首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
An analysis of the Lowell Observatory photographic plates of Saturn gave the following results: (1) ring A and B show peculiar brightness distributions around the planet, from which we conclude that both are composed of particles in synchronous rotation. (2) The leading side of the particles in ring A is brighter than the trailing side by about 4%, which may indicate an interaction between such particles and the interplanetary medium. (3) Scans of the rings across the major axis show a small (~0.3″) region of enhanced brightness, from which we derive a value ofT s =10h13 . m 8±5 . m 4 for the actual planetary rotational period of Saturn. (4) In order to explain the synchronous rotation, the particles in ring A have to be at least 42 m in diameter.  相似文献   

2.
Interferometric observations of Saturn and its rings made at the Owens Valley Radio Observatory at a wavelength of 3.71 cm ar fit to models of the Saturn brightness structure. The models have allowed us to estimate the brightness temperatures and optical thicknesses of the A, B, and C rings as well as the brightness temperature of the planetary disk. The most accurate results are the ratios of the ring temperatures to the planet temperature of 0.030 ± 0.012, 0.050 ± 0.010, and 0.040 ± 0.014 for the A, B, and C rings, respectively. The best estimates of the ring optical thicknesses are τA = 0.2 ± 0.1, τB = 0.9 ± 0.2, and τC = 0.1 ± 0.1. The actual brightness temperatures, which are affected by the absolute calibration errors, are Tplanet = 178 ± 8, TA = 5.2 ± 2.0, TB = 9.1 ± 1.8, and TC = 7.1 ± 2.6°K. The particle single-scattering albedo that would be most consistent with the observations is slightly less than one, but probably greater than 0.95. The observations are consistent with particles which conservatively scatter the thermal emission from Saturn to the Earth and emit no thermal emission of their own. The 3.71-cm optical depths which we have estimated are very close to the visible wavelength optical depths. This similarity indicates that the ring particles must be at least a few centimeters in size, although we feel that the particles may well be much larger than this in view of the closeness of the visible and microwave optical depths. Particles which are nearly conservative scatterers at our wavelength and at least a few centimeters in size must be composed of a material which is either a very good reflector of microwaves or a very poor absorber of them. At this time, water ice seems to be the most likely candidate since it is a very poor absorber of microwaves and has been detected in the rings spectroscopically.  相似文献   

3.
Very low values of the radio brightness temperature of the rings of Saturn indicate that their high refar reflectivity is not simply due to a gain effect in the backscattering direction. These two sets of observations are consistent with the ring particles having a very high single scattering albedo at radio wavelenghts, with multiple scattering effects being important. Comparison of scattering calculations for ice and silicate particles with the radio and radar observations imply a mean particle radius of ~1 cm. The ice bands observed in the rings' near-infrared reflectivity spectra are formed by scattering within a microstructure on the surface of the ring particles, with the scattering centers being 25–125 μm in size. The Poynting-Robertson effect has caused a significant spiraling-in of the ring particles, probably resulting in a broadening of the rings. The inferred mean size is consistent with a model in which meteoroid impacts have caused a substantial reduction in the mean particle size from its initial value.  相似文献   

4.
Four-color photographic photometry of Saturn for the 1977–1979 apparitions has been analyzed to determine the dependence of ring brightness on wavelength, solar phase angle, ring particle orbital phase angle (azimuthal effect), declination of the Earth relative to the ring plane (tilt angle), and radial distance from Saturn. Azimuthal brightness variations up to ±20% relative to the ansae are clearly apparent for the maximum of ring A, but are not detectable for ring B or the outer portion of ring A. The shape of the intensity (I) versus orbital phase angle (θ) curve varies with ring tilt (B) and probably with wavelength, and shows 180° symmetry. As characterized by its slope near the ansae, this curve suggests that the azimuthal effect increases as B decreases from 26 to ≈11°. The phase curves l(α) for the ansae show very little dependence on ring tilt (26° > B > 6°), on wavelength, or on radial distance from Saturn; possibly the curves are somewhat steeper at the smallest tilt angles and for ring A relative to ring B. The radial profile of both rings becomes flatter with decreasing tilt angle and with decreasing wavelength. The latter effect is a natural result of the classical, many-particle-thick ring model.  相似文献   

