首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present paper is to use quasi-periodic oscillations in hard X-rays (HXRs) of solar flares as a diagnostic tool for the investigation of impulsive electron acceleration. We have selected a number of flares which showed quasi-periodic oscillations in hard X-rays and their loop-top sources could be easily recognized in HXR images. We have considered MHD standing waves to explain the observed HXR oscillations. We interpret these HXR oscillations as being due to oscillations of magnetic traps within cusp-like magnetic structures. This is confirmed by the good correlation between periods of the oscillations and the sizes of the loop-top sources. We argue that a model of oscillating magnetic traps is adequate to explain the observations. During the compressions of a trap, particles are accelerated, but during its expansions plasma, coming from chromospheric evaporation, fills the trap, which explains the large number of electrons being accelerated during a sequence of strong pulses. The advantage of our model of oscillating magnetic traps is that it can explain both the pulses of electron acceleration and quasi-periodicity of their distribution in time.  相似文献   

2.
J. Jakimiec  M. Tomczak 《Solar physics》2014,289(6):2073-2089
A large arcade flare, occurring on 2 March 1993, has been investigated using X-ray observations recorded by the Yohkoh and GOES satellites and the Compton Gamma Ray Observatory. We analyzed the quasi-periodicity of the hard-X-ray (HXR) pulses in the impulsive phase of the flare and found a close similarity between the quasi-periodic sequence of the pulses to that observed in another large arcade flare, that of 2 November 1991. This similarity helped to explain the strong HXR pulses which were recorded at the end of the impulsive phase as due to the inflow of dense plasma (coming from the chromospheric evaporation) into the acceleration volume inside the cusp. In HXR images a high flaring loop was seen with a triangular cusp structure at the top, where the electrons were efficiently accelerated. The sequence of HXR images allowed us to investigate complicated changes in the precipitation of the accelerated electrons toward the flare footpoints. We have shown that all these impulsive-phase observations can be easily explained in terms of the model of electron acceleration in oscillating magnetic traps located within the cusp structure. Some soft-X-ray (SXR) images were available for the late decay phase. They show a long arcade of SXR loops. Important information about the evolution of the flare during the slow decay phase is contained in the time variation of the temperature, T(t), and emission measure, EM(t). This information is the following: i) weak heating occurs during the slow decay phase and it slowly decreases; ii) the decrease in the heating determines a slow and smooth decrease in EM; iii) the coupling between the heating and the amount of the hot plasma makes the flare evolve along a sequence of quasi-steady states during the slow decay phase (QSS evolution).  相似文献   

3.
In our recent paper (Jakimiec and Tomczak, Solar Physics 261, 233, 2010) we investigated quasi-periodic oscillations of hard X-rays during the impulsive phase of solar flares. We have come to the conclusion that they are caused by magnetosonic oscillations of magnetic traps within the volume of hard-X-ray (HXR) loop-top sources. In the present paper we investigate four flares that show clear quasi-periodic sequences of the HXR pulses. We also describe our phenomenological model of oscillating magnetic traps to show that it can explain the observed properties of the HXR oscillations. The main results are the following: i) Low-amplitude quasi-periodic oscillations occur before the impulsive phase of some flares. ii) The quasi-periodicity of the oscillations can change in some flares. We interpret this as being due to changes of the length of oscillating magnetic traps. iii) During the impulsive phase a significant part of the energy of accelerated (non-thermal) electrons is deposited within a HXR loop-top source. iv) The quick development of the impulsive phase is due to feedback between the pressure pulses by accelerated electrons and the amplitude of the magnetic-trap oscillation. v) The electron number density and magnetic field strength values obtained for the HXR loop-top sources in several flares fall within the limits of N≈(2 – 15)×1010 cm−3, B≈(45 – 130) gauss. These results show that the HXR quasi-periodic oscillations contain important information about the energy release in solar flares.  相似文献   

4.
The acceleration of charged particles in the solar corona during flares is investigated in terms of a model in which the electrons and ions preaccelerated in the magnetic reconnection region are injected into a collapsing magnetic trap. Here, the particle energy increases rapidly simultaneously through the Fermi and betatron mechanisms. Comparison of the efficiencies of the two mechanisms shows that the accelerated electrons in such a trap produce more intense hard X-ray (HXR) bursts than those in a trap where only the Fermi acceleration mechanism would be at work. This effect explains the Yohkoh and RHESSI satellite observations in which HXR sources more intense than the HXR emission from the chromosphere were detected in the corona.  相似文献   

5.
The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ~5 × 1010 erg cm?2 s?1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ~5. To independently test the model, we have calculated the microwave spectrum in the range 1–50 GHz that corresponds to the available radio observations.  相似文献   

