首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article investigates whether the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived global terrestrial Drought Severity Index (DSI) had the capability of detecting regional drought over subtropical southwestern China. Monthly, remotely sensed DSI data with 0.05° spatial resolution were used to characterize the extent, duration, and severity of drought from 2000 to 2010. We reported that southwestern China suffered from incipient to extreme droughts from November 2009 to March 2010 (referred to as the “drought period”). The area affected by drought occupied approximately 74 % of the total area of the study region, in which a moderate drought, severe drought, and an extreme drought accounted for 20, 12.7, and 13.2 % of the total area, respectively; particularly in March 2010, droughts of severe and extreme intensity covered the largest areas of drought, which were 16.1 and 18.6 %, respectively. Spatially, eastern Yunnan, western Guizhou, and Guangxi suffered from persistent droughts whose intensities ranged from mild to extreme during the drought period. Pearson’s correlation analyses were performed between DSI and the in situ meteorological station-based Standardized Precipitation Index (SPI) for validating the monitoring results of the DSI. The results showed that the DSI corresponded favorably with the time scales of the SPI; meanwhile, the DSI showed its highest correlation (mean: r = 0.58) with a three-month SPI. Furthermore, similar spatial patterns and temporal variations were found between the DSI and the three-month SPI, as well as the agro-meteorological drought observation data, when monitoring drought. Our analysis suggests that the DSI can be used for near-real-time drought monitoring with fine resolution across subtropical southwestern China, or other similar regions, based solely on MODIS-derived evapotranspiration/potential evapotranspiration and Normalized Difference Vegetation Index data.  相似文献   

2.
At present, flash drought occurs globally and regionally and causes a lot of socio-economic loss in a very short time. Therefore, flash drought has been regarded as one of the hottest issues in drought research. However, flash drought monitoring, prediction and decision-making have encountered a lot of challenges due to its multiple driven factors and complex spatio-temporal process. Aiming at this problem, this paper focused on the agricultural land in China, and analyzed the spatio-temporal distribution of three kinds of flash droughts (i.e., precipitation-deficit, high-temperature, and composite flash droughts) from 1983 to 2015. We studied the occurrences, duration, spatial distribution, temporal distribution, and trend of all three kinds of flash droughts. Our results demonstrated that, the occurrences of flash drought agricultural land in China increased year by year, among which high-temperature flash drought increased dramatically; duration of flash droughts had different trends, but the variations were relatively smooth; Northeast China was identified as a vulnerable area of flash drought, indicating more flash drought events and longer duration; flash droughts in China were found to concentrate in spring (high-temperature drought) and summer seasons (precipitation-deficit drought). This study is helpful for building new flash drought monitoring method and system, and it is also valuable for flash drought preparedness on regional scale.  相似文献   

3.
基于大范围地面墒情监测的鄱阳湖流域农业干旱   总被引:1,自引:0,他引:1       下载免费PDF全文
以鄱阳湖流域为研究区, 基于2011—2020年22个墒情站的逐日地面墒情监测数据、1956—2020年49个雨量站的日降雨数据及2016—2019年墒情站所在灌区的气象数据, 采用考虑植被生理状态的土壤水分亏缺指数(SWDI)表征农业干旱, 分析不同尺度下墒情、包气带缺水量和降水量的时空分布, 评估SWDI在鄱阳湖流域农业干旱监测中的适用性, 揭示该流域农业干旱时空演变特征及其对气象干旱的响应规律, 初步探讨土壤质地与农业干旱强度的相关性。结果表明: ① SWDI对鄱阳湖流域农业干旱诊断具有较好的适用性; ②近10 a该流域农业干旱呈显著加重趋势, 其中2019—2020年发生流域性重度农业干旱, 且夏、秋、冬连旱, 是近10 a的主导季节性农业干旱, 对水稻、油菜等粮食产量影响显著; ③相较于气象干旱, 农业干旱发生、结束时间分别平均约晚2.5周和3周, 历时长10.1周, 频次更低, 干旱等级更小; ④砂土持水性最差, 易发生特大农业干旱, 黏土、黏壤土保水性最好, 轻旱和中旱发生概率较大, 壤土、砂壤土和壤砂土则介于二者之间。  相似文献   

