首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
This work is a part of the TOR1 project (1996–1997) and is devoted to determining the lithospheric structure across the Sorgenfrei–Tornquist Zone in Northern Europe. For the first time in Europe, a very dense seismic broadband array has offered the possibility of determining very sharp lateral variations in the structure of the lithosphere at small scales using surface wave analysis. We measure phase velocities for Rayleigh waves with periods ranging between 10 and 100 s, both within arrays with apertures of 40–50 km (small compared to the wavelength), and along long profiles of at least 100 km. Dispersion curves are then inverted and shear-wave velocity models down to the depth of 200 km are proposed. We show that the Sorgenfrei–Tornquist Zone is a major tectonic feature within the whole lithosphere. North–east of this feature, in Sweden beneath the Baltic Shield, no lithosphere–asthenosphere boundary is observed to exist to depths of 200 km. South–west of the Sorgenfrei–Tornquist Zone, beneath Denmark, we find a lithospheric thickness of 120±20 km. The transition across the Sorgenfrei–Tornquist Zone is sharp and determined to be very steeply dipping to the south–west. We also demonstrate the existence of a sharp discontinuity between the lithospheres beneath Denmark (120±20 km thick) and beneath Germany (characterized by thicknesses of 50±10 km in the northernmost part and 100±20 km in the southwest). This discontinuity is most likely related to the Trans-European Fault at the surface.  相似文献   

2.
The main aim of the TOR project is to study the lithospheric–asthenospheric boundary structure under the Sorgenfrei–Tornquist Zone, across northern Germany, Denmark and southern Sweden. Relative arrival-time residuals of teleseismic P and S phases from 51 earthquakes, recorded by 150 seismic stations along the TOR array, were used to delineate the transition zone in the studied area. The effects of crustal structures were investigated by correcting the teleseismic residuals for travel-time variations in the crust based on a 3D crustal model derived from other data. The inversion was carried out for S phases. The results were then compared with the corresponding P-wave models. As expected, the derived models show that the relatively old and cold Baltic Shield has higher velocity at depth than the younger lithosphere farther South. The models show two sharp and distinct increases in depth to velocities which are low compared to our reference model, as we move from South to North. The location and sharpness of these boundaries suggests that the features resolved are, at least partially, compositional in origin, presumably related to mantle depletion. A sharp and steep subcrustal boundary is found roughly coincident with the southern edge of Sweden. This is below where the edge of the Baltic Shield is usually placed, based on surface geological evidence (the Sorgenfrei–Tornquist Zone). Another less significant transition is recognised more or less beneath the Elbe-lineament. Relatively high d(Vp / Vs) ratios under the central part of the profile (Denmark) indicate relatively low S-velocity in an area where a gravity high supports the hypothesis of extensive mafic intrusions.  相似文献   

3.
The Moho topography is strongly undulating in southern Scandinavia and northeastern Europe. A map of the depth to Moho shows similarities between the areas of the Teisseyre–Tornquist Zone (TTZ) in Poland and the Fennoscandian Border Zone (FBZ), which is partly coinciding with the Sorgenfrei–Tornquist Zone (STZ) in Denmark. The Moho is steeply dipping at these zones from a crustal thickness of approximately 32 km in the young Palaeozoic Platform and basin areas to approximately 45 km in the old Precambrian Platform and Baltic Shield. The Moho reflectivity (PMP waveform) in the POLONAISE'97 refraction/wide-angle seismic data from Poland and Lithuania is variable, ranging from ‘sharp’ to strongly reverberating signals of up to 2 s duration. There is little or no lower crustal wide-angle reflectivity in the thick Precambrian Platform, whereas lower crustal reflectivity in the thin Palaeozoic Platform is strongly reverberating, suggesting that the reflective lower crust and upper mantle is a young phenomena. From stochastic reflectivity modelling, we conclude that alternating high- and low-velocity layers with average thicknesses of 50–300 m and P-wave velocity variations of ±3–4% of the background velocity can explain the lower crustal reflectivity. Sedimentary layering affects the reflectivity of deeper layers significantly and must be considered in reflectivity studies, although the reverberations from the deeper crust cannot be explained by the sedimentary layering only. The reflective lower crust and upper mantle may correspond to a zone that has been intruded by mafic melts from the mantle during crustal extension and volcanism.  相似文献   