5.
《Icarus》1987,70(3):506-516
We present 2.7-mm interferometric observations of Saturn made near opposition in June 1984 and June 1985, when the ring opening angle was 19° and 23°, respectively. By combining the data sets we produce brightness maps of Saturn and its rings with a resolution of 6″. The maps show flux from the ring ansae, and are the first direct evidence of ring flux in the 3-mm wavelength region. Modelfits to the visibility data yield a disk brightness temperature of 156 ± 5°K, a combined A, B, and C ring brightness temperature of 19 ± 3°K, and a combined a ring cusp (region of the rings which block the planet's disk) brightness temperature of 85 ± 5°K. These results imply a normal-to-the-ring optical depth for the combined ABC ringof 0.31 ± 0.04, which is nearly the same value found for wavelenghts from the UV to 6 cm. About 6°K of the ring flux is attributed to scattered planetary emission, leaving an intrinsic thermal component of ∼13°K. These results, together with the ring particle size distributions found by the Voyager radio occultation experiments, are consistent with the idea that the ring particles are composed chiefly of water ice.  相似文献   

6.
The variation in infrared equilibrium brightness temperature of Saturn's A, B, and C rings is modeled as a function of solar elevation B′ with respect to the ring plane. The basic model includes estimates of minimum and maximum interparticle shadowing in a monolayer approximation. Simple laboratory observations of random particle distributions at various illumination angles provide more realistic shadowing functions. Radiation balance calculations yield the physical (kinetic) temperature of particles in equilibrium with radiation from the Sun, Saturn, and neighboring particles. Infrared brightness temperatures as a function of B′ are then computed and compared to the available 20-μm data (Pioneer results are also briefly discussed). The A and B rings are well modeled by an optically thick monolayer, or equivalently, a flat sheet, radiating from one side only. This points to a temperature contrast between the two sides, possibly due to particles with low thermal inertia. Other existing models for the B ring are discussed. The good fit for the monolayer model does not rule out the possibility that the A and B rings are many particles thick. It could well be that a multilayer ring produces an infrared behavior (as a function of tilt angle) similar to that of a monolayer. The C ring brightness increases as B′ decreases. This contrast in behavior can be understood simply in terms of the low C ring optical depth and small amount of interparticle shadowing. High-albedo particles (A?0.5) can fit the C ring infrared data if they radiate mostly from one hemisphere due to slow rotation or low thermal inertia (or both). Alternatively, particles isothermal over their surface (owing to a rapid spin, high inertia, or small size), and significantly darker (A?0.3) than the A and B ring particles, can produce a similar brightness variation with ring inclination. In any case, the C ring particles have significantly hotter physical temperatures than the particles in the A and B rings, whether or not the rings form a monolayer.  相似文献   

7.
Kari Lumme  H.J. Reitsema 《Icarus》1978,33(2):288-300
Analysis of 206 high-quality plates from three recent apparitions taken in five colors has yielded several photometric parameters for Saturn and its A and B rings. Phase curves and geometric albedos are derived for two regions of Saturn and for each ring. The phase coefficients of the rings are found to be independent of the ring-plane inclination angle. A comparison of the phase curves shows that the particles of ring A exhibit a larger phase coefficient than do those of ring B. When examined with a multiple-scattering model using Henyey-Greenstein phase functions, the observations of the ring tilt effect indicate that the particles of ring A may also have lower single-scattering and geometric albedos. The color dependence of the geometric albedo of the particles in ring B is shown to be very similar to that of Europa (J II). We find for ring A an optical thickness of 0.50 (0.45 ≤ τA ≤ 0.57) and for the Cassini division, 0.018 ± 0.004.  相似文献   