4.
Northeast China as an important agricultural zone for commercial and economic crop in China suffered from increased drought risk that seriously threatened agricultural production and food security in recent decades. Based on precipitation datasets from 71 stations from 1960 to 2009 and on the reliable statistical methods of the Mann–Kendall test, Sen’s slope and the Standardized Precipitation Index, we analyzed the temporal and spatial variation of drought occurrence during the crop-growing season (from May to September) and summer (from June to August). The results showed that regional mean precipitation during the crop-growing season and summer over the last 40 years has decreased at the rate of ?1.72 and ?1.12 mm/year, respectively. According to timescale analysis of abrupt changes, there were two distinct time series (1965–1983 and 1996–2009) with decreasing precipitation trends at a 95 % confidence level. A comparison between the two time series of these two periods demonstrated that more frequent and more severe drought occurred during 1996–2009. Furthermore, drought risk in recent decades has become even more serious both in severity and in extent. Especially in the crop-growing season of 2001 and summer of 2007, over 25 % (2.0 × 105 km2) of study area experienced severe drought (serious and extreme droughts). Our results highlight the urgent need for the development of effective drought adaptations for cropland over northeast China.  相似文献   

5.
The study analyzes drought using Standardized Precipitation Index (SPI) and Mann-Kendall (MK) Trend Test in the context of the impacts of drought on groundwater table (GWT) during the period 1971-2011 in the Barind area, Bangladesh. The area experienced twelve moderate to extreme agricultural droughts in the years 1972, 1975, 1979, 1982, 1986, 1989, 1992, 1994, 2003, 2005, 2009 and 2010. Some of them coincide with El Niño events. Hydrological drought also occurred almost in the same years. However, relationship between all drought events and El Niño is not clear. Southern and central parts of the area frequently suffer from hydrological drought, northern part is affected by agricultural drought. Trends in SPI values indicate that the area has an insignificant trend towards drought, and numbers of mild and moderate drought are increasing. GWT depth shows strong correlation with rainy season SPI values such that GWT regaining corresponds with rising SPI values and vice versa. However, 2000 onwards, GWT depth is continuously increasing even with positive SPI values. This is due to over-exploitation of groundwater and changes in cropping patterns. Agricultural practice in Barind area based on groundwater irrigation is vulnerable to drought. Hence, adaptation measures to minimize effects of drought on groundwater ought to be taken.  相似文献   

6.
1950-2009年洞庭湖流域农业旱灾演变特征及趋势预测   总被引:2,自引:2,他引:2  
李景保  代勇  尹辉  王建  帅红  胡巍  常疆 《冰川冻土》2011,33(6):1391-1398
洞庭湖流域为我国重要农业生产区,频发的旱灾始终是制约农业可持续发展的障碍因素.以1950-2009年的旱灾资料为依据,运用定量与定性相结合的方法,系统分析了该流域农业旱灾的演变特征及其发展趋势.结果表明:20世纪70年代、80年代和21世纪初期,不同等级的旱灾频发率均相对较高,其中特大旱灾频率最高的岀现在2000-20...  相似文献   

