首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delhi, the capital of India, has experienced mild seismic shaking during several earthquakes in the past. The large variations of depth to bedrock and ground water table coupled with different soil types at different locations of Delhi necessitate a seismic microzonation study. Dynamic soil properties such as shear wave velocity, modulus reduction and damping characteristics of local soils are the basic and essential input parameters for conducting even a preliminary ground response analysis which is an essential input in microzonation studies. Shear wave velocity is not measured routinely due to its high cost and lack of the required expertise. Several researchers in the past developed correlations between shear wave velocity (V s ) and routinely measured N values. In the present study, shear wave velocity profiles measured in the field at more than 80 borehole locations to a depth of about 20 to 32m using Spectral Analysis of Surface Waves (SASW) are presented and correlations between shear wave velocity and N values are also presented for use by engineers and designers. Results of strain and stress controlled cyclic triaxial tests on remoulded samples of sand-silt mixtures in the high strain range are used for generating the modulus reduction and damping curves and are compared with the well-known curves in the literature. The results presented in this article can be used for microzonation studies as well as site specific ground response analyses at Delhi.  相似文献   

2.
This paper presents the three most important aspects of seismic microzonation namely prediction of fundamental frequency (F 0) of soil deposit, aggravation factor (aggravation factor is simply the extra spectral amplification due to complex 2D site effects over the 1D response of the soil column) and the spatial variability of the ground motion caused by the basin-edge induced Love waves. The predicted F 0 of single, double and three-soil-layered models revealed that the available empirical relations to predict the F 0 of layered soil deposits are inadequate. We recommend the use of analytical or numerical methods to predict such an important parameter based on wave propagation effects. An increase of amplitude of Love wave, strain level and average aggravation factor (AAF) with increase of impedance contrast was obtained. Based on the trend of rate of decrease of AAF and maximum strain with offset from the basin-edge, we can qualitatively infer that the effects of induced Love wave may reduce to a negligible value after a traveled distance of 6.5–10.0 λ F (where λ F is the wavelength corresponding to the F 0 of soil layer). The obtained increase of strain level with the decrease of distance between two receiver points used for the computation of strain reflects that structures having spatial extent smaller than the λ F may suffer damage due to the basin-edge induced surface waves. The fast rate of decrease of strain with the offset from the strong lateral discontinuity (SLD)/basin-edge may be attributed to the dispersive nature of Love wave. We can incorporate the increased spectral amplification due to the induced surface waves in the form of aggravation factor but till date we have no effective way to incorporate the effects of developed strain by induced surface waves in seismic microzonation or in building codes.  相似文献   

3.
Before starting seismic cycle of Ahar–Varzaghan 2012 event, a partial gap in the form of a pre-seismic calm sequence (seismicity rate, r = 0.46 event/year, b = 1.4) with duration of 303 days spatially has dominated over the entire seismogenic area. From April 17, 2012, to May 31, 2012, r significantly increased to 2.16, indicating strong foreshock sequence, and b value changed to 1.9, remarkably. In the last two months before the mainshock, foreshocks have partially migrated toward the earthquake fault (with a decrease in size, b = 2.0). Significantly, high rate of seismicity and low V P /V S (1.64) in the foreshocks sequence and also very high seismicity rate (17.3) and high V P /V S (1.76) in the aftershocks sequence make substantial differences between the seismic cycle and the background seismicity. Moreover, a significant E–W migration of the microseismicity was confirmed in the study area.  相似文献   