4.
The Indo–Asian continental collision is known to have had a great impact on crustal deformation in south-central Asia, but its effects on the sublithospheric mantle remain uncertain. Studies of seismic anisotropy and volcanism have suggested that the collision may have driven significant lateral mantle flow under the Asian continent, similar to the observed lateral extrusion of Asian crustal blocks. Here we present supporting evidence from P-wave travel time seismic tomography and numerical modeling. The tomography shows continuous low-velocity asthenospheric mantle structures extending from the Tibetan plateau to eastern China, consistent with the notion of a collision-driven lateral mantle extrusion. Numerical simulations suggest that, at the presence of a low-viscosity asthenosphere, continued mass injection under the Indo–Asian collision zone over the past 50 My could have driven significant lateral extrusion of the asthenospheric mantle, leading to diffuse asthenospheric upwelling, rifting, and widespread Cenozoic volcanism in eastern China.  相似文献   

5.
A passive teleseismic experiment (TOR), traversing the northern part of the Trans-European Suture Zone (TESZ) in Germany, Denmark and Sweden, recorded data for tomography of the upper mantle with a lateral resolution of few tens of kilometers as well as for a detailed study of seismic anisotropy. A joint inversion of teleseismic P-residual spheres and shear-wave splitting parameters allows us to retrieve the 3D orientation of dipping anisotropic structures in different domains of the sub-crustal lithosphere. We distinguish three major domains of different large-scale fabric divided by first-order sutures cutting the whole lithosphere thickness. The Baltic Shield north of the Sorgenfrei–Tornquist Zone (STZ) is characterised by lithosphere thickness around 175 km and the anisotropy is modelled by olivine aggregate of hexagonal symmetry with the high-velocity (ac) foliation plane striking NW–SE and dipping to NE. Southward of the STZ, beneath the Norwegian–Danish Basin, the lithosphere thins abruptly to about 75 km. In this domain, between the STZ and the so-called Caledonian Deformation Front (CDF), the anisotropic structures strike NE–SW and the high-velocity (ac) foliation dips to NW. To the south of the CDF, beneath northern Germany, we observe a heterogeneous lithosphere with variable thickness and anisotropic structures with high velocity dipping predominantly to SW. Most of the anisotropy observed at TOR stations can be explained by a preferred olivine orientation frozen in the sub-crustal lithosphere. Beneath northern Germany, a part of the shear-wave splitting is probably caused by a present-day flow in the asthenosphere.  相似文献   

6.
The interpretation of newly released commercial 2D reflection seismic data in the Kattegat area, Denmark, has provided us with a better understanding of the Palaeozoic tectonic processes along the Tornquist Fault Zone. A Base Palaeozoic time structure map, a Lower Palaeozoic TWT isopach map, a “true” Lower Palaeozoic TWT isopach map, an Upper Carboniferous/Lower Permian syn-rift TWT isopach map, a Top pre-Zechstein time structure map and a Zechstein combined TWT isopach and Palaeogeography map have been generated. The uniform Lower Palaeozoic sequence thickness in the Kattegat, both inside and outside the Tornquist Zone indicates only minor lateral movements if any, whereas the extensive Upper Silurian sequence, increasing in thickness to the north, indicates a relatively fast regional subsidence. The Base Palaeozoic time structure map and the Late Palaeozoic syn-rift isopach map show a clear Late Palaeozoic extension in the area. The syn-rift isopach map, in combination with the time-equivalent opening of the Skagerrak graben at right angles to the Tornquist Zone in the Kattegat, indicates that this extensional tectonic event had a dextral slip component. Measurements on internal extensional faults in the Tornquist Zone, give a minimum right-lateral displacement of 10.4 km. The footwall blocks were deeply eroded during the Early Permian rifting, and at Zechstein times the area became a peneplane. The Tornquist Zone was later exposed to several tectonic phases, where dextral slip played a role, indicated by the “push up” and “pull down” structures caused by restraining and releasing bends of the Børglum Fault. The dextral displacement along the Børglum Fault since the beginning of the Permian is in the order of 5–7 km based on the displacement of a Lower Palaeozoic local depocentre. Early Permian depocentres and faults, which gives a total amount of right-lateral displacement since the Early Palaeozoic in the order of 15–20 km. The continuously repeated tectonic episodes along the Tornquist Zone throughout most of the Phanerozoic, show that the zone was easily reactivated, implying deep-seated basement faults. The Tornquist Zone can be seen as a “buffer zone”, between continental blocks, whenever changes in the regional stress field are induced.  相似文献   