7.
Drought is one of the major natural disasters occurring in China and causes severe impacts on agricultural production and food security. Therefore, agricultural drought vulnerability assessment has an important significance for reducing regional agricultural drought losses and drought disaster risks. In view of agricultural drought vulnerability assessment with the characteristics of multiple factors and uncertainty, we applied the fuzzy comprehensive evaluation framework to agricultural drought vulnerability model. The agricultural drought vulnerability assessment model was constructed based on the multi-layer and multi-index fuzzy clustering iterative method, which can better reveal the drought vulnerability (including sensitivity and adaptation capacity). Furthermore, the cycle iterative algorithm was used to obtain the optimal index weight vector of a given accuracy by setting the objective function. It provides a new approach to weight determination of agricultural drought vulnerability assessment. In this study, agricultural drought vulnerability of 65 cities (as well as leagues and states) in the Yellow River basin was investigated using a fuzzy clustering iterative model and visualized by using GIS technique. The results showed clear differences and regularities among the spatial distribution of agricultural drought vulnerability of different regions. A large number of the regions in the basin consisted of those exhibiting high to very high vulnerability and were mainly distributed throughout Qinghai, Gansu, northern Shaanxi, and southern Shanxi, accounting for 46 % of the total assessment units. However, the regions exhibiting very high vulnerability were not significantly affected by droughts. Most of the regions exhibiting moderate vulnerability (21.5 % of the assessment units) were mainly concentrated among agricultural irrigation areas, where agriculture is highly sensitive to droughts, and drought occurrence in these regions will likely cause heavy losses in the future. The regions exhibiting slight to low vulnerability were relatively concentrated, accounting for 32.3 % of the assessment units, and were mainly distributed in the plains of the lower reaches of the Yellow River, where the economy was rather well developed and the agricultural production conditions were relatively stronger.  相似文献   

8.
Spatial profiling of community food security data can help the targeting of geographic areas and populations most vulnerable to food insecurity. While multiple poverty mapping systems support spatial profiling, they often lack capabilities to disseminate mapping results to a wide range of audiences and to spatially link qualitative data to quantitative analysis. To address these limitations, this study presents a web mapping framework which integrates a variety of publicly available software tools to enable spatial exploration of both quantitative and qualitative data. Specifically, our framework allows online choropleth mapping and thematic data exploration through a mixture of free mapping Application Programming Interfaces (APIs) and open source software tools for spatial data processing and desktop-like user interfaces. The study demonstrates this framework by developing a web prototype for informing food insecurity issues in Bogotá, Colombia. The prototype implementation reveals that the proposed framework facilitates the development of scalable and functionally-extensible mapping systems and the identification of community-specific food insecurity problems (e.g., food kitchens inaccessible from workplaces of low-income residents). This suggests that web-based cartographic visualization using publicly available software tools can be useful for spatial examination of community food insecurity as well as for cost-effective distribution of the resulting map information.  相似文献   

9.
中国历史极端干旱研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
中国现有抗旱相关法规、规划、标准和制度等均是按常态干旱考虑的,几乎没有考虑大范围、长历时极端干旱的问题。一旦发生类似崇祯大旱和光绪大旱等极端干旱,将对中国经济社会产生深刻影响。从历史旱涝序列重建、极端干旱事件复原和重演3个方面论述了相关研究进展,发现重建方面缺乏重建方法对比研究、重建序列时空分辨率较低等,复原方面缺乏干旱灾害双重属性的考虑等,重演方面缺乏对抗旱减灾能力以及全球气候变化的考虑等。对未来研究重点和实践需求进行了展望,指出需在不同重建方法交叉检验、高时空分辨率旱涝序列重建、基于自然灾害双重属性的历史极端干旱事件复原、历史极端干旱事件定量化重演和干旱巨灾风险应对战略等方面取得突破性进展。  相似文献   

10.
Even though the precipitation is abundant in the Karst region of Guizhou Province, remote villages in this area frequently suffer severe droughts. This paper studied the causes of droughts in this region through field investigation and references collection. Based on the cause analysis, some suggestions were provided for hazard prevention and control from an engineering perspective. Besides occasional extreme weathers, the drought in this area is primarily caused by its unique geological structures of Karst plateau and underdeveloped agricultural techniques. Meanwhile, the vicious cycle between drought and poverty, which causes the deficiency of water conservancy facilities and hazard prevention awareness, is an important reason for the frequent occurrence of agricultural and socioeconomic drought. Considering the social and economic conditions of remote villages, the long-term control of drought can only be realized if current measures are capable of bring immediate effects and benefits. Therefore, the construction of well-planned and designed water conservancy system based on each village’s natural and social conditions are the priority for current hazard prevention. Generally, the exploitation of subterranean river should be considered as the first choice to stabilize the water supply for remote villages. Meanwhile, the construction and improvement of micro water conservancy facilities, such as small water tank, small pond and so on, can effectively support the water providence during droughts as well.  相似文献   

