首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flood is among the deadliest disasters in India, and the frequency of floods and extreme precipitation events is projected to increase under the warming climate. The frequency of floods in India varies geographically as some regions are more prone to floods than the others. The Kerala flood of 2018 caused enormous economic damage, affected millions of people, and resulted in the death of more than 400 people. Here we provide a hydroclimatological perspective on the Kerala flood of 2018. Using the observations and model simulations from the Variable Infiltration Capacity (VIC) model, we show that the 2018 extreme precipitation and runoff conditions that caused flooding were unprecedented in the record of the past 66 years (1951–2017). Our results show that mean monsoon precipitation has significantly declined while air temperature has significantly increased during 1951–2017 in Kerala. The drying and warming trends during the monsoon season resulted in a declined total runoff in large part of the state in the last 66 years. Apart from the mean hydroclimatic conditions, extreme precipitation, and extreme total runoff have also declined from 1951 to 2017. However, 1 and 2-day extreme precipitation and extreme runoff conditions in August 2018 exceeded substantially from the long-term 95th percentiles recorded during 1951–2017. Since there is no increase in mean and extreme precipitation in Kerala over the last six decades, the extreme event during August 2018 is likely to be driven by anomalous atmospheric conditions due to climate variability rather anthropogenic climate warming. The severity of the Kerala flood of 2018 and the damage caused might be affected by several factors including land use/land cover change, antecedent hydrologic conditions, reservoir storage and operations, encroachment of flood plains, and other natural factors. The impacts of key drivers (anthropogenic and natural) on flood severity need to be established to improve our understanding of floods and associated damage.  相似文献   

2.
气候变化和人类活动被认为是城市洪水演变的主要驱动因素,不同区域气候变化和城市化对洪水演变的影响不尽相同,科学识别城市洪水演变的关键驱动要素、量化气候变化与城市化对城市流域洪水演变的影响是城市洪水管理的重要依据。本文以高度城市化的北京市温榆河流域为例,以季节降雨量、气温、流域前期湿度、不透水面积比及流域内地下水埋深作为潜在驱动要素,对温榆河夏季不同概率的洪水建立GAMLSS模型,分析探讨城市流域洪水演变的主要驱动机制。研究结果表明:温榆河流域夏季不同概率的洪水在研究期均呈现出非一致性特性;城市不透水面积的扩张和降水是温榆河流域夏季洪水变化的主要驱动要素,不同等级洪水的变化具有不同的驱动机制,高于概率70%的小洪水的变化主要受到流域下垫面变化的影响,而小于概率45%的低频洪水的变化主要受降水的影响。  相似文献   

3.
利用社会经济统计数据和水文气象资料,探讨城市化背景下北京城市洪涝特征、形成机制及影响因素。近50年来城市内涝逐渐成为北京洪涝灾害的主要类型,随着城市化迅猛发展,城市内涝积水点数量在时间上表现为显著增加趋势,在空间上呈现出由内环逐步向外环扩张趋势,与城市化发展空间格局关系密切。从水循环的角度分析城市洪涝形成机制,指出区域气候变化和城市化发展改变了城市降水格局,汛期降水量和极端降水事件呈现下降趋势,但城区短历时强降水事件呈现增加态势;城市化发展改变了区域下垫面条件、城市流域产汇流特性和城市排水格局,进而影响了区域水循环过程和水量分配,在一定程度上增加了城市洪涝灾害风险;同时城市基础设施建设水平不足、排水排涝标准偏低、应急管理能力不足等因素,导致城市洪涝发生风险增加,降低了城市洪涝综合应对能力。  相似文献   

4.
Global environmental change is bringing extreme precipitation, and the combination of natural and artificial impacts are resulting in serious floods on the west coast of Taiwan. Disparity in social, economic and infrastructure resources contributes to spatial variation in the vulnerability to flood disaster. Owing to the high frequency of torrential rain and serious land subsidence in the study area, this paper attempts to categorize vulnerability indicators under varied assumptions of spatial homogeneity and spatial heterogeneity. The results show that the spatial heterogeneity indeed affects the distribution of flood vulnerability indicators. The core value of this article is that it measures the improvement from using geographically weighted statistics rather than traditional statistics. For the flood vulnerability discussion, this paper demonstrates the importance of considering spatial heterogeneity when allocating resources against floods.  相似文献   

5.
黄河下游高含沙洪水过程一维水沙耦合数学模型   总被引:2,自引:0,他引:2       下载免费PDF全文
采用浑水控制方程,建立了基于耦合解法的一维非恒定非均匀沙数学模型,用于模拟高含沙洪水演进时的河床冲淤过程.然后采用黄河下游游荡段1977年7—8月实测高含沙洪水资料对该模型进行率定,基于水沙耦合解法的各水文断面流量、总含沙量及分组含沙量的计算过程与实测过程符合更好,计算的沿程最高水位及累计河段冲淤量与实测值也较为符合.最后还采用2004年8月高含沙洪水资料对该模型进行了验证.模型率定及验证计算结果表明,采用一维水沙耦合模型计算高含沙洪水过程,能取得较高的精度.  相似文献   