7.
The POLONAISE'97 (POlish Lithospheric ONset—An International Seismic Experiment, 1997) seismic experiment in Poland targeted the deep structure of the Trans-European Suture Zone (TESZ) and the complex series of upper crustal features around the Polish Basin. One of the seismic profiles was the 300-km-long profile P2 in northwestern Poland across the TESZ. Results of 2D modelling show that the crustal thickness varies considerably along the profile: 29 km below the Palaeozoic Platform; 35–47 km at the crustal keel at the Teisseyre–Tornquist Zone (TTZ), slightly displaced to the northeast of the geologic inversion zone; and 42 km below the Precambrian Craton. In the Polish Basin and further to the south, the depth down to the consolidated basement is 6–14 km, as characterised by a velocity of 5.8–5.9 km/s. The low basement velocities, less than 6.0 km/s, extend to a depth of 16–22 km. In the middle crust, with a thickness of ca. 4–14 km, the velocity changes from 6.2 km/s in the southwestern to 6.8 km/s in the northeastern parts of the profile. The lower crust also differs between the southwestern and northeastern parts of the profile: from 8 km thickness, with a velocity of 6.8–7.0 km/s at a depth of 22 km, to ca.12 km thickness with a velocity of 7.0–7.2 km/s at a depth of 30 km. In the lowermost crust, a body with a velocity of 7.20–7.25 km/s was found above Moho at a depth of 33–45 km in the central part of the profile. Sub-Moho velocities are 8.2–8.3 km/s beneath the Palaeozoic Platform and TTZ, and about 8.1 km/s beneath the Precambrian Platform. Seismic reflectors in the upper mantle were interpreted at 45-km depth beneath the Palaeozoic Platform and 55-km depth beneath the TTZ.

The Polish Basin is an up to 14-km-thick asymmetric graben feature. The basement beneath the Palaeozoic Platform in the southwest is similar to other areas that were subject to Caledonian deformation (Avalonia) such that the Variscan basement has only been imaged at a shallow depth along the profile. At northeastern end of the profile, the velocity structure is comparable to the crustal structure found in other portions of the East European Craton (EEC). The crustal keel may be related to the geologic inversion processes or to magmatic underplating during the Carboniferous–Permian extension and volcanic activity.  相似文献   


8.
The Central European Basin System (CEBS) is composed of a series of subbasins, the largest of which are (1) the Norwegian–Danish Basin (2), the North German Basin extending westward into the southern North Sea and (3) the Polish Basin. A 3D structural model of the CEBS is presented, which integrates the thickness of the crust below the Permian and five layers representing the Permian–Cenozoic sediments. Structural interpretations derived from the 3D model and from backstripping are discussed with respect to published seismic data. The analysis of structural relationships across the CEBS suggests that basin evolution was controlled to a large degree by the presence of major zones of crustal weakness. The NW–SE-striking Tornquist Zone, the Ringkøbing-Fyn High (RFH) and the Elbe Fault System (EFS) provided the borders for the large Permo–Mesozoic basins, which developed along axes parallel to these fault systems. The Tornquist Zone, as the most prominent of these zones, limited the area affected by Permian–Cenozoic subsidence to the north. Movements along the Tornquist Zone, the margins of the Ringkøbing-Fyn High and the Elbe Fault System could have influenced basin initiation. Thermal destabilization of the crust between the major NW–SE-striking fault systems, however, was a second factor controlling the initiation and subsidence in the Permo–Mesozoic basins. In the Triassic, a change of the regional stress field caused the formation of large grabens (Central Graben, Horn Graben, Glückstadt Graben) perpendicular to the Tornquist Zone, the Ringkøbing-Fyn High and the Elbe Fault System. The resulting subsidence pattern can be explained by a superposition of declining thermal subsidence and regional extension. This led to a dissection of the Ringkøbing-Fyn High, resulting in offsets of the older NW–SE elements by the younger N–S elements. In the Late Cretaceous, the NW–SE elements were reactivated during compression, the direction of which was such that it did not favour inversion of N–S elements. A distinct change in subsidence controlling factors led to a shift of the main depocentre to the central North Sea in the Cenozoic. In this last phase, N–S-striking structures in the North Sea and NW–SE-striking structures in The Netherlands are reactivated as subsidence areas which are in line with the direction of present maximum compression. The Moho topography below the CEBS varies over a wide range. Below the N–S-trending Cenozoic depocentre in the North Sea, the crust is only 20 km thick compared to about 30 km below the largest part of the CEBS. The crust is up to 40 km thick below the Ringkøbing-Fyn High and up to 45 km along the Teisseyre–Tornquist Zone. Crustal thickness gradients are present across the Tornquist Zone and across the borders of the Ringkøbing-Fyn High but not across the Elbe Fault System. The N–S-striking structural elements are generally underlain by a thinner crust than the other parts of the CEBS.The main fault systems in the Permian to Cenozoic sediment fill of the CEBS are located above zones in the deeper crust across which a change in geophysical properties as P-wave velocities or gravimetric response is observed. This indicates that these structures served as templates in the crustal memory and that the prerift configuration of the continental crust is a major controlling factor for the subsequent basin evolution.  相似文献   