11.
SPI-based evaluation of drought events in Xinjiang, China   总被引:4,自引:1,他引:4  
Daily precipitation data for 1957?C2009 from 53 stations in the Xinjiang, China, are analyzed, based on the Standardized Precipitation Index (SPI) with the aim to investigate spatio-temporal patterns of droughts. The Mann?CKendall trend test is used to detect the trends in the SPI values of monthly drought series, drought severity and drought duration. The frequencies of moderate, severe and extreme droughts are higher in the North Xinjiang, while mild droughts occur more often in the South Xinjiang. A decreasing frequency of droughts in the North Xinjiang is found in winter, but a drying tendency is detected in the western parts of the North Xinjiang during spring, summer and autumn, which may be harmful for agriculture. The South Xinjiang seems to be getting wetter in summer, while the south parts of the South Xinjiang seem to be getting drier in spring. The middle of the East Xinjiang is identified to be in a slightly dry tendency. The drought severity is decreasing and drought duration is getting shorter in the North Xinjiang, while both of them increase in the southern parts of the South Xinjiang. In addition, droughts in the middle parts of the East Xinjiang are intensifying.  相似文献   

12.
Droughts are complex natural hazards that, to a varying degree, affect some parts of the world every year. The range of drought impacts is related to drought occurring in different stages of the hydrological cycle and usually different types of droughts such as meteorological, agricultural, hydrological, and socio-economical are the most distinguished types. Hydrological drought includes streamflow and groundwater droughts. In this paper, streamflow drought was analyzed using the method of truncation level (at 70 % level) by daily discharges at 54 stations in southwestern Iran. Frequency analysis was carried out for annual maximum series of drought deficit volume and duration. 35 factors such as physiographic, climatic, geologic and vegetation were studied to carry out the regional analysis. According to conclusions of factor analysis, the six most effective factors include watershed area, the sum rain from December to February, the percentage of area with NDVI <0.1, the percentage of convex area, drainage density and the minimum of watershed elevation, explained 89.2 % of variance. The homogenous regions were determined by cluster analysis and discriminate function analysis. The suitable multivariate regression models were ascertained and evaluated for hydrological drought deficit volume with 2 years return period. The significance level of models was 0.01. The conclusion showed that the watershed area is the most effective factor that has a high correlation with drought deficit volume. Moreover, drought duration was not a suitable index for regional analysis.  相似文献   

13.
He  Jun  Yang  Xiao-Hua  Li  Jian-Qiang  Jin  Ju-Liang  Wei  Yi-Ming  Chen  Xiao-Juan 《Natural Hazards》2014,75(2):199-217

Meteorological droughts can affect large areas and may have serious environmental, social and economic impacts. These impacts depend on the severity, duration, and spatial extent of the precipitation deficit and the socioeconomic vulnerability of the affected regions. This paper examines the spatiotemporal variation of meteorological droughts in the Haihe River basin. Meteorological droughts events were diagnosed using daily meteorological data from 44 stations by calculating a comprehensive drought index (CI) for the period 1961–2011. Based on the daily CI values of each station over the past 50 years, the drought processes at each station were confirmed, and the severity, duration and frequency of each meteorological drought event were computed and analyzed. The results suggest the following conclusions: (1) the use of the CI index can effectively trace the development of drought and can also identify the duration and severity of each drought event; (2) the average drought duration was 57–85 days in each region of the Haihe River basin, and the region with the highest average values of drought duration and drought severity was Bohai Bay; (3) drought occurred more than 48 times over the study period, which is more than 0.95 times per year over the 50 years studied. The average frequencies of non-drought days, severe drought days and extreme drought days over the study period were 51.2, 3.2 and 0.4 %, respectively. Severe drought events mainly occurred in the south branch of the Hai River, and extreme drought events mainly occurred in the Shandong Peninsula and Bohai Bay; (4) the annual precipitation and potential evapotranspiration of the Haihe River basin show decreasing trends over the past 50 years. The frequency of severe drought and extreme drought events has increased in the past 20 years than during the period 1961–1990. The results of this study may serve as a reference point for decision regarding basin water resources management, ecological recovery and drought hazard vulnerability analysis.

