首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dennis B. Ward 《Icarus》1977,32(4):437-442
The spectrum of Saturn and its rings between 45 and 115 μm has been measured at an average resolving power of 14 from the NASA Lear Jet. The combined brightness temperature of the rings and planetary disk decreases beyond 65 μm, in disagreement with previous results. A brightness temperature of 65 ± 10°K is obtained for the planetary disk in the 80–110-μm wavelength range if a large-particle, constant-emissivity model is assumed for the rings. The possible effects of small particles in the rings are briefly considered.  相似文献   

2.
Kari Lumme  H.J. Reitsema 《Icarus》1978,33(2):288-300
Analysis of 206 high-quality plates from three recent apparitions taken in five colors has yielded several photometric parameters for Saturn and its A and B rings. Phase curves and geometric albedos are derived for two regions of Saturn and for each ring. The phase coefficients of the rings are found to be independent of the ring-plane inclination angle. A comparison of the phase curves shows that the particles of ring A exhibit a larger phase coefficient than do those of ring B. When examined with a multiple-scattering model using Henyey-Greenstein phase functions, the observations of the ring tilt effect indicate that the particles of ring A may also have lower single-scattering and geometric albedos. The color dependence of the geometric albedo of the particles in ring B is shown to be very similar to that of Europa (J II). We find for ring A an optical thickness of 0.50 (0.45 ≤ τA ≤ 0.57) and for the Cassini division, 0.018 ± 0.004.  相似文献   

3.
J.S. Hall  L.A. Riley 《Icarus》1974,23(2):144-156
Intensity and polarization measures have been made of Saturn in the ultraviolet (0.37 μm) and green (0.57 μm) since 1968, at phase angles which ranged from 0°.0 to 6°.1. During this interval, the tilt of the planet's equatorial plane changed from 11°.2 to 26°.4, with the south pole toward the Earth.The polarization of the disk in the ultraviolet shows a strongly radial pattern at all observed phase angles, with a maximum of about 3.7 × 10?2 at all limbs and a gradual decrease to nearly zero at the center. Where the rings overlap the disk, the better observations show their polarization to be small and in the direction of the equatorial plane.In green light and close to opposition the relatively small polarization of the disk appeared to be radial in 1968, but by 1973 polarization (still radial ) was detected only in the southern hemisphere. In all years the polarization appears to be strongest near the south pole, particularly when the pole is nearest the limb. When the pole is furthest from the limb (tilt = 26°), there is a suggestion that maximum polarization may occur at the pole itself. At large phase angles the polarization along the E-W diameter shows a prominent phase-dependent component of 1.0 × 10?2 in a N-S direction.The intensity profiles in the ultraviolet suggest some transmission of light by ring A and less than about 20% by ring B. A limiting value of 39% was obtained from the polarization data.  相似文献   

4.
G.H. Rieke 《Icarus》1975,26(1):37-44
Infrared observations of Saturn from 5 to 40 μm are described. There is intense limb brightening at 12.35 μm over the southern polar cap. The C ring is anomalously bright at 10 and 20 μm and has bluer (hotter) colours than the A and B rings. The ring spectra have been extrapolated beyond 40 μm and subtracted from low-resolution far-infrared measurements to show that the far-infrared spectrum of the disk of Saturn is qualitatively similar to that of Jupiter and that Saturn radiates 2.5 ± 0.6 times the energy it absorbs from the Sun.  相似文献   

5.
Multiaperture K photometry and 2.0- to 2.5-μm spectrophotometry of Uranus and its ring system are presented. The photometric results are used, together with a previously published measurement, to set limits on the geometric albedos of Uranus and the rings at ~2.2 μm: (0.74 ± 0.02) × 10(su?4) ≤ pK (Uranus) ≤ (1.5 ± 0.3) × 10?4, and (2.7 ± 0.6) × 10?2pK (rings) ≤ (3.4 ± 0.1) × 10?2. Reflectance spectra of Uranus and Uranus plus rings show features in the planet's spectrum which are attributed to gaseous CH4 absorption, and a 2.20-μm feature in the combined spectrum which may be due to the rings. This feature is tentatively identified with either the 2.26-μm absorption feature of NH3 frost, or the 2.2-μm OH band exhibited by certain silicate minerals. The results of JHK photometry of Uranus' satellite, Ariel (U1), indicate that the infrared colors of this object are very similar to those of the satellites U2, U3, and U4.  相似文献   