6.
Vilmer  N.  Krucker  S.  Lin  R.P.  The Rhessi Team 《Solar physics》2002,210(1-2):261-272
The GOES C7.5 flare on 20 February 2002 at 11:07 UT is one of the first solar flares observed by RHESSI at X-ray wavelengths. It was simultaneously observed at metric/decimetric wavelengths by the Nançay radioheliograph (NRH) which provided images of the flare between 450 and 150 MHz. We present a first comparison of the hard X-ray images observed with RHESSI and of the radio emission sites observed by the NRH. This first analysis shows that: (1) there is a close occurrence between the production of the HXR-radiating most energetic electrons and the injection of radio-emitting non-thermal electrons at all heights in the corona, (2) modifications with time in the pattern of the HXR sources above 25 keV and of the decimetric radio sources at 410 MHz are observed occurring on similar time periods, (3) in the late phase of the most energetic HXR peak, a weak radio source is observed at high frequencies, overlying the EUV magnetic loops seen in the vicinity of the X-ray flaring sites above 12 keV. These preliminary results illustrate the potential of combining RHESSI and NRH images for the study of electron acceleration and transport in flares.  相似文献   

7.
On 21 September 2012, we carried out spectral observations of a solar facula in the Si?i 10827 Å, He?i 10830 Å, and H\(\upalpha\) spectral lines. Later, in the process of analyzing the data, we found a small-scale flare in the middle of the time series. Based on the anomalous increase in the absorption of the He?i 10830 Å line, we identified this flare as a negative flare.The aim of this article is to study the influence of the negative flare on the oscillation characteristics in the facular photosphere and chromosphere.We measured the line-of-sight (LOS) velocity and intensity of all the three lines as well as the half-width of the chromospheric lines. We also used the Helioseismic and Magnetic Imager (HMI) magnetic field data. The flare caused a modulation of all these parameters. In the location of the negative flare, the amplitude of the oscillations increased four times on average. In the adjacent magnetic field local maxima, the chromospheric LOS velocity oscillations appreciably decreased during the flare. The facular region oscillated as a whole with a 5-minute period before the flare, and this synchronicity was disrupted after the flare. The flare changed the spectral composition of the LOS magnetic field oscillations, causing an increase in the low-frequency oscillation power.  相似文献   

8.
The differences between physical conditions in solar faculae and those in sunspots and quiet photosphere (increased temperature and different magnetic field topology) suggest that oscillation characteristics in facula areas may also have different properties. The analysis of 28 time series of simultaneous spectropolarimetric observations in facula photosphere (Fe?i 6569 Å, 8538 Å) and chromosphere (Hα, Ca?ii 8542 Å) yields the following results. The amplitude of five-minute oscillations of line-of-sight (LOS) velocity decreases by 20?–?40% in facula photosphere. There are only some cases revealing the inverse effect. The amplitude of four- to five-minute LOS velocity oscillations increases significantly in the chromosphere above faculae, and power spectra fairly often show pronounced peaks in a frequency range of 1.3?–?2.5 mHz. Evidence of propagating oscillations can be seen from space?–?time diagrams. We have found oscillations of the longitudinal magnetic field (1.5?–?2 mHz and 5.2 mHz) inside faculae.  相似文献   

9.
We carried out an electromagnetic acoustic analysis of the solar flare of 14 August 2004 in active region AR10656 from the radio to the hard X-ray spectrum. The flare was a GOES soft X-ray class M7.4 and produced a detectable sun quake, confirming earlier inferences that relatively low energy flares may be able to generate sun quakes. We introduce the hypothesis that the seismicity of the active region is closely related to the heights of coronal magnetic loops that conduct high-energy particles from the flare. In the case of relatively short magnetic loops, chromospheric evaporation populates the loop interior with ionised gas relatively rapidly, expediting the scattering of remaining trapped high-energy electrons into the magnetic loss cone and their rapid precipitation into the chromosphere. This increases both the intensity and suddenness of the chromospheric heating, satisfying the basic conditions for an acoustic emission that penetrates into the solar interior.  相似文献   

10.
We find that gamma-ray line (GRL) emissions start later than the hard X-ray (HXR) emissions during impulsive and extended solar flares. Starting delay is more in the case of extended solar flares suggesting a slow acceleration of electrons and ions, in comparison to impulsive solar flares which indicate different acceleration mechanism for impulsive and extended solar flares. We further infer that during solar flares, electrons and ions are accelerated simultaneously and the delay between HXR and GRL emissions results mainly due to differences in acceleration times of electrons and ions to attain energies required for producing HXR emissions for electrons and GRL emissions for ions. Therefore, we are of view that a single step acceleration mechanism may work in solar flares.  相似文献   