8.
The faint E ring of Saturn appears as a narrow ring 246,000 ± 4,000 km from the center of Saturn on photographs taken when the ring-plane inclination was 5°.4. The apparent brightness of the ring was uniform at all observed orbital longitudes and permits an estimate of the normal optical thickness. A faint satellite (1981S1) was observed near the L4 triangular libration point of Tethys and is probably the same object as 1980S13.  相似文献   

9.
We present a second epoch of Very Large Array Saturn observations taken in February 1997 spanning wavelengths 1.3-21 cm. These observations complement earlier observations at Saturn's autumnal equinox in November 1995. In this epoch, however, we generally have better signal-to-noise ratios and the ring inclination of the present observations was −5.0°, whereas the previous observations were made with ring inclination +2.7°.Our observations confirm the latitudinal structure on the saturnian disk as seen at 2.0, 3.6, and 6.1 cm. We also see some latitudinal structure at 1.3 cm for the first time. The details of this structure have changed dramatically from those reported by I. de Pater and J. R. Dickel (1991, Icarus94, 474-492) for the 1980s and are consistent with those seen in F. van der Tak et al. (1999, Icarus142, 125-147). The most prominent features are a pair of brightness enhancements just inside the edges of the Equatorial Zone.The rings do not show the east-west asymmetry seen in our previous epoch, perhaps indicative of a viewing angle effect on the scattering properties of the rings. The radial trend in brightness in the ansae is generally consistent with that expected from optical depth variations and increasing distance from the source of scattered light. In particular the increased optical depth towards the center of the C ring is evident. Azimuthal variation in brightness in the C ring shows the forward scattering expected of Mie scattering. By contrast, the A and B rings show little or no azimuthal variation.We present Monte Carlo simulations of the ring brightness under the assumptions of isotropic and Mie scattering. These are the first synthetic maps of Saturn which can be directly compared to the images we obtained. Neither model fits all the data well. However, a hybrid model combining isotropic and Mie scattering does fit well. We interpret the consistency with isotropic scattering in the outer rings as an indication that near-field effects may be important. This in turn implies geometrically thin rings, as predicted by dynamical simulations of these rings.  相似文献   

10.
Multiple-scattering computations are carried out to explain the variation of the observed brightness of the A and B rings of Saturn with declination of the Earth and Sun. These computations are performed by a doubling scheme for a homogeneous plane-parallel scattering medium. We test a range of choices for the phase function, albedo for single scattering, and optical depth of both the rings. Isotropic scattering and several other simple phase functions are ruled out, and we find that the phase function must be moderately peaked in both the forward and backward directions. The tilt effect can be explained by multiple scattering in a homogeneous layer, but, for ring B, this requires a single-scattering albedo in excess of 0.8. The brightest part of ring B must have an optical depth greater than 0.9. We find that the tilt effect for ring A can be reproduced by particles having the same properties as those in ring B with the optical depth for the A ring in the range 0.4 to 0.6.  相似文献   

11.
We present far-infrared observations of Saturn in the wavelength band 76–116 μm, using a balloon-borne 75-cm telescope launched on 10 December 1980 from Hyderabad, India, when B′, the Saturnicentric latitude of the Sun, was 4°.3. Normalizing with respect to Jupiter, we find the average brightness temperature of the disk-ring system to be 90 ± 3° K. Correcting for the contribution from rings using experimental information on the brightness temperature of rings at 20 μm, we find TD, the brightness temperature of the disk, to be 96.9 ± 3.5° K. The systematic errors and the correction for the ring contribution are small for our observations. We, therefore, make use of our estimate of TD and earlier observations of Saturn when contribution from the rings was large and find that for wavelengths greater than 50 μm, there is a small reduction in the ring brightness temperature as compared to that at 20 μm.  相似文献   

