. The fact that both the active mound and the Alvin relict zone lie along the same set of active, axis-parallel faults suggests that the faults may be a major control on the location of hydrothermal activity by providing pathways for fluid flow from a heat source at the ridge axis.  相似文献   

11.
Magnetic zoning and seismic structure of the South China Sea ocean basin   总被引:2,自引:0,他引:2  
We made a systematic investigation on major structures and tectonic units in the South China Sea basin based on a large magnetic and seismic data set. For enhanced magnetic data interpretation, we carried out various data reduction procedures, including upward continuation, reduction to the pole, 3D analytic signal and power spectrum analyses, and magnetic depth estimation. Magnetic data suggest that the South China Sea basin can be divided into five magnetic zones, each with a unique magnetic pattern. Zone A corresponds roughly to the area between Taiwan Island and a relict transform fault, zone B is roughly a circular feature between the relict transform fault and the northwest sub-basin, and zones C, D, and E are the northwest sub-basin, the east sub-basin, and the southwest sub-basin, respectively. This complexity in basement magnetization suggests that the South China Sea evolved from multiple stages of opening under different tectonic settings. Magnetic reduction also fosters improved interpretation on continental margin structures, such as Mesozoic and Cenozoic sedimentary basins and the offshore south China magnetic anomaly. We also present, for the first time, interpretations of three new 2D reflection seismic traverses, which are of ~2,000 km in total length and across all five magnetic zones. Integration of magnetic and seismic data enables us to gain a better 3D mapping on the basin structures. It is shown that the transition from the southwest sub-basin to the east sub-basin is characterized by a major ridge formed probably along a pre-existing fracture zone, and by a group of primarily west-dipping faults forming an exact magnetic boundary between zones D and E. The northwest sub-basin has the deepest basement among the three main sub-basins (i.e., the northwest sub-basin, the southwest sub-basin, and the east sub-basin). Our seismic data also reveal a strongly faulted continent–ocean transition zone of about 100 km wide, which may become wider and dominated with magmatism or transit to an oceanic crust further to the northeast.  相似文献   

12.
ABSTRACT

From September to October 2002, shallow drilling, using the submersible (5 m) Rockdrill of the British Geological Survey and the German R/V Sonne revealed critical information on the subsurface nature of two distinct hydrothermal systems in the New Ireland fore-arc and the Manus Basin of Papua New Guinea. Drilling at Conical Seamount significantly extends the known surface extent of the previously discovered vein-style gold mineralization (up to 230 g/t Au) at this site. Drilling the conventional PACMANUS volcanic-hosted massive sulfide deposit recovered complexly textured massive sulfide with spectacular concentrations of gold in several core sections including 0.5 m @ 28 g/t Au, 0.35 m @ 30 g/t Au, and 0.20 m @ 57 g/t Au. Shallow drilling is a fast and cost efficient method that bridges the gap between surface sampling and deep (ODP) drilling and will become a standard practice in the future study of seafloor hydrothermal systems and massive sulfide deposits.  相似文献   

13.
A Seabeam reconnaissance of the 400 km-long fast-slipping (88 mm yr-1) Heezen transform fault zone and the 55 km-long spreading center that links it to Tharp transform defined and bathymetrically described several types of ridges built by tectonic uplift and volcanic construction. Most prominent is an asymmetric transverse ridge, at which abyssal hills adjacent to the fault zone have been raised 2–3 km above normal rise-flank depths. Topographic and petrologic evidence suggests that this uplift, which has produced a 5400 m scarp from the crest of the ridge to the floor of a 10 km-wide transform valley, is caused by rapid serpentinization of upper mantle which has been exposed to hydrothermal circulation by fault-zone fracturing of an unusually thin crust. Transverse ridges have been thought atypical of fast-slipping transforms. One class of volcanic ridge more common at these sites is the overshot ridge, formed by prolongation of spreading-center rift zones obliquely across the transform. Overshot ridges are well developed at Heezen transform, especially at the eastern end where an eruptive rift zone extending 60 km from the southern tip of the East Pacific Rise has built a transform-parallel ridge that fills the eastern transform valley. Obliteration of fault-zone structure by ridges overshooting from the spreading center intersections means that the topography of the aseismic fracture zones is not just inherited from that of the active transform fault zone. The latter has several en echelon and overlapping fault traces, linked by short oblique spreading axes that generally form pull-apart basins rather than volcanic ridges. Interpretation of the origin and pattern of the fault zone's tectonic and volcanic relief requires refinement of the plate geography and history of this part of the Pacific-Antarctic boundary, using new Seabeam and magnetic traverses to supplement and adjust the existing geophysical data base.  相似文献   