  相似文献   

14.
Meteorological droughts can affect large areas and may have serious environmental, social and economic impacts. These impacts depend on the severity, duration, and spatial extent of the precipitation deficit and the socioeconomic vulnerability of the affected regions. This paper examines the spatiotemporal variation of meteorological droughts in the Haihe River basin. Meteorological droughts events were diagnosed using daily meteorological data from 44 stations by calculating a comprehensive drought index (CI) for the period 1961–2011. Based on the daily CI values of each station over the past 50 years, the drought processes at each station were confirmed, and the severity, duration and frequency of each meteorological drought event were computed and analyzed. The results suggest the following conclusions: (1) the use of the CI index can effectively trace the development of drought and can also identify the duration and severity of each drought event; (2) the average drought duration was 57–85 days in each region of the Haihe River basin, and the region with the highest average values of drought duration and drought severity was Bohai Bay; (3) drought occurred more than 48 times over the study period, which is more than 0.95 times per year over the 50 years studied. The average frequencies of non-drought days, severe drought days and extreme drought days over the study period were 51.2, 3.2 and 0.4 %, respectively. Severe drought events mainly occurred in the south branch of the Hai River, and extreme drought events mainly occurred in the Shandong Peninsula and Bohai Bay; (4) the annual precipitation and potential evapotranspiration of the Haihe River basin show decreasing trends over the past 50 years. The frequency of severe drought and extreme drought events has increased in the past 20 years than during the period 1961–1990. The results of this study may serve as a reference point for decision regarding basin water resources management, ecological recovery and drought hazard vulnerability analysis.  相似文献   

15.
干旱作为我国西北地区东部影响最大的气象灾害, 可引起农业减产、水资源短缺、土地荒漠化和生态环境恶化等严重问题.在国家新一轮西部大开发战略实施之初, 在全球气候变暖背景下, 有必要对干旱发展的最新特征和演变趋势进行详细分析研究, 为加强防旱、抗旱,促进经济发展提供科学决策依据和参考.采用国家干旱标准综合干旱指数(CI指数), 利用西北地区东部74个气象代表站逐日气温、降水资料, 分析了西北地区东部不同级别干旱日数在各个季节的时空分布和变化趋势. 结果表明: 在气候变暖背景下, 西北地区东部从长期趋势看, 春、夏、秋季干旱呈加剧趋势, 冬季干旱呈减轻趋势. 21世纪以来春、夏季干旱进一步加剧, 尤其是夏季加剧更显著, 而秋、冬季干旱出现了减弱的新趋势. 在西北地区东部主降水期3-11月重-特旱加剧趋势比轻-中旱加剧显著, 南部干旱化趋势比北部更加明显. 尤其是宁夏同心地区春旱加剧非常显著, 已成为西北地区东部重-特旱最严重的地区.对于干旱发展的这一新动态, 必须引起有关部门的高度重视, 采取科学、有效手段加强防旱、抗旱.  相似文献   

16.
长江流域陆地水储量与多源水文数据对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王文  王鹏  崔巍 《水科学进展》2015,26(6):759-768
从趋势性、滞后性及相关性三方面,对2002—2013年间GRACE重力卫星反演的长江上游与中游陆地水储量与模型模拟土壤含水量、实测降水和实测径流数据进行了对比分析,并从干旱强度及发展时间两方面评估了标准化陆地水储量指数SWSI、标准化降水指数SPI、标准化径流指数SRI和标准化土壤含水量指数SSMI对区域性干旱的表征能力.结果表明:长江上游地区陆地水储量与降水、径流和土壤水蓄量均无显著变化,而中游地区陆地水储量则与水库蓄量同样具有显著性增加,反映人类活动对中游地区陆地水储量变化有很大影响;各指标指示的各等级干旱月份数量基本相当,但各指标反映的特旱具体月份有较大差别,基于GRACE数据构建的SWSI指标对特大干旱的指示性不好;对比各指标对上游与中游地区干旱事件发展时间,体现出水文干旱、农业干旱对气象干旱存在一定的迟滞关系.  相似文献   