11.
We investigate the M1.8 solar flare of 20 October 2002. The flare was accompanied by quasi-periodic pulsations (QPP) of both thermal and nonthermal hard X-ray emissions (HXR) observed by RHESSI in the 3?–?50 keV energy range. Analysis of the HXR time profiles in different energy channels made with the Lomb periodogram has indicated two statistically significant time periods of about 16 and 36 s. The 36 s QPP were observed only in the nonthermal HXR emission in the impulsive phase of the flare. The 16 s QPP were found in thermal and nonthermal HXR emission both in the impulsive and in the decay phases of the flare. Imaging analysis of the flare region, the determined time periods of the QPP, and the estimated physical parameters of the flare loops allowed us to interpret the observed QPP in terms of MHD oscillations excited in two spatially separated, but interacting systems of flaring loops.  相似文献   

12.
A mechanism of electron acceleration and storage of energetic particles in solar and stellar coronal magnetic loops, based on oscillations of the electric current, is considered. The magnetic loop is presented as an electric circuit with the electric current generated by convective motions in the photosphere. Eigenoscillations of the electric current in a loop induce an electric field directed along the loop axis. It is shown that the sudden reductions that occur in the course of type IV continuum and pulsating type III observed in various frequency bands (25?–?180 MHz, 110?–?600 MHz, 0.7?–?3.0 GHz) in solar flares provide evidence for acceleration and storage of the energetic electrons in coronal magnetic loops. We estimate the energization rate and the energy of accelerated electrons and present examples of the storage of energetic electrons in loops in the course of flares on the Sun or on ultracool stars. We also discuss the efficiency of the suggested mechanism as compared with the electron acceleration during the five-minute photospheric oscillations and with the acceleration driven by the magnetic Rayleigh–Taylor instability.  相似文献   

13.
We examine the excitation of oscillations in the magnetic network of the Sun through the footpoint motion of photospheric magnetic flux tubes located in intergranular lanes. The motion is derived from a time series of high-resolution G-band and continuum filtergrams using an object-tracking technique. We model the response of the flux tube to the footpoint motion in terms of the Klein-Gordon equation, which is solved analytically as an initial value problem for transverse (kink) waves. We compute the wave energy flux in upward-propagating transverse waves. In general we find that the injection of energy into the chromosphere occurs in short-duration pulses, which would lead to a time variability in chromospheric emission that is incompatible with observations. Therefore, we consider the effects of turbulent convective flows on flux tubes in intergranular lanes. The turbulent flows are simulated by adding high-frequency motions (periods 5-50 s) with an amplitude of 1 km s(-1). The latter are simulated by adding random velocity fluctuations to the observationally determined velocities. In this case, we find that the energy flux is much less intermittent and can in principle carry adequate energy for chromospheric heating.  相似文献   

14.
Heating and acceleration of electrons in solar impulsive hard X-ray (HXR) flares are studied according to the two-stage acceleration model developed by Zhang for solar 3He-rich events. It is shown that electrostatic H-cyclotron waves can be excited at a parallel phase velocity less than about the electron thermal velocity and thus can significantly heat the electrons (up to 40 MK) through Landau resonance. The preheated electrons with velocities above a threshold are further accelerated to high energies in the flare-acceleration process. The flare-produced electron spectrum is obtained and shown to be thermal at low energies and power law at high energies. In the non-thermal energy range, the spectrum can be double power law if the spectral power index is energy dependent or related. The electron energy spectrum obtained by this study agrees quantitatively with the result derived from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) HXR observations in the flare of 2002 July 23. The total flux and energy flux of electrons accelerated in the solar flare also agree with the measurements.  相似文献   

15.
We present Hα observations from ARIES (Nainital) of a compact and impulsive solar flare that occurred on March 10, 2001 and which was associated with a CME. We have also analyzed HXT, SXT/Yohkoh observations as well as radio observations from the Nobeyama Radio Observatory to derive the energetics and dynamics of this impulsive flare. We coalign the Hα, SXR, HXR, MW, and magnetogram images within the instrumental spatial-resolution limit. We detect a single HXR source in this flare, which is found spatially associated with one of the Hα bright kernels. The unusual feature of HXR and Hα sources, observed for the first time, is the rotation during the impulsive phase in a clockwise direction. We propose that the rotation may be due to asymmetric progress of the magnetic reconnection site or may be due to the change of the peak point of the electric field. In MW emission we found two sources. The main source is at the main flare site and another is in the southwest direction. It appears that the remote source is formed by the impact of accelerated energetic electrons from the main flare site. From the spatial correlation of multiwavelength images of the different sources, we conclude that this flare has a three-legged structure.  相似文献   