12.
Recent 3-mm observations of Saturn at low ring inclinations are combined with previous observations of E. E. Epstein, M. A. Janssen, J. N. Cuzzi, W. G. Fogarty, and J. Mottmann (Icarus41, 103–118) to determine a much more precise brightness temperature for Saturn's rings. Allowing for uncertainties in the optical depth and uniformity of the A and B rings and for ambiguities due to the C ring, but assuming the ring brightness to remain approximately constant with inclination, a mean brightness temperature for the A and B rings of 17 ± 4°K was determined. The portion of this brightness attributed to ring particle thermal emission is 11 ± 5°K. The disk temperature of Saturn without the rings would be 156 ± 6°K, relative to B. L. Ulich, J. H. Davis, P. J. Rhodes, and J. M. Hollis' (1980, IEEE Trans. Antennas Propag.AP-28, 367–376) absolutely calibrated disk temperature for Jupiter. Assuming that the ring particles are pure water ice, a simple slab emission model leads to an estimate of typical particle sizes of ≈0.3 m. A multiple-scattering model gives a ring particle effective isotropic single-scattering albedo of 0.85 ± 0.05. This albedo has been compared with theoretical Mie calculations of average albedo for various combinations of particle size distribution and refractive indices. If the maximum particle radius (≈5 m) deduced from Voyager bistatic radar observations (E. A. Marouf, G. L. Tyler, H. A. Zebker, V. R. Eshleman, 1983, Icarus54, 189–211) is correct, our results indicate either (a) a particle distribution between 1 cm and several meters radius of the form r?s with 3.3 ? s ? 3.6, or (b) a material absorption coefficient between 3 and 10 times lower than that of pure water ice Ih at 85°K, or both. Merely decreasing the density of the ice Ih particles by increasing their porosity will not produce the observed particle albedo. The low ring brightness temperature allows an upper limit on the ring particle silicate content of ≈10% by mass if the rocky material is uniformly distributed; however, there could be considerably more silicate material if it is segregated from the icy material.  相似文献   

13.
We have used 3-mm Saturn observations, obtained from 1965 through 1977 and with Jupiter as a reference, to derive a ring brightness temperature of 18 ± 8°K. Thebrightness temperature of the disk of Saturn is 156 ± 9° K. Part of the ring brightness (≈62K) may be accounted for as disk emission which is scattered from the rings; the remainder (12 ± 8° K we attributed to ring particle thermal emission. Because this thermal component brightness temperatures is so much less than the particle physical temperature, limits are placed on the mean size and composition of the ring particles. In particular, as found by others, the particles cannot be rocky, but must be either metallic or composed of extremely low-loss dielectric material such as water ice. If the particles are pure water ice, for example, then a simple slab model and a multiple-scattering model both give upper limits to the particle sizes of ≈ 1 m, a value three times smaller than previously available. The multiple-scattering model gives a particle single-scattering albedo at 3 mm of 0.83±0.13.  相似文献   

14.
David Morrison 《Icarus》1974,22(1):57-65
Broad-band radiometry with a spatial resolution of 5 arc sec is presented of Saturn and its rings. The brightness temperature of the B ring is 96 ± 3°K at 20 μm and 91 ± 3°K at 11 μm. These values constrain the bolometric Bond albedo of the ring particles to be less than 0.6, thus requiring a phase integral of less than unity. From differences in the thermal emission of the ansae, I suggest that the leading side of the particles has higher albedo than the trailing side. A measured drop in temperature of the B ring following eclipse of 2.0 ± 0.5°K is consistent with radii for the ring particles of 2 cm or larger.  相似文献   

