首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model has been developed for the currents induced in the ionospheres of Venus and Mars by the flowing magnetized solar wind in a previous paper (Cloutier and Daniell, 1973). The altitudes of the ionopauses on both planets, determined from the electrodynamical models of the previous paper, are used here to calculate the total rates of atmospheric mass loss to the solar wind for Venus and Mars. These loss rates are compared to the rates calculated by Michel (1971) based upon the limit of mass loading of the solar wind flow determined from hydrodynamic constraints. The distributions of planetary ions in the downstream wakes of Venus and Mars are calculated, and the interpretation of ion spectrometer measurements from close planetary encounters is discussed.  相似文献   

2.
Limb darkening and specific intensity data imply more continuous opacity in the solar photosphere between 2000 Å and 3500 Å than has been predicted theoretically. The temperature dependence and wavelength dependence of this missing opacity are in qualitative agreement with those deduced for the ion H3 +, but it is unlikely that H3 + is sufficiently abundant to account for this opacity.  相似文献   

3.
For the first time since 1992 when the Pioneer Venus Orbiter (PVO) ceased to operate, there is again a plasma instrument in orbit around Venus, namely the ASPERA-4 flown on Venus Express (inserted into an elliptical polar orbit about the planet on April 11, 2006). In this paper we report on measurements made by the ion and electron sensors of ASPERA-4 during their first five months of operation and, thereby, determine the locations of both the Venus bow shock (BS) and the ion composition boundary (ICB) under solar minimum conditions. In contrast to previous studies based on PVO data, we employ a 3-parameter fit to achieve a realistic shape for the BS. We use a different technique to fit the ICB because this latter boundary cannot be represented by a conic section. Additionally we investigate the dependence of the location of the BS on solar wind ram pressure (based on ASPERA-4 solar wind data) and solar EUV flux (using a proxy from Earth).  相似文献   

4.
The bulk chlorine concentrations and isotopic compositions of a suite of non‐carbonaceous (NC) and carbonaceous (CC) iron meteorites were measured using gas source mass spectrometry. The δ37Cl values of magmatic irons range from ?7.2 to 18.0‰ versus standard mean ocean chloride and are unrelated to their chlorine concentrations, which range from 0.3 to 161 ppm. Nonmagmatic IAB irons are comparatively Cl‐rich containing >161 ppm with δ37Cl values ranging from ?6.1 to ?3.2‰. The anomalously high and low δ37Cl values are inconsistent with a terrestrial source, and as Cl contents in magmatic irons are largely consistent with derivation from a chondrite‐like silicate complement, we suggest that Cl is indigenous to iron meteorites. Two NC irons, Cape York and Gibeon, have high cooling rates with anomalously high δ37Cl values of 13.4 and 18.0‰. We interpret these high isotopic compositions to result from Cl degassing during the disruption of their parent bodies, consistent with their low volatile contents (Ga, Ge, Ag). As no relevant mechanisms in iron meteorite parent bodies are expected to decrease δ37Cl values, whereas volatilization is known to increase δ37Cl values by the preferential loss of light isotopes, we interpret the low isotope values of <?5‰ and down to ?7.2‰ to most closely represent the primordial isotopic composition of Cl in the solar nebula. Similar conclusions have been derived from low δ37Cl values down to ?6, and ?3.8‰ measured in Martian and Vestan meteorites, respectively. These low δ37Cl values are in contrast to those of chondrites which average around 0‰ previously explained by the incorporation of isotopically heavy HCl clathrate into chondrite parent bodies. The poor retention of low δ37Cl values in many differentiated planetary materials suggest that extensive devolatilization occurred during planet formation, which can explain Earth's high δ37Cl value by the loss of approximately 60% of the initial Cl content.  相似文献   

5.
We obtain ratios of volumes of He+ to H+ zones forHII regions ionized by associations following a Salpeter IMF using Kurucz's (1979) model atmospheres. It is concluded that the temperature of hottest star in the association is the dominant factor determining the He ionization structure. The selective dust absorption seems to play a secondary role as well as density gradients and spatial distribution of ionizing stars. The results are compared with observations, in particular with the Orion Nebula. A density gradient is found in M42. Filling factors in the range ??5–16 for M43 are obtained.  相似文献   