14.
High-resolution sonar surveys, and a detailed subsurface model constructed from 3D seismic and well data allowed investigation of the relationship between the subsurface geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the world’s largest and best-studied marine oil and gas seep fields, located over a producing hydrocarbon reservoir near Santa Barbara, California. In general, the relationship between terrestrial gas seepage, migration pathways, and hydrocarbon reservoirs has been difficult to assess, in part because the detection and mapping of gas seepage is problematic. For marine seepage, sonar surveys are an effective tool for mapping seep gas bubbles, and thus spatial distributions. Seepage in the COP seep field occurs in an east–west-trending zone about 3–4 km offshore, and in another zone about 1–2 km from shore. The farthest offshore seeps are mostly located near the crest of a major fold, and also along the trend of major faults. Significantly, because faults observed to cut the fold do not account for all the observed seepage, seepage must occur through fracture and joint systems that are difficult to detect, including intersecting faults and fault damage zones. Inshore seeps are concentrated within the hanging wall of a major reverse fault. The subsurface model lacks the resolution to identify specific structural sources in that area. Although to first order the spatial distribution of seeps generally is related to the major structures, other factors must also control their distribution. The region is known to be critically stressed, which would enhance hydraulic conductivity of favorably oriented faults, joints, and bedding planes. We propose that this process explains much of the remaining spatial distribution.  相似文献   

15.
Seafloor hydrothermal polymetallic sulfide deposits are a new type of resource, with great potential economic value and good prospect development. This paper discusses turbidity, oxidation–reduction potential, and temperature anomalies of hydrothermal plumes from the Zouyu-1 and Zouyu-2 hydrothermal fields on the southern Mid-Atlantic Ridge. We use the known location of these vent fields and plume data collected in multiple years (2009, 2011, 2013) to demonstrate how real-time plume exploration can be used to locate active vent fields, and thus associated sulfide deposits. Turbidity anomalies can be detected 10 s of km from an active source, but the location precision is no better than a few kilometers because fine-grained particles are quasi-conservative over periods of many days. Temperature and oxidation–reduction potential anomalies provide location precision of a few hundred meters. Temperature anomalies are generally weak and difficult to reliably detect, except by chance encounters of a buoyant plume. Oxidation–reduction potential is highly sensitive (nmol concentrations of reduced hydrothermal chemicals) to discharges of all temperatures and responds immediately to a plume encounter. Real-time surveys using continuous tows of turbidity and oxidation–reduction potential sensors offer the most efficient and precise surface ship exploration presently possible.  相似文献   

16.
A wide-spread bottom simulating reflector (BSR), interpreted to mark the thermally controlled base of the gas hydrate stability zone, is observed over a close grid of multichannel seismic profiles in the Krishna Godavari Basin of the eastern continental margin of India. The seismic data reveal that gas hydrate occurs in the Krishna Godavari Basin at places where water depths exceed 850 m. The thickness of the gas hydrate stability zone inferred from the BSR ranges up to 250 m. A conductive model was used to determine geothermal gradients and heat flow. Ground truth for the assessment and constraints on the model were provided by downhole measurements obtained during the National Gas Hydrate Program Expedition 01 of India at various sites in the Krishna Godavari Basin. Measured downhole temperature gradients and seafloor-temperatures, sediment thermal conductivities, and seismic velocity are utilized to generate regression functions for these parameters as function of overall water depth. In the first approach the base of gas hydrate stability is predicted from seafloor bathymetry using these regression functions and heat flow and geothermal gradient are calculated. In a second approach the observed BSR depth from the seismic profiles (measured in two-way travel time) is converted into heat flow and geothermal gradient using the same ground-truth data. The geothermal gradient estimated from the BSR varies from 27 to 67°C/km. Corresponding heat flow values range from 24 to 60 mW/m2. The geothermal modeling shows a close match of the predicted base of the gas hydrate stability zone with the observed BSR depths.  相似文献   