15.
We present interferometric observations of Saturn and its ring system made at the Hat Creek Radio Astronomy Observatory at a wavelength of 1.30 cm. The data have been analyzed by both model-fitting and aperture synthesis techniques to determine the brightness temperature and optical thickness of the ring system and estimate the amount of planetary limb darkening. We find that the ring optical depth is close to that observed at visible wavelenghts, while the ring brightness temperature is only 7 ± 1°K. These observational constraints require the ring particles to be nearly conservative scatterers at this wavelength. A conservative lower limit to the single-scattering albedo of the particles at 1.30-cm wavelength is 0.95, and if their composition is assumed to be water ice, then this lower limit implies an upper limit of 2.4 m for the radius of a typical ring particle. The aperture synthesis maps show evidence for a small offset in the position of Saturn from that given in the American Ephemeris and Nautical Almanac. The direction and magnitude of this offset are consistent with that found from a similar analysis of 3.71-cm interferometric data which we have previously presented (F.P. Schloerb, D.O. Muhleman, and G.L. Berge, 1979b, Icarus39, 232–250). Limb darkening of the planetary disk has been estimated by solving for the best-fitting disk radius in the models. The best-fitting radius is 0.998 ± 0.004 times the nominal Saturn radius and indicates that the planet is not appreciably limb dark at 1.30 cm. Since our previous 3.71-cm data also indicated that the planet was not strongly limb dark (F.P. Schloerb, D. O. Muhleman, and G.L. Berge, 1979a, Icarus39, 214–230), we feel that the limb darkening is not strongly wavelength dependent between 1.30 and 3.71 cm. The difference between the best-fitting disk radii at 3.71 and 1.30 cm is +0.007 ± 0.007 times the nominal Saturn radius and suggests that the planet is more limb dark at 1.30 cm than at 3.71 cm. Models of the atmosphere which have NH3 as the principal source of microwave opacity predict that the planet will be less limb dark at 1.30 cm. However, the magnitude of the effect predicted by the NH3 models is ?0.009 and only marginally different from the observed value.  相似文献   

16.
Ignacio R. Ferrín 《Icarus》1974,22(2):159-174
A photometric study of high-resolution (~0″.3) plates of Saturn taken at the Lowell Observatory in 1943 and 1945 is presented. N-S scans were taken over both the planet and rings. The excess brightness due to the planet seen through the rings is found by taking the difference between the central meridian (CM) scans and scans displaced by 5″.7. Adopting a value for the albedo of the planet, it is possible to obtain the optical thickness, τCM(r). In particular, for the regions of maximum brightness in rings A and B, we find τCM(IA max) = 0.38 ± 0.11 and τCM(IB max) = 0.61 ± 0.11. Observations by Barnard made in 1890 show evidence of ring D, recently discovered by Guerin (1969). The value for the optical thickness of this ring is τD(ID max) = 0.03 ± 0.01. Ring B exhibits a pronounced (7–10%) decrease in brightness from the extremity of the major axis to the CM. After considering several possible explanations, we conclude that the ring particles are nonspherical and are in synchronous rotation around the planet with their long axis toward it. The mean value for the ratio of major to minor axis for the particles at 15″ is (a/b) ? 1.08. Because of the shape and orientation of the particles, the optical thickness at the extremity of the major axis and at the CM are different for any saturnicentric latitude B ≠ 90°. Under these circumstances, only a minimum value for τ at the extremity can be derived.  相似文献   

17.
The spectrum of Saturn was measured from 80 to 350 cm?1 (29 to 125 μm) with ≈6-cm?1 resolution using a Michelson interferometer aboard NASA's Kuiper Airborne Observatory. These observations are of the full disk, with little contribution from the rings. For frequencies below 300 cm?1, Saturn's brightness temperature rises slowly, reaching ≈111°K at 100 cm?1. The effective temperature is 96.8 ± 2.5°K, implying that Saturn emits 3.0 ± 0.5 times as much energy as it receives from the Sun. The rotation-inversion manifolds of NH3 that are prominent in the far-infrared spectrum of Jupiter are not observed on Saturn. Our models predict the strengths to be only ≈2 to 5°K in brightness temperature because most of the NH3 is frozen out; this is comparable to the noise in our data. By combining our data with those of an earlier investigation when the Saturnicentric latitude of the Sun was B′ = 21.2°, we obtain the spectrum of the rings. The high-frequency end of the ring spectrum (ν > 230 cm?1) has nearly constant brightness temperature of 85°K. At lower frequencies, the brightness temperature decreases roughly as predicted by a simple absorption model with an optical depth proportional to ν1.5. This behavior could be due to mu-structure on the surface of the ring particles with a scale size of 10 to 100 μm and/or to impurities in their composition.  相似文献   