4.
The stress regime in a Rotliegend reservoir of the Northeast German Basin   总被引:2,自引:0,他引:2  
In-situ stresses have significant impact, either positive or negative, on the short and long term behaviour of fractured reservoirs. The knowledge of the stress conditions are therefore important for planning and utilization of man-made geothermal reservoirs. The geothermal field Groß Schönebeck (40 km north of Berlin/Germany) belongs to the key sites in the northeastern German Basin. We present a stress state determination for this Lower Permian (Rotliegend) reservoir by an integrated approach of 3D structural modelling, 3D fault mapping, stress ratio definition based on frictional constraints, and slip-tendency analysis. The results indicate stress ratios of the minimum horizontal stress S hmin being equal or increasing 0.55 times the amount of the vertical stress S V (S hmin ≥ 0.55S V ) and of the maximum horizontal stress S Hmax ≤ 0.78–1.00S V in stress regimes from normal to strike slip faulting. Thus, acting stresses in the 4,100-m deep reservoir are S V  = 100 MPa, S hmin = 55 MPa and S Hmax = 78?100 MPa. Values from hydraulic fracturing support these results. Various fault sets of the reservoir are characterized in terms of their potential to conduct geothermal fluids based on their slip and dilatation tendency. This combined approach can be adopted to any other geothermal site investigation.  相似文献   

5.
The sound velocity (V P) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The V P values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus (K S0) and its pressure derivative (K S ) were obtained to be K S0 = 103 GPa and K S  = 5.7 for liquid Fe–Ni and K S0 = 110 GPa and K S  = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.  相似文献   

6.
The Surat City, which is the second most populated city in the state of Gujarat in western India, warrants site-specific seismic hazard assessment due to its rapid urbanization and proximity to major seismogenic zones. This study reports results of microtremor investigations at 72 single stations and 4 arrays in an area of 325 km2 spanning the city. The resonant frequencies, associated peak amplification values and liquefaction vulnerability indices were deduced from the horizontal to vertical spectral ratios. Ground amplification (AHVSR) in the range of 3.0–5.0 was observed in the 2.0–4.0-Hz frequency band at most of the sites. A secondary AHVSR between 2.0 and 3.0 is also observed in the 6.0–7.0-Hz frequency band at a few sites. Locales that are most susceptible to liquefaction are identified based on their vulnerability index (K g) exceeding the value of 10. The shear wave velocities (V s) ≥ 500 m/s inferred from array measurements occur at 38 m depth in the western part and ~16 m depth in the eastern part of city. The response spectra estimated from strong motion data recorded at an accelerograph site in Surat from three earthquakes of M w ≥ 3.2 that occurred in Kachchh, Saurashtra and Narmada regions are in accordance with our inferences of characteristic site frequencies and amplification. Our results, in agreement with the damage scenario during the 2001 Bhuj earthquake, provide valuable inputs for site-specific seismic hazard evaluation of the Surat City.  相似文献   

7.
Petrophysical evaluation and rock physics analysis are the important tools to relate the reservoir properties like porosity, permeability, pore fluids with seismic parameters. Nevertheless, the uncertainties always exist in the quantification of elastic and seismic parameters estimated through wireline logs and rock physics analysis. A workflow based on statistical relationships of rock physics and logs derived elastic and seismic parameters with porosity and the percentage error exist between them is given. The statistical linear regressions are developed for early Eocene Chorgali Formation between various petrophysically factors determined from borehole logging of well Ratana–03 drilled in tectonically disturbed zone and the seismic and elastic parameters estimated through rock physics modeling. The rock physics constraints such as seismic velocities, effective density and elastic moduli calculated from Gassmann fluid substation analysis are in harmony and close agreement to those estimated from borehole logs. The percentage errors between well logs and rock physics computed saturated bulk modulus (K sat ), effective density (ρ eff ), compressional and shear wave velocities (V P and V S) are 1.31%, 4.23 %, 5.25% and 4.01% respectively. The permeability of reservoir intervals show fairly strong linear relationship with the porosity, indicating that the reservoir interval of the Chorgali Formation is permeable and porous thus having large potential of hydrocarbon accumulation and production.  相似文献   