16.
T. Mrozek 《Solar physics》2011,270(1):191-203
We present observations of a failed eruption of a magnetic flux rope recorded during the M6.2 flare of 14 July 2004. The observations were mainly made with TRACE 171 Å and 1600 Å filters. The flare was accompanied by a destabilization of a magnetic structure observed as a filament eruption. After an initial acceleration, the eruption slowed down and finally was stopped by the overlying coronal loops. The observations suggest that the whole event is well described by the quadrupole model of a solar flare. The failed eruption stretched the overlying loops, and they were then observed to be oscillating. We were able to observe clear vertical polarization of the oscillatory motion in the TRACE images. The derived parameters of the oscillatory motion are an initial amplitude of 9520 km, a period of 377 s, and an exponential damping time of 500 s. Differences between the existing models and the observations have been found. The analyzed event is the second sample for global vertical kink waves found besides the first by Wang and Solanki (Astrophys. J. Lett. 421, 33, 2004).  相似文献   

17.
We study chromospheric oscillations including umbral flashes and running penumbral waves in a sunspot of active region NOAA 11242 using scanning spectroscopy in Hα and Ca?ii 8542 Å with the Fast Imaging Solar Spectrograph (FISS) at the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. A bisector method is applied to spectral observations to construct chromospheric Doppler-velocity maps. Temporal-sequence analysis of these shows enhanced high-frequency oscillations inside the sunspot umbra in both lines. Their peak frequency gradually decreases outward from the umbra. The oscillation power is found to be associated with magnetic-field strength and inclination, with different relationships in different frequency bands.  相似文献   

18.
An X17 class (GOES soft X-ray) two-ribbon solar flare on October 28, 2003 is analyzed in order to determine the relationship between the timing of the impulsive phase of the flare and the magnetic shear change in the flaring region. EUV observations made by the Transition Region and Coronal Explorer (TRACE) show a clear decrease in the shear of the flare footpoints during the flare. The shear change stopped in the middle of the impulsive phase. The observations are interpreted in terms of the splitting of the sheared envelope field of the greatly sheared core rope during the early phase of the flare. We have also investigated the temporal correlation between the EUV emission from the brightenings observed by TRACE and the hard X-ray (HXR) emission (E > 150 keV) observed by the anticoincidence system (ACS) of the spectrometer SPI on board the ESA INTEGRAL satellite. The correlation between these two emissions is very good, and the HXR sources (RHESSI) late in the flare are located within the two EUV ribbons. These observations are favorable to the explanation that the EUV brightenings mainly result from direct bombardment of the atmosphere by the energetic particles accelerated at the reconnection site, as does the HXR emission. However, if there is a high temperature (T > 20 MK) HXR source close to the loop top, a contribution of thermal conduction to the EUV brightenings cannot be ruled out.  相似文献   

19.
We analyze hard X-ray imaging observations of three flares, showing widely different characteristics, in order to try and discriminate the relative efficiency of heating and acceleration in the primary energy release. Using a simplified approach, we compute the hard X-ray distribution and energy deposition due to accelerated electrons, with beam and ambient plasma parameters appropriate for each of the observed events. The results are convolved with the Hard X-Ray Imaging Spectrometer (HXIS) instrumental response and compared with observations. We find that: (a) Many observations are compatible with thick target processes, and with the possibility that flares may have high (>20%) acceleration efficiency. (b) Single hard X-ray sources should be very common in the data available at present (HXIS and HINOTORI), as it is the case, as well as a transition from chromospheric footpoints to single source structures. The latter cannot then be directly interpreted as thermal sources. (c) In the particular case of a limb flare, associated with a rather weak high energy burst, we show that the spatial and spectral behavior of the hard X-ray emission is incompatible with pure nonthermal processes. We thus propose that the observed emission was principally due to the strong heating intrinsic to a reconnection process within the region of interaction between two magnetic structures which are seen in the soft X-ray data. (d) We also study the heating effect of a beam, due to Coulomb losses, during its passage through the flare loops. In some cases, rather large and localized temperature increases can be expected to appear within short timescales ( 1 s), leading to a combination of nonthermal plus thermal output in the hard X-ray spectrum, which renders virtually impossible the determination of the underlying beam parameters. We finally discuss the extent to which our conclusions are valid, considering the instrumental limitations as well as the simple physical treatment that we apply.  相似文献   

20.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号