9.
Magnetic anomaly maps of the Trans-European Suture Zone (TESZ) highlight the contrast between the highly magnetic crust of Baltica and the less magnetic terranes to the SW of the suture. Although the TESZ is imaged on gravity maps, anomalies related to postcollisional rifting and reactivated rift structures tend to dominate.

Seismic and potential field data have been used to construct 2 -D crustal models along three profiles crossing the Baltica–Avalonia suture in the southern North Sea (SNS). The first of these models lies along a transect assembled from reflection line GECO SNST 83-07 and refraction profile EUGENO-S 2; the other two models are coincident with MONA LISA profiles 1 and 2. Additional structural information and density information for the cover sequence is available from released wells, while magnetic susceptibility values are compatible with values measured from borehole core samples.

Magnetic anomalies related to the suture are interpreted as due to magnetic Baltican basement of the Ringkøbing-Fyn High dipping SW beneath nonmagnetic Avalonian basement underlying the western part of the SNS. Low-amplitude, long-wavelength magnetic anomalies occurring outboard of the suture are interpreted as due to a mid-crustal magnetic body, possibly a buried magmatic complex. This might represent the ‘missing’ arc related to inferred southward subduction of the Tornquist Sea, or an exotic element emplaced during the collision between Avalonia and Baltica. The present model supports an imbricated structure within Baltica as indicated by the latest reprocessing of the MONA LISA seismic data.  相似文献   


10.
From July 1996 to August 1997 the TOR project operated 130 seismographs in North Germany, Denmark and South Sweden, with the aim of collecting signals from local, regional and teleseismic earthquakes. This data set is particularly interesting since the seismic antenna crosses the most significant geological boundary in Europe, the Tornquist Zone, which in the northern part is the border between the Baltic Shield and the younger European lithosphere. Previous studies have shown significant physical changes in the crust and upper mantle across this transition zone, including two independent teleseismic tomographic studies of the TOR data set. But these two studies disagree on the orientation of the slope of the transition. Both studies used an iterative linearized inversion method. We will in this work Preprint submitted to Elsevier Science 27 July 2005 present an inversion based on Bayesian statistics, where the solution space is examined in order to study a very large number of tomographic solutions and to examine the solution uniqueness and uncertainty. The method is applied to measurements of 3345 relative teleseismic P-phase travel times from 48 teleseismic earthquakes with good azimuthal coverage with respect to the great circle arc of the TOR array. We find the lithospheric transition to be a north east inclination of around 30° to 45° off vertical.  相似文献   

11.
Mafic alkalic volcanism was widespread in the Carpathian–Pannonian region (CPR) between 11 and 0.2 Ma. It followed the Miocene continental collision of the Alcapa and Tisia blocks with the European plate, as subduction-related calc-alkaline magmatism was waning. Several groups of mafic alkalic rocks from different regions within the CPR have been distinguished on the basis of ages and/or trace-element compositions. Their trace element and Sr–Nd–Pb isotope systematics are consistent with derivation from complex mantle-source regions, which included both depleted asthenosphere and metasomatized lithosphere. The mixing of DMM-HIMU-EMII mantle components within asthenosphere-derived magmas indicates variable contamination of the shallow asthenosphere and/or thermal boundary layer of the lithosphere by a HIMU-like component prior to and following the introduction of subduction components.Various mantle sources have been identified: Lower lithospheric mantle modified by several ancient asthenospheric enrichments (source A); Young asthenospheric plumes with OIB-like trace element signatures that are either isotopically enriched (source B) or variably depleted (source C); Old upper asthenosphere heterogeneously contaminated by DM-HIMU-EMII-EMI components and slightly influenced by Miocene subduction-related enrichment (source D); Old upper asthenosphere heterogeneously contaminated by DM-HIMU-EMII components and significantly influenced by Miocene subduction-related enrichment (source E). Melt generation was initiated either by: (i) finger-like young asthenospheric plumes rising to and heating up the base of the lithosphere (below the Alcapa block), or (ii) decompressional melting of old asthenosphere upwelling to replace any lower lithosphere or heating and melting former subducted slabs (the Tisia block).  相似文献   