8.
The Attock Basin is situated close to the northwest of Pakistan. Recent seismic event of October 2015 (7.5Mw) near the Pakistan Afghanistan border has proved that the area of interest is seismically active and triggered a series of aftershocks of magnitude even greater than 6.5Mw. This seismic activity has posed danger to the future of the people and infrastructure especially to the northwestern part of the country. Therefore, site response analysis is essential for estimating local site conditions in response to seismic events. Ambient noise recordings were made at 50 sites within urban and semi-urban settlements in the Attock Basin to analyze the site response of the small but densely populated basin. At each of these sites, the fundamental frequency of the soft sediments (f 0), the amplitude (A 0) of corresponding H/V spectral ratios, the thickness of soft sediment (H) lying over competent lithology, and the soil vulnerability index (K g) were studied. Results were correlated with sparsely available borehole data to enhance the credibility of the study conducted for microzonation and predicting the site response to earthquake seismicity in the Attock Basin. The soil vulnerability index was found to range from moderate to high. Results clearly showed that the study area exhibits low to moderate fundamental frequency with greater soft sediment thicknesses distributed throughout the study area. Moreover, higher impedance contrasts were found at most of the sites within the central part of the Attock Basin, thus reflecting a moderate to high susceptibility of damage in those regions in response to seismic events.  相似文献   

9.
Shillong region of northeast India falls under seismic zone V. Being a commercial hub, urbanization in this study region is at its peak. In order to qualitatively assess the subsurface velocity profiling of this area, we have blended two robust techniques, namely spatial autocorrelation (SPAC) and frequency wavenumber (FK) method. Corresponding to array noise data collected at five sites, situated in the close proximity of boreholes, we have evaluated VS and VP as well. The shear wave velocity estimates yielded by these techniques are found to be consistent with each other. The computed Vs values up to depth of 30 m are observed to be in the range of 275–375 m/s, in most of the sites which implies prevalence of low-velocity zone at some pocket areas. The estimates so found are systematically analyzed and implications are outlined. The results were corroborated by substantial evidence of site geology as well as geotechnical information.  相似文献   

10.
Estimation of the degree of local seismic wave amplification (site effects) requires precise information about the local site conditions. In many regions of the world, local geologic information is either sparse or is not readily available. Because of this, seismic hazard maps for countries such as Mozambique, Pakistan and Turkey are developed without consideration of site factors and, therefore, do not provide a complete assessment of future hazards. Where local geologic information is available, details on the traditional maps often lack the precision (better than 1:10,000 scale) or the level of information required for modern seismic microzonation requirements. We use high-resolution (1:50,000) satellite imagery and newly developed image analysis methods to begin addressing this problem. Our imagery, consisting of optical data and digital elevation models (DEMs), is recorded from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor system. We apply a semi-automated, object-oriented, multi-resolution feature segmentation method to identify and extract local terrain features. Then we classify the terrain types into mountain, piedmont and basin units using geomorphometry (topographic slope) as our parameter. Next, on the basis of the site classification schemes from the Wills and Silva (1998) study and the Wills et al (2000) and Wills and Clahan (2006) maps of California, we assign the local terrain units with V s 30 (the average seismic shear-wave velocity through the upper 30m of the subsurface) ranges for selected regions in Mozambique, Pakistan and Turkey. We find that the applicability of our site class assignments in each region is a good first-approximation for quantifying local site conditions and that additional work, such as the verification of the terrain’s compositional rigidity, is needed.  相似文献   

11.
This paper presents the numerical simulation of pile installation and the subsequent increase in the pile capacity over time (or setup) after installation that was performed using the finite element software Abaqus. In the first part, pile installation and the following load tests were simulated numerically using the volumetric cavity expansion concept. The anisotropic modified Cam-Clay and Dracker–Prager models were adopted in the FE model to describe the behavior of the clayey and sandy soils, respectively. The proposed FE model proposed was successfully validated through simulating two full-scale instrumented driven pile case studies. In the second part, over 100 different actual properties of individual soil layers distracted from literature were used in the finite element analysis to conduct parametric study and to evaluate the effect of different soil properties on the pile setup behavior. The setup factor A was targeted here to describe the pile setup as a function of time after the end of driving. The selected soil properties in this study to evaluate the setup factor A include: soil plasticity index (PI), undrained shear strength (S u ), vertical coefficient of consolidation (C v ), sensitivity ratio (S r ), and over-consolidation ratio (OCR). The predicted setup factor showed direct proportion with the PI and S r and inverse relation with S u , C v and OCR. These soil properties were selected as independent variables, and nonlinear multivariable regression analysis was performed using Gauss–Newton algorithm to develop appropriate regression models for A. Best models were selected among all based on level of errors of prediction, which were validated with additional nineteen different site information available in the literature. The results indicated that the developed model is able to predict the setup behavior for individual cohesive soil layers, especially for values of setup factor greater than 0.10, which is the most expectable case in nature.  相似文献   