6.
We present far-infrared observations of Saturn and Venus made within four spectral bands (31 to 38, 47 to 67, 71 to 94, and 114 to 196 μm) using a 32-cm airborne telescope during May 1977. The set of brightness temperatures obtained from Saturn is analyzed on the basis of thermal models of the atmosphere of this planet. The best agreement is obtained with an effective temperature of about 95°K for the planet itself and a ring contribution corresponding to brightness temperatures ranging from 55 to 70°K. These values of the temperature of the ring system are smaller than the ones measured at shorter wavelengths and could be indicative of a decreasing emissivity of the rings in the far infrared.  相似文献   

7.
We present interferometric observations of Saturn and its ring system made at the Hat Creek Radio Astronomy Observatory at a wavelength of 1.30 cm. The data have been analyzed by both model-fitting and aperture synthesis techniques to determine the brightness temperature and optical thickness of the ring system and estimate the amount of planetary limb darkening. We find that the ring optical depth is close to that observed at visible wavelenghts, while the ring brightness temperature is only 7 ± 1°K. These observational constraints require the ring particles to be nearly conservative scatterers at this wavelength. A conservative lower limit to the single-scattering albedo of the particles at 1.30-cm wavelength is 0.95, and if their composition is assumed to be water ice, then this lower limit implies an upper limit of 2.4 m for the radius of a typical ring particle. The aperture synthesis maps show evidence for a small offset in the position of Saturn from that given in the American Ephemeris and Nautical Almanac. The direction and magnitude of this offset are consistent with that found from a similar analysis of 3.71-cm interferometric data which we have previously presented (F.P. Schloerb, D.O. Muhleman, and G.L. Berge, 1979b, Icarus39, 232–250). Limb darkening of the planetary disk has been estimated by solving for the best-fitting disk radius in the models. The best-fitting radius is 0.998 ± 0.004 times the nominal Saturn radius and indicates that the planet is not appreciably limb dark at 1.30 cm. Since our previous 3.71-cm data also indicated that the planet was not strongly limb dark (F.P. Schloerb, D. O. Muhleman, and G.L. Berge, 1979a, Icarus39, 214–230), we feel that the limb darkening is not strongly wavelength dependent between 1.30 and 3.71 cm. The difference between the best-fitting disk radii at 3.71 and 1.30 cm is +0.007 ± 0.007 times the nominal Saturn radius and suggests that the planet is more limb dark at 1.30 cm than at 3.71 cm. Models of the atmosphere which have NH3 as the principal source of microwave opacity predict that the planet will be less limb dark at 1.30 cm. However, the magnitude of the effect predicted by the NH3 models is ?0.009 and only marginally different from the observed value.  相似文献   

8.
We have resolved the relative rings-to-disk brightness (specific intensity) of Saturn at 39 μm (δλ ? 8 μm) using the 224-cm telecscope at Mauna Kea Oservatory, and have also measured the total flux of Saturn relative to Jupiter in the same bandpass from the NASA Learjet Observatory. These two measurements, which were made in early 1975 with Saturn's rings near maximum inclination (b′ ? 25°), determine the disk and average ring (A and B) brightness in terms of an absolute flux calibration of Jupiter in the same bandpass. While present uncertainties in Jupiter's absolute calibration make it possible to compare existing measurementsunambiguously, it is nevertheless possible to conclude the following: (1) observations between 20 and 40 μm are all compatible (within 2σ) of a disk brightness temperature of 94°K, and do not agree with the radiative equilibrium models of Trafton; (2) the rings at large tilt contribute a flux component comparable to that of the planet itself for λ ? 40 μm and (3) there is a decrease of ~22% in the relative ring: disk brightness between effective wavelengths of 33.5 and 39 μm.  相似文献   