6.
《Planetary and Space Science》2007,55(12):1673-1700
Spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAV) is a suite of three spectrometers in the UV and IR range with a total mass of 13.9 kg flying on the Venus Express (VEX) orbiter, dedicated to the study of the atmosphere of Venus from ground level to the outermost hydrogen corona at more than 40,000 km. It is derived from the SPICAM instrument already flying on board Mars Express (MEX) with great success, with the addition of a new IR high-resolution spectrometer, solar occultation IR (SOIR), working in the solar occultation mode. The instrument consists of three spectrometers and a simple data processing unit providing the interface of these channels with the spacecraft.A UV spectrometer (118–320 nm, resolution 1.5 nm) is identical to the MEX version. It is dedicated to nadir viewing, limb viewing and vertical profiling by stellar and solar occultation. In nadir orientation, SPICAV UV will analyse the albedo spectrum (solar light scattered back from the clouds) to retrieve SO2, and the distribution of the UV-blue absorber (of still unknown origin) on the dayside with implications for cloud structure and atmospheric dynamics. On the nightside, γ and δ bands of NO will be studied, as well as emissions produced by electron precipitations. In the stellar occultation mode the UV sensor will measure the vertical profiles of CO2, temperature, SO2, SO, clouds and aerosols. The density/temperature profiles obtained with SPICAV will constrain and aid in the development of dynamical atmospheric models, from cloud top (∼60 km) to 160 km in the atmosphere. This is essential for future missions that would rely on aerocapture and aerobraking. UV observations of the upper atmosphere will allow studies of the ionosphere through the emissions of CO, CO+, and CO2+, and its direct interaction with the solar wind. It will study the H corona, with its two different scale heights, and it will allow a better understanding of escape mechanisms and estimates of their magnitude, crucial for insight into the long-term evolution of the atmosphere.The SPICAV VIS-IR sensor (0.7–1.7 μm, resolution 0.5–1.2 nm) employs a pioneering technology: an acousto-optical tunable filter (AOTF). On the nightside, it will study the thermal emission peeping through the clouds, complementing the observations of both VIRTIS and Planetary Fourier Spectrometer (PFS) on VEX. In solar occultation mode this channel will study the vertical structure of H2O, CO2, and aerosols.The SOIR spectrometer is a new solar occultation IR spectrometer in the range λ=2.2–4.3 μm, with a spectral resolution λλ>15,000, the highest on board VEX. This new concept includes a combination of an echelle grating and an AOTF crystal to sort out one order at a time. The main objective is to measure HDO and H2O in solar occultation, in order to characterize the escape of D atoms from the upper atmosphere and give more insight about the evolution of water on Venus. It will also study isotopes of CO2 and minor species, and provides a sensitive search for new species in the upper atmosphere of Venus. It will attempt to measure also the nightside emission, which would allow a sensitive measurement of HDO in the lower atmosphere, to be compared to the ratio in the upper atmosphere, and possibly discover new minor atmospheric constituents.  相似文献   

7.
Using a quasi-two-dimensional model of the Venus ionosphere, we calculated the ion number densities and horizontal ion bulk velocities expected for a range of solar zenith angles near the terminator (80 to 100°), and compared them with data obtained from the Pioneer Venus Orbiter retarding potential analyzer. The calculated ion bulk velocity arises entirely from the solar EUV-induced plasma pressure gradient and has a magnitude consistent with observations; ionization by suprathermal electrons is neglected in those computations. We find that while photoionization is the dominant source of ionospheric plasma for solar zenith angles less than 92°, plasma transport from the dayside is the dominant plasma source for solar zenith angles greater than 95°. We also show that the main nightside plasma peak at approximately 140 km altitude is of the F2 type (i.e., is diffusion controlled). Its altitude and shape are thus quite insensitive to the altitude of the ion source.  相似文献   

8.
A formalism has been developed for the calculation of the insolation on the planets Mercury and Venus neglecting any atmospheric absorption. For Mercury, the instantaneous insolation curves are repeated in a 2-tropical year cycle, the distribution of the solar radiation being perfectly symmetric between both hemispheres. In addition to latitudinal variations, one observes a longitudinal effect expressed by different instantaneous insolation distributions during the course of the time; on the equator, the relative diurnal insolation variability may attain a factor of 3. The small obliquity of Venus results in a nearly symmetric solar radiation distributions with respect to the equator except at the poles, where an important seasonal effect has been found. It has to be noted that no longitudinal dependence exists. Finally, the insolation curves are repeated in a nearly half-year cycle.  相似文献   

9.
10.
The possibility of the statistical acceleration of solar wind ions to energies above 10 keV in the vicinity of co-rotating high speed solar wind streams by scattering from hydromagnetic waves is considered. We find that this process may occur only in the compressed fast stream plasma within the interaction region between the stream interface and the trailing edge, and may account for the energetic ion enhancements observed in this region by Richardson and Zwickl (Planet. Space Sci. 32, 1179, 1984). When statistical acceleration occurs in the outer heliosphere, the accelerated ions may provide a source population for acceleration at the co-rotating reverse shock.  相似文献   