12.
Nuclear power plants are designed to prevent the hazardous effects of the earthquakes and any external events to keep the safety of the plant. Ninety-one shallow seismic refraction profiles were performed to determine shear wave velocity of the engineering layers at the site of El Dabaa area that is situated to the northern coastline of Egypt for seismic hazard microzonation evaluation according to hazard index values. A microzonation is a procedure of delineating an area into individual zones having different ranks of numerous seismic hazards. This will aid in classifying areas of high seismic risk which is vigorous for industrial design of nuclear structures. The site response analysis requires the characterization of subsurface materials considering local subsurface profiles of the site. Site classification of the area under investigation was undertaken using P- and S-waves and available borehole data. The studied nuclear power plant site has been characterized as per NEHRP site classification using an average velocity of transverse wave (V s 30 ) of depth 30 m which acquired from seismic survey. This site was categorized into two site classes: the major one is “site class B,” and the minor one is “site class A.” The attenuation coefficient, the damping ratio and the liquefaction potential are geotechnical parameters which were derived from P- and S-waves, and have their major effects on the seismic hazard contribution. 1D ground response analysis was carried out in the places of seismic profiles inside the site for estimating the amount of ground quaking using peak ground acceleration (PGA), site amplification, predominant frequency and spectral accelerations on the surface of ground by the DEEPSOIL software package. Seven factors (criteria) deliberated to assess the earthquake hazard index map are: (1) the peak ground acceleration at the bedrock, (2) the amplification of the site, (3) the liquefaction potential, (4) the main frequency of the earthquake signal, (5) the average V s of the first 30 m from the ground surface, (6) the depth to the groundwater and (7) the depth to the bedrock. These features were exemplified in normalized maps after uniting them to 0–1 scores according to some criteria by the minimum and maximum values as linear scaling points. Multi-criteria evaluation is an application of multi-criteria decision analysis theory that used for developing a seismic hazard index map for a nuclear power plant site at El Dabaa area in ArcGIS 10.1 software. Two models of decision making were used in this work for seismic hazard microzonation. The analytic hierarchy process model was applied to conduct the relative weights of the criteria by pairwise comparison using Expert Choice Software. An earthquake hazard index map was combined using Weighted Linear Combination model of the raster weighted overlay tool of ArcGIS 10.1. The results indicated that most of the study site of the nuclear power plant is a region of low to moderate hazard; its values are ranging between 0.2 and 0.4.  相似文献   

13.
In this paper, we present a seismic hazard scenario for the Garhwal region of the north-western Himalayan range, in terms of the horizontal Peak Ground Acceleration. The scenario earthquake of moment magnitude M w 8.5 has a 10% exceedance probability over the next 50 years. These estimates, the first for the region, were calculated through a stepwise process based on:
  • An estimation of the Maximum Credible Earthquake from the seismicity of the region and Global Seismic Hazard Assessment Program considerations, and
  • four seismotectonic parameters abstracted from near field weak-motion data recorded at five stations installed in Chamoli District of the Garhwal region in the aftermath of the 1999 Chamoli earthquake. The latter include
  • The frequency dependent power law for the shear wave quality factor, Q S
  • the site amplification at each station using horizontal-to-vertical-spectral ratio and generalized inversion technique
  • source parameters of various events recorded by the array and application of the resulting relations between the scalar seismic moment M 0 (dyne-cm) and moment magnitude M w and the corner frequency, ? c (Hz) and moment magnitude M w to simulate spectral acceleration due to higher magnitude events corresponding to the estimated Maximum Credible Earthquake, and
  • regional and site specific local spectral attenuation relations at different geometrically central frequencies in the low, moderate and high frequency bands.
  相似文献   