9.
Infrared spectral observations of Mars, Jupiter, and Saturn were made from 100 to 470 cm?1 using NASA's G. P. Kuiper Airborne Observatory. Taking Mars as a calibration source, we determined brightness temperatures of Jupiter and Saturn with approximately 5 cm?1 resolution. The data are used to determine the internal luminosities of the giant planets, for which more than 75% of the thermally emitted power is estimated to be in the measured bandpass: for Jupiter LJ = (8.0 ± 2.0) × 10?10L and for Saturn LS = (3.6 ± 0.9) × 10?10. The ratio R of thermally emitted power to solar power absorbed was estimated to be RJ = 1.6 ± 0.2, and RS = 2.7 ± 0.8 from the observations when both planets were near perihelion. The Jupiter spectrum clearly shows the presence of the rotational ammonia transitions which strongly influence the opacity at frequencies ?250 cm?1. Comparison of the data with spectra predicted from current models of Jupiter and Saturn permits inferences regarding the structure of the planetary atmospheres below the temperature inversion. In particular, an opacity source in addition to gaseous hydrogen and ammonia, such as ammonia ice crystals as suggested by Orton, may be necessary to explain the observed Jupiter spectrum in the vicinity of 250 cm?1.  相似文献   

10.
We observed Saturn at far-infrared and submillimeter wavelengths during the Earth's March 1980 passage through the plane of Saturn's rings. Comparison with earlier spectroscopic observations by D. B. Ward [Icarus32, 437–442 (1977)], obtained at a time when the tilt angle of the rings was 21.8°, permits separation of the disk and ring contributions to the flux observed in this wavelength range. We present two main results: (1) The observed emission of the disk between 60 and 180 μm corresponds to a brightness temperature of 104 ± 2°K; (2) the brightness temperature of the rings drops approximately 20°K between 60 and 80 μm. Our data, in conjunction with the data obtained by other observers between 1 μm and 1 mm, permit us to derive an improved estimate for the total Saturnian surface brightness of (4.84 ± 0.32) × 10?4W cm?2 corresponding to an effective temperature of 96.1 ± 1.6°K. The ratio of radiated to incident power, PR/PI, is (1.46 ± 0.08)/(1 - A), where A is the Bond albedo. For A = 0.337 ± 0.029, PR/PI = 2.20 ± 0.15 and Saturn's intrinsic luminosity is LS = (2.9 ± 0.5) × 10?10L.  相似文献   

11.
Results from numerical simulations of jetstreams are used to discuss certain aspects of the dynamics of the rings of Saturn. The probable velocity distribution inside the ring system is strongly non-Maxwellian. For the rings to form and remain a minimal degree of inelasticity is required. The energy consumption decreases rapidly with decreasing thickness of the rings. As we expect the degree of inelasticity to decrease for very small impact velocities, a minimal thickness should be reached, somewhat lower than the observed value.  相似文献   

12.
13.
《Icarus》1987,70(3):506-516
We present 2.7-mm interferometric observations of Saturn made near opposition in June 1984 and June 1985, when the ring opening angle was 19° and 23°, respectively. By combining the data sets we produce brightness maps of Saturn and its rings with a resolution of 6″. The maps show flux from the ring ansae, and are the first direct evidence of ring flux in the 3-mm wavelength region. Modelfits to the visibility data yield a disk brightness temperature of 156 ± 5°K, a combined A, B, and C ring brightness temperature of 19 ± 3°K, and a combined a ring cusp (region of the rings which block the planet's disk) brightness temperature of 85 ± 5°K. These results imply a normal-to-the-ring optical depth for the combined ABC ringof 0.31 ± 0.04, which is nearly the same value found for wavelenghts from the UV to 6 cm. About 6°K of the ring flux is attributed to scattered planetary emission, leaving an intrinsic thermal component of ∼13°K. These results, together with the ring particle size distributions found by the Voyager radio occultation experiments, are consistent with the idea that the ring particles are composed chiefly of water ice.  相似文献   