12.
The Carpathian–Pannonian Region contains Neogene to Quaternary magmatic rocks of highly diverse composition (calc-alkaline, shoshonitic and mafic alkalic) that were generated in response to complex microplate tectonics including subduction followed by roll-back, collision, subducted slab break-off, rotations and extension. Major element, trace element and isotopic geochemical data of representative parental lavas and mantle xenoliths suggests that subduction components were preserved in the mantle following the cessation of subduction, and were reactivated by asthenosphere uprise via subduction roll-back, slab detachment, slab-break-off or slab-tearing. Changes in the composition of the mantle through time are evident in the geochemistry, supporting established geodynamic models.Magmatism occurred in a back-arc setting in the Western Carpathians and Pannonian Basin (Western Segment), producing felsic volcaniclastic rocks between 21 to 18 Ma ago, followed by younger felsic and intermediate calc-alkaline lavas (18–8 Ma) and finished with alkalic-mafic basaltic volcanism (10–0.1 Ma). Volcanic rocks become younger in this segment towards the north. Geochemical data for the felsic and calc-alkaline rocks suggest a decrease in the subduction component through time and a change in source from a crustal one, through a mixed crustal/mantle source to a mantle source. Block rotation, subducted roll-back and continental collision triggered partial melting by either delamination and/or asthenosphere upwelling that also generated the younger alkalic-mafic magmatism.In the westernmost East Carpathians (Central Segment) calc-alkaline volcanism was simultaneously spread across ca. 100 km in several lineaments, parallel or perpendicular to the plane of continental collision, from 15 to 9 Ma. Geochemical studies indicate a heterogeneous mantle toward the back-arc with a larger degree of fluid-induced metasomatism, source enrichment and assimilation on moving north-eastward toward the presumed trench. Subduction-related roll-back may have triggered melting, although there may have been a role for back-arc extension and asthenosphere uprise related to slab break-off.Calc-alkaline and adakite-like magmas were erupted in the Apuseni Mountains volcanic area (Interior Segment) from15–9 Ma, without any apparent relationship with the coeval roll-back processes in the front of the orogen. Magmatic activity ended with OIB-like alkali basaltic (2.5 Ma) and shoshonitic magmatism (1.6 Ma). Lithosphere breakup may have been an important process during extreme block rotations (60°) between 14 and 12 Ma, leading to decompressional melting of the lithospheric and asthenospheric sources. Eruption of alkali basalts suggests decompressional melting of an OIB-source asthenosphere. Mixing of asthenospheric melts with melts from the metasomatized lithosphere along an east–west reactivated fault-system could be responsible for the generation of shoshonitic magmas during transtension and attenuation of the lithosphere.Voluminous calc-alkaline magmatism occurred in the Cãlimani-Gurghiu-Harghita volcanic area (South-eastern Segment) between 10 and 3.5 Ma. Activity continued south-eastwards into the South Harghita area, in which activity started (ca. 3.0–0.03 Ma, with contemporaneous eruption of calc-alkaline (some with adakite-like characteristics), shoshonitic and alkali basaltic magmas from 2 to 0.3 Ma. Along arc magma generation was related to progressive break-off of the subducted slab and asthenosphere uprise. For South Harghita, decompressional melting of an OIB-like asthenospheric mantle (producing alkali basalt magmas) coupled with fluid-dominated melting close to the subducted slab (generating adakite-like magmas) and mixing between slab-derived melts and asthenospheric melts (generating shoshonites) is suggested. Break-off and tearing of the subducted slab at shallow levels required explaining this situation.  相似文献   

13.
Joint analysis of shear‐wave splitting parameters and directional dependence of teleseismic P residuals based on data from the seismic experiment TOR across the Trans‐European Suture Zone suggest that the Sorgenfrei–Tornquist Zone (STZ) in northern Denmark forms the south‐western margin of Baltica in the upper mantle. Different lithosphere thickness and different orientation of seismic anisotropy in the mantle lithosphere identify three domains separated by the STZ between Denmark and southern Sweden and the Thor Suture between northern Germany and Denmark. We suggest that the anisotropy reflects frozen‐in olivine fabrics, most probably created during early stages of the evolution of the European continent. The middle Danish block might represent a microplate caught in between Avalonia and Baltica before the Caledonian orogeny.  相似文献   