14.
The use of shear wave velocity (V s) measurements as an in situ test for evaluation of liquefaction potential has increased substantially due to its advantages. Relatively large numbers of studies have been performed to establish the correlation between V s and liquefaction resistance (CRR) of clean sands. Usually, natural sands contain silt and/or clay, and previous studies have shown that both the amount of fines and their nature influence the values of CRR as well as V s. Therefore, the CRR–V s correlations may also be affected by fines content and type of sandy soils. However, effect of fines content and especially fines type of sandy soils on the correlation between V s and CRR is inadequately addressed in the literature. In this study, cyclic triaxial and bender element tests were conducted on samples of sand containing various amounts of different types of fines, and the effects of fines on the values of CRR and V s are investigated. The results show that G 0 and CRR reduce even when small amounts of fines are added to sand. Therefore, use of plasticity index (PI) of the fines fraction is better than the PI of the overall soil when trying to assess the effects of fines. Using obtained experimental data as well as the established semiempirical CRR–V s relationship, the CRR–V s correlation was developed for all the tested soils, and the effect of fines type on the correlation is also examined. Based on the results obtained in this study, CRR–V s correlation is affected by both the amount and the plasticity of the fines present in the sand, and this correlation is soil specific.  相似文献   

15.
To investigate inhomogeneous and porous structures in nature, the concept of fractal dimension was established. This paper briefly introduces the definition and measurement methods of fractal dimension. Three different methods including mercury injection capillary pressure (MICP), nuclear magnetic resonance (NMR), and nitrogen adsorption (BET) were applied to determine the fractal dimensions of the pore space of eight carbonate rock samples taken from West Tushka area, Egypt. In the case of fractal behavior, the capillary pressure P c and cumulative fraction V c resulting from MICP are linearly related with a slope of D-3 in a double logarithmic plot with D being the value of fractal dimension. For NMR, the cumulative intensity fraction V c and relaxation time T 2 show a linear relation with a slope of 3-D in a double logarithmic plot. Fractal dimension can also be determined by the specific surface area S por derived from nitrogen adsorption measurements and the effective hydraulic radius. The fractal dimension D shows a linear relation with the logarithm of S por . The fractal dimension is also used in models of permeability prediction. To consider a more comprehensive data set, another 34 carbonate samples taken from the same study area were integrated in the discussion on BET method and permeability prediction. Most of the 42 rock samples show a good agreement between measured permeability and predicted permeability if the mean surface fractal dimension for each facies is used.  相似文献   

16.
High pressure in situ synchrotron X-ray diffraction experiment of strontium orthophosphate Sr3(PO4)2 has been carried out to 20.0 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the PV data yields a volume of V 0 = 498.0 ± 0.1 Å3, an isothermal bulk modulus of K T  = 89.5 ± 1.7 GPa, and first pressure derivative of K T ′ = 6.57 ± 0.34. If K T ′ is fixed at 4, K T is obtained as 104.4 ± 1.2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a  = 79.6 ± 3.2 GPa) is more compressible than the c-axis (K c  = 116.4 ± 4.3 GPa). Based on the high pressure Raman spectroscopic results, the mode Grüneisen parameters are determined and the average mode Grüneisen parameter of PO4 vibrations of Sr3(PO4)2 is calculated to be 0.30(2).  相似文献   

17.
For feasibility studies and preliminary design estimates, field measurements of shear wave velocity, V s, may not be economically adequate and empirical correlations between V s and more available penetration measurements such as cone penetration test, CPT, data turn out to be potentially valuable at least for initial evaluation of the small-strain stiffness of soils. These types of correlations between geophysical (Vs) and geotechnical (N-SPT, q c-CPT) measurements are also of utmost importance where a great precision in the calculation of the deposit response is required such as in liquefaction evaluation or earthquake ground response analyses. In this study, the stress-normalized shear wave velocity V s1 (in m/s) is defined as statistical functions of the normalized dimensionless resistance, Q tn-CPT, and the mean effective diameter, D 50 (in mm), using a data set of different uncemented soils of Holocene age accumulated at various sites in North America, Europe, and Asia. The V s1Q tn data exhibit different trends with respect to grain sizes. For soils with mean grain size (D 50) < 0.2 mm, the V s1/Q tn 0.25 ratio undergoes a significant reduction with the increase in D 50 of the soil. This trend is completely reversed with further increase in D 50 (D 50 > 0.2 mm). These results corroborate earlier results that stressed the use of different CPT-based correlations with different soil types, and those emphasized the need to impose particle-size limits on the validity of the majority of available correlations.  相似文献   