18.
We present a photometric model of the rings of Saturn which includes the main rings and an F ring, inclined to the main rings, with a Gaussian vertical profile of optical depth. This model reproduces the asymmetry in brightness between the east and west ansae of the rings of Saturn that was observed by the Hubble Space Telescope (HST) within a few hours after the Earth ring-plane crossing (RPX) of 10 August 1995. The model shows that during this observation the inclined F ring unevenly blocked the east and west ansae of the main rings. The brightness asymmetry produced by the model is highly sensitive to the vertical thickness and radial optical depth of the F ring. The F-ring model that best matches the observations has a vertical full width at half maximum of 13 ± 7 km and an equivalent depth of 10 ± 4 km. The model also reproduces the shape of the HST profiles of ring brightness vs. distance from Saturn, both before and after the time of ring-plane crossing. Smaller asymmetries observed before the RPX, when the Earth was on the dark side of the rings, cannot be explained by blocking of the main rings by the F ring or vice versa and are probably instead due to the intrinsic longitudinal variation exhibited by the F ring.  相似文献   

19.
“Condensations” of light have been observed when Saturn's rings are seen almost edge on, and the Sun and the Earth are on opposite sides of the ring plane. These condensations are associated with ring C and Cassini's division. If the relative brightness between the two condensations and the optical thickness of ring C are known, we can calculate the optical thickness of Cassini's division, τCASS. Using Barnard's and Sekiguchi's measurements, we have obtained 0.01 ? τCASS ? 0.05. A brightness profile of the condensations which agrees well with visual observations is also presented.We are able to set an upper limit of about 0.01 for the optical thickness of any hypothetical outer ring. This rules out a ring observed by C. Cragg in 1954, but does not eliminate the D′ ring observed by Feibelman in 1967.It is known that the outer edge of ring B is almost at the position of the 1/2 resonance with Mimas. Franklin, Colombo, and Cook explained this fact in 1971, postulating a total mass of ring B of 10?6MSATURN. We have derived a formula for the mass of the rings, which is a linear function of the mean particle size. We find that 10?6MSATURN implies large particles (~70m). If the particles are small (~10cm), as currently believed, the total mass of ring B is not enough to shift the outer edge. We conclude that the above explanation and current size estimates are inconsistent.  相似文献   

20.
From our telescopic observations of Saturn's rings in 1966, 1979, and 1980, the luminance of the unlit face at λ = 0.58 μm is derived as a function of the height B′ of the Sun above the lit face. A maximum is reached at B′ = 1.9° and a decrease is observed for larger values of B′. Ring B is 1.8 time less bright than ring A and Cassini division. The unlit/lit luminances ratios for the two rings merged together is 8% at B′ = 1.0° and 3% at B′ = 2.8°. The larger value at more grazing incidence is related to the photometric “opposition effect” which reflects more of the incident light backward into the ring plane when the height of the sun is small; the light so reflected is again reflected and scattered and a certain flux reaches the unlit face to escape toward the observer. The unlit face luminances for blue and for yellow light indicate a contribution by micron size particles. The Saturn globe produces a ring illumination which, observed from the Earth, amounts to 1.8 × 10?3 of the disk center reflectance. The rings observed exactly edge-on do not disappear but a faint lineament remains, which produces a flux of (0.30 ± 0.15) 10?3 times the brightness of a segment of 1 arcsec width at Saturn disk center; illuminations of rings' borders or particles outside the exact ring plane are indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号