共查询到4条相似文献,搜索用时 15 毫秒
1.
Lakes over the inner Tibetan Plateau (TP) are very sensitive to the regional environmental transformations and climate changes. Well-preserved lake sediments around these lakes provide critical geomorphological and sedimentary evidence that can be used to infer the past hydroclimate changes. In this study, a lacustrine section from a sandy shoreline (∼74 m above the modern lake) situated to the northwest of modern Dawa Co in the inner TP was investigated using both luminescence and radiocarbon dating methods. Our results demonstrated: (1) the quartz optically simulated luminescence (OSL) dating yielded much younger ages (∼4 ka) than that of the post-infrared IRSL (pIRIR) dating of the K-feldspar fraction; (2) fading test showed g-values ranging between 1.34 and 4.46%/decade for quartz OSL signals, which is considered to be responsible for the underestimation of the corresponding ages; (3) the AMS 14C age of the charcoal sample from the section is in line with the K-feldspar pIRIR225 ages, confirming the reliability of the pIRIR225 dates and the underestimation of the quartz OSL ages. The anomalous fading of quartz OSL signals and the consequent age underestimation have been reported in several other lakes on the TP, we presented here for the first time firm evidence of the phenomenon with the help of a robust independent control of AMS 14C age of the charcoal. Based on the pIRIR225 and AMS 14C ages, we conclude that Dawa Co underwent a prominent highstand during the early Holocene (∼9–7 ka), which was probably controlled by the large amounts of glacial meltwater input and the increased monsoonal precipitation. 相似文献
2.
The Bohai Sea is a semi-enclosed continental shelf sea in northern China. Three transgression layers have been identified from the Late Quaternary strata in the western Bohai Sea and the coastal regions, which provide critical information on Late Quaternary sea-level fluctuations and landscape development. The three transgression layers were previously assigned to Marine Isotope Stage (MIS) 1 (transgression 1, T1), MIS 3 (T2) and MIS 5 (T3), respectively, mainly based on 14C dating. However, this chronological framework aroused an enigma that the regional sea level in MIS 3 was even higher than that of MIS 5, conflicting with the context of global sea-level pattern. In order to clarify this issue, here quartz optically stimulated luminescence (OSL) dating (four samples) was used to constrain the T2 chronology of borehole TJC-1 from the western Bohai Sea. Radiocarbon samples (eight) of peaty sediments were also measured for reference and comparison. All the four OSL samples showed saturation ages of >80 ka, suggesting that the T2 layer should have formed at least in MIS 5, instead of in MIS 3. Radiocarbon ages in T2 should have been severely underestimated, with a saturation age range of 22–30 cal ka BP, similar to all the previous published radiocarbon ages. The renewed OSL chronological framework for Late Quaternary transgressions in the western Bohai Sea is in better compliance with the history of global sea-level change. 相似文献
3.
M. Demuro R.G. Roberts D.G. Froese L.J. Arnold F. Brock C.Bronk Ramsey 《Quaternary Geochronology》2008,3(4):346-364
Optically stimulated luminescence (OSL) dating of perennially frozen loess was tested on quartz grains extracted from deposits associated with the late Pleistocene Dawson tephra in western Yukon Territory, Canada. OSL samples were obtained from ice-rich loess bracketing the Dawson tephra, while radiocarbon (14C) samples were collected from the bulk sediments directly underlying the tephra and from a ground-squirrel burrow 2.7 m below the tephra. Here we report the OSL characteristics and ages of the extracted quartz grains, as well as additional radiocarbon ages for samples described in Froese [2002. Age and significance of the late Pleistocene Dawson tephra in eastern Beringia. Quaternary Science Reviews 21, 2137–2142; 2006. Seasonality of the late Pleistocene Dawson tephra and exceptional preservation of a buried riparian surface in central Yukon Territory, Canada. Quaternary Science Reviews 25, 1542–1551]. We refine the time of Dawson tephra deposition to between 25,420±70 and 25,290±80 14C a BP. Bayesian analysis of constraining radiocarbon ages places the deposition of the Dawson tephra at between 30,433 and 30,032 cal a BP. Linear modulation (LM) OSL analysis of multi-grain aliquots of quartz showed that the initial part of the decay curve is dominated by a rapidly bleached (‘fast’) component; these samples, however, had relatively dim continuous wave (CW) OSL signals at the multi-grain aliquot (each composed of 80 grains) and single-grain scales of analysis. The single-aliquot regenerative-dose protocol was applied to multi-grain aliquots and single grains to obtain equivalent dose (De) values for samples collected from below and above the Dawson tephra. The De values were examined graphically and numerically, the latter using the central age, minimum age, and finite mixture models. For multi-grain aliquots, the central age model gave weighted mean De values between 30 and 50 Gy, which greatly underestimated the expected De of 74–81 Gy for both samples studied. Possible reasons for these underestimations are discussed, and a solution proposed based on single-grain analysis. Measurements of single grains produced De values in agreement with the expected De, and yielded OSL ages of 28±5 and 30±4 ka for the samples taken from above and below the Dawson tephra, respectively. Examination of individual grains with differing luminescence behaviors showed that a significant number of the measured quartz grains exhibited anomalous luminescence properties that would have compromised the results obtained from multi-grain aliquots. We therefore recommend analysis of individual grains to overcome the age-shortfall from multi-grain analysis of these and similar samples of quartz. 相似文献
4.
C. E. Valladares D. Alcaydé J. V. Rodriguez J. M. Ruohoniemi A. P. Van Eyken 《Annales Geophysicae》1999,17(8):1020-1039
We report important results of the first campaign specially designed to observe the formation and the initial convection of polar cap patches. The principal instrumentation used in the experiments comprised the EISCAT, the Sondrestrom, and the Super DARN network of radars. The experiment was conducted on February 18, 1996 and was complemented with additional sensors such as the Greenland chain of magnetometers and the WIND and IMP-8 satellites. Two different types of events were seen on this day, and in both events the Sondrestrom radar registered the formation and evolution of large-scale density structures. The first event consisted of the passage of traveling convection vortices (TCV). The other event occurred in association with the development of large plasma jets (LPJ) embedded in the sunward convection part of the dusk cell. TCVs were measured, principally, with the magnetometers located in Greenland, but were also confirmed by the line-of-sight velocities from the Sondrestrom and SuperDARN radars. We found that when the magnetic perturbations associated with the TCVs were larger than 100 nT, then a section of the high-latitude plasma density was eroded by a factor of 2. We suggest that the number density reduction was caused by an enhancement in the O+ recombination due to an elevated Ti, which was produced by the much higher frictional heating inside the vortex. The large plasma jets had a considerable (>1000 km) longitudinal extension and were 200–300 km in width. They were seen principally with the Sondrestrom, and SuperDARN radars. Enhanced ion temperature (Ti) was also observed by the Sondrestrom and EISCAT radars. These channels of high Ti were exactly collocated with the LPJs and some of them with regions of eroded plasma number density. We suggest that the LPJs bring less dense plasma from later local times. However, the recent time history of the plasma flow is important to define the depth of the density depletion. Systematic changes in the latitudinal location and in the intensity of the LPJs were observed in the 2 min time resolution data of the SuperDARN radars. The effect of the abrupt changes in the LPJs location is to create regions containing dayside plasma almost detached from the rest of the oval density. One of these density features was seen by the Sondrestrom radar at 1542 UT. The data presented here suggest that two plasma structuring mechanisms (TCVs and LPJs) can act tens of minutes apart to produce higher levels of density structures in the near noon F-region ionosphere. 相似文献