11.
Abstract— The boundaries between the highly deformed tessera terrain and adjacent volcanic plains are primarily those of embayment, where the tessera are stratigraphically older than the plains. Previous studies show that <3% of these boundaries display evidence of tectonic tilting after the emplacement of the plains. One of these unusual boundaries is the western margin of Alpha Regio tessera, a zone ~ 100 km in width that separates the plains from the interior structures of Alpha. This zone is characterized by margin parallel, fine‐scale (1–5 km) fractures, graben, and ridges that truncate and postdate the broad‐scale (10–30 km) ridges and troughs of the interior of Alpha. The western margin is embayed by several volcanic plains units that are progressively tilted and deformed by graben with closer proximity to Alpha Regio. The earliest deformation of the plains consists of northeast‐trending graben ~1 km in width that are similar in morphology and spacing to graben that deform intratessera plains and plains at the eastern boundary of Alpha. Northwest‐trending graben then formed over an interval marked by the emplacement of two additional plains units; their similarity to northwest‐trending structures emanating from Eve corona and the Lada Terra rift suggests a possible genetic relationship. The tilting of the plains adjacent to western Alpha implies relative vertical movement of the margin, either uplift of tessera or downwarping of plains subsequent to the formation and relaxation of the interior of Alpha Regio. Subsidence of plains at this locale is supported by the presence of a basin to the west of Alpha surrounded by a fracture belt contiguous with western Alpha. Thus, the fractures and deformation at the western boundary of Alpha may be related to the formation of a basin to the west of Alpha with some influence from the northernmost extension of the Lada Terra rift. Such a basin is not present at a section along the eastern boundary of Alpha Regio, where the origin of tilted plains remains equivocal. We conclude that the deformation along the western margin of Alpha Regio is not directly related to the process of tessera formation but is an example of tessera modification and is consistent with the stratigraphic position of tessera as the oldest unit observed on Venus.  相似文献   

12.
Variations of the upper cloud boundary and the CO, HF, and HCl mixing ratios were observed using the CSHELL spectrograph at NASA IRTF. The observations were made in three sessions (October 2007, January 2009, and June 2009) at early morning and late afternoon on Venus in the latitude range of ±60°. CO2 lines at 2.25 μm reveal variations of the cloud aerosol density (∼25%) and scale height near 65 km. The measured reflectivity of Venus at low latitudes is 0.7 at 2.25 μm and 0.028 at 3.66 μm, and the effective CO2 column density is smaller at 3.66 μm than those at 2.25 μm by a factor of 4. This agrees with the almost conservative multiple scattering at 2.25 μm and single scattering in the almost black aerosol at 3.66 μm. The expected difference is just a factor of (1 − g)−1 = 4, where g = 0.75 is the scattering asymmetry factor for Venus’ clouds. The observed CO mixing ratio is 52 ± 4 ppm near 08:00 and 40 ± 4 ppm near 16:30 at 68 km, and the higher ratio in the morning may be caused by extension of the CO morningside bulge to the cloud tops. The observed weak limb brightening in CO indicates an increase of the CO mixing ratio with altitude. HF is constant at 3.5 ± 0.2 ppb at 68 km in both morningside and afternoon observations and in the latitude range ±60°. Therefore the observations do not favor a bulge of HF, though HF is lighter than CO. Probably a source in the upper atmosphere facilitates the bulge formation. The recent measurements of HCl near 70 km are controversial (0.1 and 0.74 ppm) and require either a strong sink or a strong source of HCl in the clouds. The HCl lines of the (2-0) band are blended by the solar and telluric lines. Therefore we observed the P8 lines of the (1-0) band at 3.44 μm. These lines are spectrally clean and result in the HCl mixing ratio of 0.40 ± 0.03 ppm at 74 km. HCl does not vary with latitude within ±60°. Our observations support a uniformly mixed HCl throughout the Venus atmosphere.  相似文献   

13.
We review two models describing the Venus climate system: the carbonate and pyrite models. It has been argued carbonate and pyrite are potentially important minerals controlling the climate of Venus, though existence of either minerals has not been confirmed. Although it used to be proposed that carbonation reaction might explain the Venus’ atmospheric CO2 abundance, it is unlikely Venus’ surface is reactive enough to control the Venus’ massive CO2 atmosphere. Venus’ surface carbonate is also able to affect the climate through the reaction with atmospheric SO2 to form anhydrite. Under the carbonate model the climate state is not in equilibrium and would be unstable due to the reaction between carbonate and SO2. On the other hand, pyrite-magnetite reaction is proposed to explain the Venus’ atmospheric SO2 abundance. Under pyrite-magnetite reaction, however, the climate would be stabilized such that the existing climate state is maintained over a geological timescale, while some observational facts such as atmospheric abundance of SO2 and surface temperature could also be reasonably explained.  相似文献   