6.
以年极端洪水超标率来反映区域极端洪水, 分析了新疆区域极端洪水变化; 以年最大洪峰记录分析了天山山区主要河流极端洪水变化规律, 并用14站资料分析了天山山区气候变化特征, 讨论了天山主要河流极端洪水变化对区域气候变化的响应. 结果表明: 受气候变暖影响, 1957-2006年全疆极端洪水呈区域性加重趋势, 尤其南疆区域极端洪水明显加剧, 北疆区域也有加重趋势, 但相对较缓. 全疆及北疆、 南疆在20世纪90年代中期以来都处于洪水高发阶段. 近50 a来, 在新疆区域洪水呈加重趋势的变化背景下, 发源于天山南坡的托什干河和库玛拉克河年最大洪峰流量呈显著增加趋势, 发源于天山北坡的玛纳斯河与乌鲁木齐河年最大洪峰流量虽有增加, 但是变化趋势较缓. 以年最大洪峰流量发生转折年为界, 天山典型流域托什干河、 库玛拉克河、 玛纳斯河和乌鲁木齐河在20世纪90年代(或80年代)以来与前期相比, 呈现出相似的变化特征: 年最大洪峰流量明显增大, 年际间变化更加剧烈, 洪水年更频繁. 以年最大洪峰流量发生转折年份为界, 玛纳斯河、 托什干河和乌鲁木齐河后期的年最大洪峰集中日期较前期推迟2~9 d, 库玛拉克河却提前5 d. 玛纳斯河、 乌鲁木齐河和库玛拉克河后期的集中度较前期增加0.8%~8.3%, 托什干河减小1.1%. 1961-2010年, 新疆天山山区气温明显上升, 升温率为0.34 ℃·(10a)-1, 1997年以后明显增暖; 天山山区降水显著增加, 增加速率15.6 mm·(10a)-1, 同时极端降水强度增大、 频数增多. 近50 a来天山主要河流极端洪水变化与区域增温以及天山山区极端降水事件增多等有密切关系.  相似文献   

7.
洞庭湖流域洪水模拟与综合治理   总被引:1,自引:1,他引:0  
在洞庭湖水灾现状和特征分析的基础上,利用水平衡方程对洞庭湖及四水水系的水情作了进一步的模拟分析。初步估计了流域的泄流系数Fo,保水系数Fs和蓄水系数FR。得到洞庭湖随洪峰入湖流量而变化的水位日增量和湘、资、沅、四水流域随集中降水量而变化的水位总增量。进而对洞庭湖水患的防治提出了综合的治理方略:(1)增加蓄洪面积,预田蓄洪;(2)增大泄流系数,有控泄流;(3)减少入流流量,有效蓄水;(4)加固堤防工程,有备无患。减少入流流量,有效蓄水,就是在洞庭湖上游的四水流域,除了增加水库型集中蓄水外,还要人工地增加降水滞流量,也就是在全流域增加分散性蓄水机能,进行研究水田蓄水、旱土蓄水、草地蓄水及林地蓄水等的蓄洪限度、实施技术及蓄洪以外的经济效益,以及流域人工增加降水滞流量的巨大潜力。本文分析认为,只有对洞庭湖及其流域的水旱灾害实施综合治理,才是根治洞庭湖水患的有效方略,将对湖南社会经济可持续发展起重要作用。  相似文献   

8.
DPFT is a lumped approach for operational flash flood forecasting, based on the unit hydrograph. Using a multi-event alternating iterative algorithm, it identifies a robust and stable average transfer function and a consistent set of effective rainfall series associated with each event at the same time. This key ingredient allows an objective calibration of different loss functions, relating gauged precipitation and effective rainfall. A case study based on an operational French basin (545 km2) is presented. Three lumped production functions have been calibrated and compared. The results show that more elaborate models of loss functions must be proposed, and some possible directions for this are pointed out.Presently at the Institut de Ciences de la Terra Jaume Almera, Apartat 30102, 08080 Barcelona, Spain.Presently at EDF-DTG. Service de Ressources en Eau, BP 4348, 31029 Toulouse Cedex, France.  相似文献   