14.
We present new results on the structure resulting from Palaeoproterozoic terrane accretion and later formation of one of the aulacogens in the East European Platform. Seismic data has been acquired along the 530-km-long, N–S-striking EUROBRIDGE'97 traverse across Sarmatia, a major crustal segment of the East European Craton. The profile extends across the Ukrainian Shield from the Devonian Pripyat Trough, across the Palaeoproterozoic Volyn Block and the Korosten Pluton, into the Archaean Podolian Block. Seismic waves from chemical explosions at 18 shot points at approximately 30-km intervals were recorded in two deployments by 120 mobile three-component seismographs at 3–4 km nominal station spacing. The data has been interpreted by use of two-dimensional tomographic travel time inversion and ray trace modelling. The high data quality allows modelling of the P- and S-wave velocity structure along the profile. There are pronounced differences in seismic velocity structure of the crust and uppermost mantle between the three main tectonic provinces traversed by the profile: (i) the Pripyat Trough is a ca. 4-km-deep sedimentary basin, fully located in the Osnitsk–Mikashevichi Igneous Belt in the northern part of the profile. The velocity structure is typical for a Precambrian craton, but is underlain by a ca. 5-km-thick lowest crustal layer of high velocity. The development of the Pripyat Trough appears to have only affected the upper crust without noticeable thinning of the whole crust; this may be explained by a rheologically strong lithosphere at the time of formation of the trough. (ii) Very high seismic velocity and Vp/Vs ratio characterise the Volyn Block and Korosten Pluton to a depth of 15 km and probably also the lowest crust. The values are consistent with an intrusive body of mafic composition in the upper crust that formed from bimodal melts derived from the mantle and the lower crust. (iii) The Podolian Block is close to a typical cratonic velocity structure, although it is characterised by relatively low seismic velocity and Vp/Vs ratio. A pronounced SW-dipping mantle reflector from Moho to at least 70 km depth may represent the Proterozoic suture between Sarmatia and Volgo–Uralia, the structure from terrane accretion, or a later shear zone in the upper mantle. The sub-Moho P-wave seismic velocity is high everywhere along the profile, with the exception of the area above the dipping reflector. This velocity change further supports a plate tectonic origin of the dipping mantle reflector. The profile demonstrates that structure from Palaeoproterozoic plate tectonic processes are still identifiable in the lithosphere, even where younger metamorphic equilibration of the crust has taken place.  相似文献   

15.
We combine geological and geophysical data to develop a generalized model for the lithospheric evolution of the central Andean plateau between 18° and 20° S from Late Cretaceous to present. By integrating geophysical results of upper mantle structure, crustal thickness, and composition with recently published structural, stratigraphic, and thermochronologic data, we emphasize the importance of both the crust and upper mantle in the evolution of the central Andean plateau. Four key steps in the evolution of the Andean plateau are as follows. 1) Initiation of mountain building by 70 Ma suggested by the associated foreland basin depositional history. 2) Eastward jump of a narrow, early fold–thrust belt at 40 Ma through the eastward propagation of a 200–400-km-long basement thrust sheet. 3) Continued shortening within the Eastern Cordillera from 40 to 15 Ma, which thickened the crust and mantle and established the eastern boundary of the modern central Andean plateau. Removal of excess mantle through lithospheric delamination at the Eastern Cordillera–Altiplano boundary during the early Miocene appears necessary to accommodate underthrusting of the Brazilian shield. Replacement of mantle lithosphere by hot asthenosphere may have provided the heat source for a pulse of mafic volcanism in the Eastern Cordillera and Altiplano at 24–23 Ma, and further volcanism recorded by 12–7 Ma crustal ignimbrites. 4) After 20 Ma, deformation waned in the Eastern Cordillera and Interandean zone and began to be transferred into the Subandean zone. Long-term rates of shortening in the fold–thrust belt indicate that the average shortening rate has remained fairly constant (8–10 mm/year) through time with possible slowing (5–7 mm/year) in the last 15–20 myr. We suggest that Cenozoic deformation within the mantle lithosphere has been focused at the Eastern Cordillera–Altiplano boundary where the mantle most likely continues to be removed through piecemeal delamination.  相似文献   