18.
A technique for IR spectroscopic determination of the total nitrogen content N S in the form of A-and B 1-defects is suggested. It provides for the computer processing and decomposition of IR spectra into constituent bands, calculation of the total absorption band area S N and individual areas S A and S B1 and their normalization with respect to the total area of the diamond intrinsic absorption S 0, with the normalization coefficients K S , K A , and K B1 being calculated. Based on the analysis of the IR spectra of 60 octahedral diamond crystals from the Mir and Yubileinaya pipes (Sakha-Yakutiya), the empirical functions N S = 911.85 K S 0.9919 ppm (R 2 = 0.9859), N A = 1185.6 K A 1.1511 ppm (R 2 = 0.8703), and N B1 = 911.85 K S 0.9919 ? 1185.6 K A 1.1511 ppm have been defined.  相似文献   

19.
Observations of the K2 continuation of Kepler Space Telescope program are used to estimate the spot coverage S (the fractional spotted area on the surface of an active star) for stars of the Pleiades cluster. The analysis is based on data on photometric variations of 759 confirmed clustermembers, together with their atmospheric parameters, masses, and rotation periods. The relationship between the activity (S) of these Pleiades stars and their effective temperatures shows considerable change in S for stars with temperatures T eff less than 6100 K (this can be considered the limiting value for which spot formation activity begins) and a monotonic increase in S for cooler objects (a change in the slope for stars with Teff ~ 3700 K). The scatter in this parameter ΔS about its mean dependence on the (V ?Ks)0 color index remains approximately the same over the entire (V?K s )0 range, including cool, fully convective dwarfs. The computated S values do not indicate differences between slowly rotating and rapidly rotating stars with color indices 1.1 < (V?K s )0 < 3.7. The main results of this study include measurements of the activity of a large number of stars having the same age (759 members of the Pleiades cluster), resulting in the first determination of the relationship between the spot-forming activity and masses of stars. For 27 stars with masses differing from the solarmass by nomore than 0.1M⊙, themean spot coverage is S = 0.031±0.003, suggesting that the activity of candidate young Suns is more pronounced than that of the present-day Sun. These stars rotate considerably faster than the Sun, with an average rotation period of 4.3d. The results of this study of cool, low-mass dwarfs of the Pleiades cluster are compared to results from an earlier study of 1570 M stars.  相似文献   

20.
Antakya city is at risk because of strong earthquakes occurring in the area, and different soil conditions that can produce variation of the ground motion amplification. Microzonation of cities provides a basis for site-specific hazard analysis in urban settlements. In particular, seismic microzonation can be provided by means of detailed seismic assessment of the area, including earthquake recordings and geological studies. In this paper, we propose a preliminary microzonation map for the city of Antakya, based on the variation of the dominant periods and shear velocities of the sediments covering the area. The periods are retrieved from microtremor measurements conducted at 69 sites, using the horizontal-to-vertical spectral ratio technique. The results of microtremor analysis were compared with data obtained from refraction microtremor (ReMi) measurements at four profiles crossing the studied area. According to the classification of dominant periods, Antakya city can be divided into five zones, probably prone to different levels of seismic hazard. The shorter natural periods are in inner Antakya and both the sides of Asi River (i.e., northern and southern parts). The eastern and western parts of Antakya have maximum dominant periods. The V s 30 values were calculated by using the ReMi method along the profiles. Antakya city has V s 30 values in the range of category C of the national earthquake hazard reduction programme site classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号