9.
Based on the daily precipitation data of 38 weather stations in the Huai River Basin from 1961 to 2010, this study used SPI index, P-III curve to determine the flood/drought years, under what situations for droughts and floods easily happen, and to analyze the evolution law of flood and drought during inter-annual and intra-annual based on the characteristic of monthly precipitation. The results showed that: (1) annual rainfall of the Huai River Basin presented decreasing trend, maximum rainfall appeared from June to August, and multi-year average precipitation increased gradually from north to south; (2) the variation of monthly precipitation during flood years was more severe than other typical years, and precipitation in drought years showed nearly 50 % decline compared with normal years; (3) high rainfall of flood years was mainly caused by the increase in rainfall in flood season, and the strategy of flood control and drought relief was “short-term flood prevention and long-term drought relief”; (4) while precipitation of most months in drought year was reduced, the relevant strategies “annual basin-wide of long-term drought prevention” should be carried out; (5) combination events of floods and droughts occurred frequently. Persistent drought dominated in spring and summer while droughts and floods that happened alternately were mainly in summer and autumn.  相似文献   

10.
Land use has changed in the Daqinghe watershed during 1956–2005, and it has influenced the flood peak and volume. In order to reveal the effects of land use change on flood characteristics in Daqinghe watershed, we selected 2 sub-watersheds and used remote-sensed land use data of 1980 and 1996 to analyze changes in land use and also selected several combinations of similar rainfall events and the corresponding flood events to show how changes in land use affect floods. The forest and urban area increased and other types decreased, and flood peaks and volumes tended to decrease under similar rainfall events. To quantify the extent of change in land use affecting floods, a hydrological model incorporating the land use was established. The model combines infiltration excess and saturation excess runoff generation mechanism in each type of land use, and the simulation results agreed well with the measured flood processes in the two selected watersheds. Several floods of different return intervals were selected to be modeled under the 1980 and 1996 land use conditions. The results show that both flood peak and volume decreased under the 1996 land use condition in comparison with the 1980 land use condition in the two watersheds. Most of the flood peaks decreased <5 %, but the volume decreased to a greater extent. This result can be helpful in modifying design flood.  相似文献   

11.
We examined the anthropogenic and natural causes of flood risks in six representative cities in the Gangwon Province of Korea. Flood damage per capita is mostly explained by cumulative upper 5% summer precipitation amount and the year. The increasing flood damage is also associated with deforestation in upstream areas and intensive land use in lowlands. Human encroachment on floodplains made these urban communities more vulnerable to floods. Without changes in the current flood management systems of these cities, their vulnerability to flood risks will remain and may even increase under changing climate conditions.  相似文献   

12.
Comparison of TRMM-based flood indices for Gaziantep,Turkey   总被引:1,自引:0,他引:1  
Floods are the most common natural disasters threatening the welfare of humanity. Gaziantep, a city located in a semi-arid region of Turkey, is occasionally flooded, and in May 2014, a flood not only caused property damage, but also resulted in the death of a lady who became trapped in flood waters. The fatality and property damage of flash floods arise from the limited response time for remediation. Despite improvements in numerical weather predictions, forecasting flash floods is not easy. Due to its frequent observations, Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) real-time (RT) 3B42RT data are tested for Gaziantep flood predictions in this study. During TRMM era, six floods occurred in Gaziantep. Three-hourly 3B42RT data covering the 2000- to 2014-year period indicated high rain rates during months in which floods were observed. Also daily variation of rainfall was well represented. High-intensity rain (HIR), cumulative distribution functions (CDF) and Gaziantep Flood Index (GAFI) indices are developed for flood characterization. HIR, calculated as 10 mm/h, detected October and December of 2010 floods. CDFs with 99, 98.5, 95 and 91.3% indicated 4 floods occurred in August 2005, June 2007, October 2010 and December 2010, respectively. GAFI was able to detect 4 out of 6 occurrences (August 2005, June 2007, October 2010 and December 2010) as values ranging from 1 to 2.63 are selected for monthly precipitation. In the missed occurrence, 3B42RT did not indicate any rainfall. Although only rain rates are used in flood characterization, the results are promising, and the simplicity of the methodology favors its usage. Also, methodology can easily be implemented to TRMM following missions such as Global Precipitation Measurement Mission.  相似文献   

13.
太湖沉积对流域极端降水和洪水响应的研究   总被引:2,自引:1,他引:1  
认识极端洪水特征和周期,急需建立长期洪水记录和序列。过去150 a来长江下游极端降水引发了多次太湖特大洪水,太湖湖泊沉积提供了长于观测资料的洪水记录。本文利用太湖中心开阔水域的近现代沉积,采用210Pb和137Cs测年法和粒度、磁学特征分析,与区域夏季降水和长江下游洪峰流量进行相关分析,恢复了太湖流域150 a来的历史洪水事件。根据长江下游极端夏季降水(Pjja≥90%百分位)和极端径流(Q≥90%百分位)以及历史文献记载,太湖流域自1840年以来约有24次特大洪水年,而湖泊沉积物砂级粒径与低频磁化率等特征能捕获与之对应的中洪水事件15次。这表明湖泊沉积记录能较好地反演过去洪水变化,为利用沉积记录认识百年极端洪水长周期变化和特征提供了沉积学、磁学等方面的科学依据。  相似文献   