16.
The Sr, Nd and Pb isotopic compositions for the Kovdor phoscorite–carbonatite complex (PCC), Kola Peninsula, NW Russia, have been determined to characterize the mantle sources involved and to evaluate the relative contributions of a plume and subcontinental lithospheric mantle in the formation of the complex. The Kovdor PCC is a part of the Kovdor ultramafic–alkaline–carbonatite massif, and consists of six intrusions. The initial isotopic ratios of the analyzed samples, calculated at 380 Ma, display limited variations: εNd, + 2.0 to + 4.7; 87Sr/86Sr, 0.70319 to 0.70361 (εSr, − 12.2 to − 6.2); 206Pb/204Pb, 18.38 to 18.74; 207Pb/204Pb, 15.45 to 15.50; 208Pb/204Pb, 37.98 to 39.28. The Nd and Sr isotope data of the Kovdor PCC generally fit the patterns of the other phoscorites and carbonatites from the Kola Alkaline Province (KAP), but some data are slightly shifted from the mixing line defined as the Kola Carbonatite Line, having more radiogenic 87Sr/86Sr ratios. However, the less radiogenic Nd isotopic compositions and negative Δ7/4 values of Pb isotopes of the analyzed samples exclude crustal contamination, but imply the involvement of a metasomatized lithospheric mantle source. Isotopic variations indicate mixing of at least three distinct mantle components: FOZO-like primitive plume component, EMI-like enriched component and DMM-like depleted component. The isotopic nature of the EMI- and DMM-like mantle component observed in the Kovdor samples is considered to be inherited from metasomatized subcontinental lithospheric mantle. This supports the previous models invoking plume–lithosphere interaction to explain the origin of the Devonian alkaline carbonatite magmatism in the KAP.  相似文献   

17.
Collisional structures from the closure of the Tornquist Ocean and subsequent amalgamation of Avalonia and Baltica during the Caledonian Orogeny in the northern part of the Trans-European Suture Zone (TESZ) in the SW Baltic Sea are investigated. A grid of marine reflection seismic lines was gathered in 1996 during the DEKORP-BASIN '96 campaign, shooting with an airgun array of 52 l total volume and recording with a digital streamer of up to 2.1 km length. The detailed reflection seismic analysis is mainly based on post-stack migrated sections of this survey, but one profile has also been processed by a pre-stack depth migration algorithm. The data provides well-constrained images of upper crustal reflectivity and lower crustal/uppermost mantle reflections. In the area of the Caledonian suture, a reflection pattern is observed with opposing dips in the upper crust and the uppermost mantle. Detailed analysis of dipping reflections in the upper crust provides evidence for two different sets of reflections, which are separated by the O-horizon, the main decollement of the Caledonian deformation complex. S-dipping reflections beneath the sub-Permian discontinuity and above the O-horizon are interpreted as Caledonian thrust structures. Beneath the O-horizon, SW-dipping reflections in the upper crust are interpreted as ductile shear zones and crustal deformation features that evolved during the Sveconorwegian Orogeny. The Caledonian deformation complex is subdivided into (1) S-dipping foreland thrusts in the north, (2) the S-dipping suture itself that shows increased reflectivity, and (3) apparently NE-dipping downfaulted sedimentary horizons south of the Avalonia–Baltica suture, which may have been reactivated during Mesozoic normal faulting. The reflection Moho at 28–35 km depth appears to truncate a N-dipping mantle structure, which may represent remnant structures from Tornquist Ocean closure or late-collisional compressional shear planes in the upper mantle. A contour map of these mantle reflections indicates a consistent northward dip, which is steepest where there is strong bending of the Caledonian deformation front. The thin-skinned character of the Caledonian deformation complex and the fact that N-dipping mantle reflections do not truncate the Moho indicate that the Baltica crust was not mechanically involved in the Caledonian collision and, therefore, escaped deformation in this area.  相似文献   

18.
壳幔过渡层及其大陆动力学意义   总被引:9,自引:0,他引:9  
根据地震测量结果,造山带常见一个P波传播速度介于典型地壳和典型地幔之间的圈层,称为壳幔过渡层。这个圈层在地球物质科学领域常常被解释为壳幔混合层,形成机制不十分明确。提供了另一种选择,认为壳幔过渡层实际上可能是幔源岩浆底侵作用和地壳分异作用的产物,其密度随压力的逐渐变化是其波速特征的主要原因,是区域岩石圈重力不稳定的标志;也可能是软流圈物质岩石圈化的结果,是区域岩石圈逐渐冷却的象征。这个模型可以更好地解释造山带岩石圈拆沉作用、壳幔物质交换和岩浆活动,因而壳幔过渡层的查明具有重要的大陆动力学意义。  相似文献   