14.
15.
We present aperture synthesis maps of the Saturn system at a wavelength of 3.71 cm. The data used to make the maps were obtained in May–June 1976 at the Owens Valley Radio Observatory on 13 interferometer baselines. The aperture synthesis maps contain few assumptions about the brightness structure of Saturn and the rings and, therefore, may be used to check previous model-fitting results as well as search for new unmodeled features. Generally, the maps confirm the previous model-fitting results. An exception to this is that the brightness temperature of the planet that is implied by the maps is about 4% less than that deduced from model fitting. The likely explanation of this discrepancy is that random errors on the phase of the visibility function have led to an underestimate of the planet brightness temperature in the map. Maps of the residuals to the model fits have shown that the position of Saturn given in the American Ephemeris and Nautical Almanac may be in error by about 0.25 arcsec. Maps of the residuals to model fits including a position offset show that no new features of the Saturn brightness structure are required to match the present data. In particular, no azimuthal variations in the brightness temperature of the rings were detected.  相似文献   

16.
We give a simple mathematical model for braided rings of a planet based on Maxwell's model for the rings of Saturn.  相似文献   

17.
David Morrison 《Icarus》1974,22(1):57-65
Broad-band radiometry with a spatial resolution of 5 arc sec is presented of Saturn and its rings. The brightness temperature of the B ring is 96 ± 3°K at 20 μm and 91 ± 3°K at 11 μm. These values constrain the bolometric Bond albedo of the ring particles to be less than 0.6, thus requiring a phase integral of less than unity. From differences in the thermal emission of the ansae, I suggest that the leading side of the particles has higher albedo than the trailing side. A measured drop in temperature of the B ring following eclipse of 2.0 ± 0.5°K is consistent with radii for the ring particles of 2 cm or larger.  相似文献   

18.
R.M. Goldstein  G.A. Morris 《Icarus》1973,20(3):260-262
Radar echos at 12.6 cm show that the particles of the rings of Saturn are very efficient radar reflectors. It follows that the particles are likely to be rough, with diameters on the order of a meter or larger. The data indicates that some of the reflecting objects may lie beyond the visible rings.  相似文献   

19.
Interferometric observations of Saturn and its rings made at the Owens Valley Radio Observatory at a wavelength of 3.71 cm ar fit to models of the Saturn brightness structure. The models have allowed us to estimate the brightness temperatures and optical thicknesses of the A, B, and C rings as well as the brightness temperature of the planetary disk. The most accurate results are the ratios of the ring temperatures to the planet temperature of 0.030 ± 0.012, 0.050 ± 0.010, and 0.040 ± 0.014 for the A, B, and C rings, respectively. The best estimates of the ring optical thicknesses are τA = 0.2 ± 0.1, τB = 0.9 ± 0.2, and τC = 0.1 ± 0.1. The actual brightness temperatures, which are affected by the absolute calibration errors, are Tplanet = 178 ± 8, TA = 5.2 ± 2.0, TB = 9.1 ± 1.8, and TC = 7.1 ± 2.6°K. The particle single-scattering albedo that would be most consistent with the observations is slightly less than one, but probably greater than 0.95. The observations are consistent with particles which conservatively scatter the thermal emission from Saturn to the Earth and emit no thermal emission of their own. The 3.71-cm optical depths which we have estimated are very close to the visible wavelength optical depths. This similarity indicates that the ring particles must be at least a few centimeters in size, although we feel that the particles may well be much larger than this in view of the closeness of the visible and microwave optical depths. Particles which are nearly conservative scatterers at our wavelength and at least a few centimeters in size must be composed of a material which is either a very good reflector of microwaves or a very poor absorber of them. At this time, water ice seems to be the most likely candidate since it is a very poor absorber of microwaves and has been detected in the rings spectroscopically.  相似文献   

20.
Observations of 3.5- and 12.6-cm radar echoes from the rings of Saturn suggest that no significant difference in scattering properties exists in this wavelength interval. The echoes are largely unpolarized at both wavelengths, and yield a radar cross section at 3.5 cm of 7.32 ± 0.84 × 109 km2 for each polarization. The combined radar cross sections for both polarizations correspond to 1.37 ± 0.16 times the optically observed projected A- and B-ring areas (excluding that part of the rings shadowed by the planet). The shape of the echo spectrum is compatible with a homogeneous ring scattering model, except in having excess power at frequencies near the center of the spectrum. A number of possible explanations for the observed scattering properties are explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号