17.
《Marine Geology》2006,225(1-4):177-190
Active hydrothermal vent sites were sampled during 1997 in a series of submersible dives at the active Grimsey (GHF) and Kolbeinsey (KHF) hydrothermal fields off the north coast of Iceland. This study focuses on secondary clay minerals which were formed in two different settings. The GHF is characterized by the presence of clay minerals precipitated within active chimneys. By contrast, the KHF is characterized by the presence of secondary clay minerals, which are the products of hydrothermal alteration of lava fragments. Based on XRD, electron microprobe and ICP-MS analyses, the dominant clay mineral in both hydrothermal fields is saponite (Mg-rich smectite). Chlorite and chlorite–smectite mixed-layer minerals also occur at the KHF. The Mg-rich nature of saponite from the GHF chimneys suggests intense Mg metasomatism in the mixing zone where hydrothermal fluids interact with seawater at temperatures of 250 °C. Saponite formation resulted in the additional uptake of Cu, Zn, and Pb. Enrichment in Ba is evident in the almost pure saponite from the KHF. Based on oxygen isotope data, the saponite formation at the KHF occurred at 148 °C, which is close to the maximum measured fluid temperature of 131 °C in this field.  相似文献   

18.
The Hyuga-nada region of southwest Japan, which is located off the east coast of Kyushu Island, may have the potential to generate great interplate earthquakes along the Nankai trough in the future. In this area, thrust earthquakes of M = 6.7–7.2 have occurred with recurrence intervals of approximately 30 years. In association with these earthquakes, possible local heterogeneities of plate coupling may be expected within 100 km from the coast in the Hyuga-nada region. We investigate numerical experiments to determine the spatial and temporal resolution of slip on the plate interface beneath the Hyuga-nada offshore region. For this purpose, we calculated synthetic displacement data from the result of numerical simulation conducted for the afterslip following an Mw 6.8 earthquake, for existing global positioning system stations on land and planned ocean floor seismic network stations. The spatial and temporal distribution of fault slip is then estimated using a Kalman filter-based inversion. The slip distribution estimated by using ocean floor stations demonstrates that the heterogeneity of plate coupling is resolved approximately within 50 km from the coastal area. This heterogeneity corresponds to the coseismic area of an Mw 6.8 earthquake with a radius of 10 km. Our study quantitatively evaluates the spatial resolution of aseismic slip in the Hyuga-nada region. Analysis based on continuous ocean floor data is useful for resolving the spatial variations of heterogeneities in plate couplings.  相似文献   

19.
Study of petrophysical properties of rocks in seafioor hydrothermal fields has great significance for inves- tigation of seafloor hydrothermal activities, especially for polymetallic sulfides prospecting. In the present study, based on the current experimental conditions, we conducted systematic experiments to measure the magnetic susceptibility, electrical resistivity, porosity, density, as well as acoustic wave velocity of seafloor rocks and sulfides. Subsequently, we measured the physical characteristics of hydrothermal sulfides, basalts and peridotites which were collected from newly discovered seafloor hydrothermal fields at 49.6°E, 50.5°E, 5 1°E, 63.5°E, and 63.9°E of the Southwest Indian Ridge (SWIR). Previously available and newly collected data were combined to characterize the physical differences between polymetallic sulfides and rocks. We also discussed the impact of hydrothermal alteration on the bedrock and demonstrated how these petrophysical properties of rocks can help in geophysical prospecting of seafloor hydrothermal fields as indicators.  相似文献   

20.
The first thorough analysis of microfossils from ore-bearing sediments of the Ashadze-1 hydrothermal field in the Mid-Atlantic Ridge sampled during cruise 26 of the R/V Professor Logachev in 2005 revealed the substantial influence of hydrothermal processes on the preservation of planktonic calcareous organisms, as well as on the preservation and composition of the benthic foraminifers. From the lateral and vertical distribution patterns and the secondary alterations of the microfossils, it is inferred that the main phase of the hydrothermal mineralization occurred in the Holocene. Heavy metals (Cu, Co, Cr, and Ag) were accumulated by foraminiferal tests and in their enveloping Fe-Mn crusts. The distribution of authigenic minerals replacing foraminiferal tests demonstrates local zoning related to the hydrothermal activity. There are three mineral-geochemical zones defined: the sulfide zone, the zone with an elevated Mg content, and zone of Fe-Mn crusts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号