19.
Nd-evolutionary paths for diversified igneous suites from southern Brazil are here re-evaluated using published results. We interpret the εNd paths considering the secondary fractionation of 147Sm/144Nd due to major petrogenetic processes. The inclusion of Nd isotopes and geochemical data for Precambrian and Mesozoic basic rocks allow improving the discussion on the subcontinental lithosphere beneath southern Brazil. Late Neoproterozoic rocks, mostly granitoids, are exposed in two regions of the southern Brazilian shield, an eastern collisional belt and a western foreland. The latter included two geotectonic domains amalgamated at this time, the São Gabriel Arc (900–700 Ma), and the Taquarembó cratonic block. Magma genesis mainly involved mixture of crustal and incompatible-element-enriched mantle components, both with a long residence time. Continental segments are the Neoarchaean–Paleoproterozoic lower crust (ca. 2.55 Ga) in the western foreland, and Paleoproterozoic–Neoproterozoic recycled crust (2.1–0.8 Ga) in the collisional belt. Granitoids with a single crustal derivation are limited in the southern Brazilian Shield. Mixing processes are well-registered in the western foreland, where the re-enriched old mantle was probably mixed with a 900–700 Ma-old subducted lithosphere and a 2.55 Ga-old lower crust. The contribution of the latter increased from the early 605–580 Ma to the later 575–550 Ma Neoproterozoic events, which may be due either to crustal thickening or to delamination of the lithosphere. Magma sources were diversified in the 660–630 Ma collisional belt. Initially, they involved the mixing between two components with similar Nd isotopic ratios, a 2.1–0.8 Ga-old recycled crust and a subduction-processed old mantle. Regional heating and abundant production of granitic melts, with diversified contribution of enriched mantle components, mark the end of the collisional period, at 630–580 Ma. We can also attribute this to the delamination of the lithosphere, so that the same geodynamic process may explain the magmatism in the whole shield at the end of the Dom Feliciano Orogeny. Mesozoic rocks include flood basalts from the Cretaceous Paraná Province and sub-coeval alkalic suites. Multiple processes of metasomatism affected the lithospheric mantle, resulting in some complexity but they mainly register two enriched-mantle components, both generated during Neoarchaean–Paleoproterozoic events. One end-member has a more pronounced subduction signature. The other one probably resulted from the re-enrichment of the first component at the end of the Camboriú collisional orogeny (2.0 Ga).  相似文献   

20.
The objective of the TRANSALP project is an investigation of the Eastern Alps with regard to their deep structure and dynamic evolution. The core of the project is a 340-km-long seismic profile at 12°E between Munich and Venice. This paper deals with the P-wave velocity distribution as derived from active source travel time tomography. Our database consists of Vibroseis and explosion seismic travel times recorded at up to 100 seismological stations distributed in a 30-km-wide corridor along the profile. In order to derive a velocity and reflector model, we simultaneously inverted refractions and reflections using a derivative of a damped least squares approach for local earthquake tomography. 8000 travel time picks from dense Vibroseis recordings provide the basis for high resolution in the upper crust. Explosion seismic wide-angle reflection travel times constrain both deeper crustal velocities and structure of the crust–mantle boundary with low resolution. In the resulting model, the Adriatic crust shows significantly higher P-wave velocities than the European crust. The European Moho is dipping south at an angle of 7°. The Adriatic Moho dips north with a gentle inclination at shallower depths. This geometry suggests S-directed subduction. Azimuthal variations of the first-break velocities as well as observations of shear wave splitting reveal strong anisotropy in the Tauern Window. We explain this finding by foliations and laminations generated by lateral extrusion. Based on the P-wave model we also localized almost 100 local earthquakes recorded during the 2-month acquisition campaign in 1999. Seismicity patterns in the North seem related to the Inn valley shear zone, and to thrusting of Austroalpine units over European basement. The alignment of deep seismicity in the Trento-Vicenza region with the top of the Adriatic lower crust corroborates the suggestion of a deep thrust fault in the Southern Alps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号