14.
Measurements of the flux of helium nuclei in the 24 January, 1971, event and of helium and (C, N, O) nuclei in the 1 September, 1971, event are combined with previous measurements to obtain the relative abundances of helium, (C, N, O), and Fe-group nuclei in these events. These data are then summarized together with previously reported results to show that, even when the same detector system using a dE/dx plus range technique is used, differences in the He/(C, N, O) value in the same energy/nucleon interval are observed in solar cosmic ray events. Further, when the He/(C, N, O) value is lower the He/(Fe-group nuclei) value is also systematically lower in these large events. When solar particle acceleration theory is analyzed, it is seen that the results suggest that, for large events, Coulomb energy loss probably does not play a major role in determining solar particle composition at higher energies (> 10 MeV). The variations in multicharged nuclei composition are more likely due to partial ionization during the acceleration phase.NASA/NAS Senior Resident Research Associate, on leave from Tata Institute of Fundamental Research, Bombay.  相似文献   

15.
Abstract— Several recent studies have shown that materials such as magnetite that formed in asteroids tend to have higher Δ17O (=δ17O ? 0.52 × δ18O) values than those recorded in unaltered chondrules. Other recent studies have shown that, in sets of chondrules from carbonaceous chondrites, Δ17O tends to increase as the FeO contents of the silicates increase. We report a comparison of the O isotopic composition of olivine phenocrysts in low‐FeO (≤Fa1) type I and high‐FeO (≥Fa15) type II porphyritic chondrules in the highly primitive CO3.0 chondrite Yamato‐81020. In agreement with a similar study of chondrules in CO3.0 ALH A77307 by Jones et al. (2000), Δ17O tends to increase with increasing FeO. We find that Δ17O values are resolved (but only marginally) between the two sets of olivine phenocrysts. In two of the high‐FeO chondrules, the difference between Δ17O of the late‐formed, high‐FeO phenocryst olivine and those in the low‐FeO cores of relict grains is well‐resolved (although one of the relicts is interpreted to be a partly melted amoeboid olivine inclusion by Yurimoto and Wasson [2002]). It appears that, during much of the chondrule‐forming period, there was a small upward drift in the Δ17O of nebular solids and that relict cores preserve the record of a different (and earlier) nebular environment.  相似文献   

16.
Objects designated as bulges in disc galaxies do not form a homogeneous class. I distinguish three types: the classical bulges, the properties of which are similar to those of ellipticals and which form by collapse or merging; boxy and peanut bulges, which are seen in near-edge-on galaxies and which are in fact just a part of the bar seen edge-on; and, finally, disc-like bulges, which result from the inflow of (mainly) gas to the centre-most parts, and subsequent star formation. I make a detailed comparison of the properties of boxy and peanut bulges with those of N -body bars seen edge-on, and answer previously voiced objections about the links between the two. I also present and analyse simulations where a boxy/peanut feature is present at the same time as a classical spheroidal bulge, and compare them with observations. Finally, I propose a nomenclature that can help to distinguish between the three types of bulges and avoid considerable confusion.  相似文献   

17.
A comparison of Venus and Miranda coronae, and the Earth ovoidal structures, suggests that Venusian coronae, thermal structures associated with important compressional stress fields, could be compared to Archaean gneiss domes. Among Miranda coronae, Inverness has some characteristics not explained by either the raiser or the sinker models, and which deserve further investigation.  相似文献   

18.
Douglas E. Jones 《Icarus》1975,25(4):561-568
Using the data from Veneras 4–8 and Mariners 5 and 10 related to the composition and structure of the atmosphere of Venus, the three scans obtained with the microwave radiometer on Mariner 2 at a wavelength of 1.9 cm have been reanalyzed. In the previous analysis of the microwave data, both the percentage of Co2 and the surface pressures were considerably lower than the in situ measurements and the assumed longitudinal temperature gradient was much larger than indicated by more recent measurements. Using these more recent data, it has not been possible to match the measured scan ratios with or without any spherically symmetric distribution of microwave cloud absorber. The scan ratios, therefore, require the existence of different average values of microwave cloud opacity for each scan. In addition, the anomalous temperature drop observed in the south polar region of the terminator scan has been found to require a very opaque microwave cloud in the local zenith angle range of 40°–70°. This type of distribution is consistent with the trend seen in the Mariner 2 infrared terminator scan suggesting some degree of coupling between the infrared and microwave clouds. It is suggested that some of the variability seen in the earth-based interferometer data may be a result of changes in the distribution of the microwave clouds over the disc of the planet.  相似文献   