17.
基于植被指数和土地表面温度的干旱监测模型   总被引:79,自引:4,他引:79  
干旱是一种周期性发生的自然现象,其发生过程中有关参数如地表覆盖度、温度和土壤表层含水量等可以通过遥感的途径进行定量反演,而这些参数客观地反映了地表的综合特征。综述了运用遥感反演产品---土地表面温度和归一化植被指数在干旱监测中的应用前景和进展,分析了距平植被指数、条件植被指数、条件温度指数和归一化温度指数等干旱监测方法的优缺点,在前人研究的基础上,提出了条件植被温度指数的干旱监测模型,探讨了其应用前景。  相似文献   

18.
骤发干旱(简称骤旱)是一种以短历时、高强度、快速度为特征的极端事件,其形成速度已超出现有干旱监测工具的能力范围,监测模拟难度大。基于欧洲中心再分析产品(ERA)土壤含水量数据,构建考虑旱情开始速度的骤旱识别方法,提取中国1979—2018年骤旱事件,剖析旱情初期气象要素异常值的变化规律,探讨利用气象条件模拟骤旱的可行性。结果表明:①开始速度在空间上呈现显著的南北差异,长江以南地区较快,西北地区较慢;②骤旱比缓慢干旱具有更强的气象驱动力,骤旱各气象要素异常值的均值、峰值及变化幅度比缓慢干旱变化更为显著,尤其是峰值,约超过缓慢干旱0.5个标准差;③综合考虑骤旱爆发前后不同时段多个气象要素异常,能够较好地模拟开始速度,可用于监测与模拟骤旱。  相似文献   

19.
利用MODIS数据产品进行全国干旱监测的研究   总被引:30,自引:0,他引:30       下载免费PDF全文
利用MODIS植被指数和陆地表面温度产品建立全国3个农业气候区NDVI-Ts、NDVI-ΔT和NDVI-ATI空间,并由NDVI-Ts、NDVI-ΔT和NDVI-ATI空间分别建立温度植被干旱指数(TVDI)、温差植被干旱指数(DTVDI)和表观热惯量植被干旱指数(AVDI)3个干旱评价指标研究全国干旱分布,利用实测土壤含水量对3个干旱指标进行检验评价.NDVI-ΔT空间中的湿边基本与横坐标平行,表明当土壤水分处于饱和状态或植被完全无水分胁迫条件下,植被和土壤对缓冲环境温度变化的能力大体相当;由NDVI-ATI空间看出,随着植被覆盖增加,表观热惯量有增加的趋势.对比3个干旱评价指标表明:当监测范围较大,区域内地形复杂时,由NDVI-Ts空间计算的TVDI评价干旱最合理,由NDVI-ΔT空间计算的DTVDI在干旱监测中也具有一定的价值,而由NDVI-ATI空间计算的AVDI已经不能合理评价干旱.  相似文献   

20.
利用历史文献记录重建了公元1000—2000年中国北方地区极端干旱事件序列,在此基础上分析极端干旱事件的发生特征与规律。研究得出以下结论:(1)极端干旱事件在公元1000—2000年中存在200年左右的周期波动。在15世纪中期、17世纪初期和18世纪末期存在3次极端干旱事件高发期。(2)极端干旱事件的变动与中国东部地区干湿变化相一致,在偏干的时期极端干旱事件发生次数上升,在偏湿时则下降。(3)在中世纪暖期和现代暖期,温度愈高,极端干旱事件偏多;而在小冰期,则温度偏低的时期极端干旱事件多发。(4)西风带影响下的非季风区,干湿变化与极端干旱事件的关系与华北季风区相反,这可能与所谓的“丝绸之路遥相关”和NAO(NorthAtlanticOscillation,北大西洋涛动)的影响有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号