19.
We review recent results on O‐ and Mg‐isotope compositions of refractory grains (corundum, hibonite) and calcium, aluminum‐rich inclusions (CAIs) from unequilibrated ordinary and carbonaceous chondrites. We show that these refractory objects originated in the presence of nebular gas enriched in 16O to varying degrees relative to the standard mean ocean water value: the Δ17OSMOW value ranges from approximately ?16‰ to ?35‰, and recorded heterogeneous distribution of 26Al in their formation region: the inferred (26Al/27Al)0 ranges from approximately 6.5 × 10?5 to <2 × 10?6. There is no correlation between O‐ and Mg‐isotope compositions of the refractory objects: 26Al‐rich and 26Al‐poor refractory objects have similar O‐isotope compositions. We suggest that 26Al was injected into the 26Al‐poor collapsing protosolar molecular cloud core, possibly by a wind from a neighboring massive star, and was later homogenized in the protoplanetary disk by radial mixing, possibly at the canonical value of 26Al/27Al ratio (approximately 5 × 10?5). The 26Al‐rich and 26Al‐poor refractory grains and inclusions represent different generations of refractory objects, which formed prior to and during the injection and homogenization of 26Al. Thus, the duration of formation of refractory grains and CAIs cannot be inferred from their 26Al‐26Mg systematics, and the canonical (26Al/27Al)0 does not represent the initial abundance of 26Al in the solar system; instead, it may or may not represent the average abundance of 26Al in the fully formed disk. The latter depends on the formation time of CAIs with the canonical 26Al/27Al ratio relative to the timing of complete delivery of stellar 26Al to the solar system, and the degree of its subsequent homogenization in the disk. The injection of material containing 26Al resulted in no observable changes in O‐isotope composition of the solar system. Instead, the variations in O‐isotope compositions between individual CAIs indicate that O‐isotope composition of the CAI‐forming region varied, because of coexisting of 16O‐rich and 16O‐poor nebular reservoirs (gaseous and/or solid) at the birth of the solar system, or because of rapid changes in the O‐isotope compositions of these reservoirs with time, e.g., due to CO self‐shielding in the disk.  相似文献   

20.
While CO, HCl, and HF, that were considered in the first part of this work, have distinct absorption lines in high-resolution spectra and were detected four decades ago, the lines of HDO, OCS, and SO2 are either very weak or blended by the telluric lines and have not been observed previously by ground-based infrared spectroscopy at the Venus cloud tops. The H2O abundance above the Venus clouds is typically below the detection limit of ground-based IR spectroscopy. However, the large D/H ratio on Venus facilitates observations of HDO. Converted to H2O with D/H ≈ 200, our observations at 2722 cm−1 in the Venus afternoon show a H2O mixing ratio of ∼1.2 ppm at latitudes between ±40° increasing to ±60° by a factor of 2. The observations in the early morning reveal the H2O mixing ratio that is almost constant at 2.9 ppm within latitudes of ±75°. The measured H2O mixing ratios refer to 74 km. The observed increase in H2O is explained by the lack of photochemical production of sulfuric acid in the night time. The recent observations at the P-branch of OCS at 4094 cm−1 confirm our detection of OCS. Four distributions of OCS along the disk of Venus at various latitudes and local times have been retrieved. Both regular and irregular components are present in the variations of OCS. The observed OCS mixing ratio at 65 km varies from ∼0.3 to 9 ppb with the mean value of ∼3 ppb. The OCS scale height is retrieved from the observed limb darkening and varies from 1 to 4 km with a mean value of half the atmospheric scale height. SO2 at the cloud tops has been detected for the first time by means of ground-based infrared spectroscopy. The SO2 lines look irregular in the observed spectra at 2476 cm−1. The SO2 abundances are retrieved by fitting by synthetic spectra, and two methods have been applied to determine uncertainties and detection limits in this fitting. The retrieved mean SO2 mixing ratio of 350 ± 50 ppb at 72 km favors a significant increase in SO2 above the clouds since the period of 1980-1995 that was observed by the SOIR occultations at Venus Express. Scale heights of OCS and SO2 may be similar, and the SO2/OCS ratio is ∼500 and may be rather stable at 65-70 km under varying conditions on Venus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号