14.
Makkah city, Saudi Arabia, is periodically exposed to flash floods that result in major human and economical damages. That is due to several factors including its rugged topography and geological structures. Hence, precise assessment of floods becomes a more vital demand in development planning. A GIS-based methodology has been developed for quantifying and spatially mapping the flood characteristics. The core of this new approach is integrating several topographic, metrological, geological, and land use data sets in a geographic information system (GIS) environment that utilizes the curve number method of flood modelling for ungauged arid catchments. Based on the estimated flood volume of sub-basins, a hazard factor has been developed to quantify the expected hazard level for each road. Applying this proposed approach reveals that 21?% of the road network in Makkah city is subjected to low flood hazards, 29?% is facing medium hazards, and 50?% of roads are exposed to harsh flood impacts. The developed approach may be considered a digital precise method that can be easily re-run, in other situations or regions, to estimate flood hazards on roads.  相似文献   

15.

This paper presents a synthesis of the main characteristics of precipitation in the State of Rio de Janeiro (Brazil) based on extreme rainfall indicators. Daily precipitation data are derived from 56 rainfall stations during the second half of the twentieth century and the 2000s. Eight indices related to extreme precipitation were analyzed. The Mann–Kendall nonparametric test and the Sen's Curvature were employed to evaluate the significance and magnitude of trends. The primary climatological aspects and identified trends throughout the last decades are discussed, besides the hydrometeorological impacts associated with them. Lower values of annual total precipitation are recorded in northern Rio de Janeiro (around 800 mm) and higher in the southern State (up to 2,200 mm). The Serra do Mar affects the frequency of heavy precipitation, and the areas near the sea and high relief present the highest values of consecutive days with expressive rainfall (more than 150 mm in 5 days). These areas also showed a high concentration of flood and landslides events. Most of Rio de Janeiro exhibits precipitation intensity of about 13 mm/day. The maximum number of consecutive dry days shows a gradient from the coast (about 30 days) to the State's interior (around 50 days). Regarding trends, there is a growth of accumulated extreme precipitation in various stations near the ocean. The extreme rainfall in 24 h displays an increase in most Rio de Janeiro (+?1 to?+?5 mm/decade). The consecutive dry and rainy days present similar signs of decreasing trends, suggesting irregularly distributed precipitation in the State. This study is especially relevant for decision-makers who need detailed information in the short and long term to prevent natural hazards like floods and landslides and the related impacts in the environmental and socioeconomic sectors of the Rio de Janeiro.

  相似文献   

16.
Floods in the IPCC TAR Perspective   总被引:1,自引:0,他引:1  
Recent floods have become more abundant and more destructive than ever in many regions of the globe. Destructive floods observed in the 1990s all over the world have led to record-high material damage, with total losses exceeding one billion US dollars in each of two dozen events. The immediate question emerges as to the extent to which a sensible rise in flood hazard and vulnerability can be linked to climate variability and change. Links between climate change and floods have found extensive coverage in the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC). Since the material on floods is scattered over many places of two large volumes of the TAR, the present contribution - a guided tour to floods in the IPCC TAR – may help a reader notice the different angles from which floods were considered in the IPCC report. As the water-holding capacity of the atmosphere grows with temperature, the potential for intensive precipitation also increases. Higher and more intense precipitation has been already observed and this trend is expected to increase in the future, warmer world. This is a sufficient condition for flood hazard to increase. Yet there are also other, non-climatic, factors exacerbating flood hazard. According to the IPCC TAR, the analysis of extreme events in both observations and coupled models is underdeveloped. It is interesting that the perception of floods in different parts of the TAR is largely different. Large uncertainty is emphasized in the parts dealing with the science of climate change, but in the impact chapters, referring to sectors and regions, growth in flood risk is taken for granted. Floods have been identified on short lists of key regional concerns.  相似文献   

17.
Many developing countries are very vulnerable to flood risk since they are located in climatic zones characterised by extreme precipitation events, such as cyclones and heavy monsoon rainfall. Adequate flood mitigation requires a routing mechanism that can predict the dynamics of flood waves as they travel from source to flood-prone areas, and thus allow for early warning and adequate flood defences. A number of cutting edge hydrodynamic models have been developed in industrialised countries that can predict the advance of flood waves efficiently. These models are not readily applicable to flood prediction in developing countries in Asia, Africa and Latin America, however, due to lack of data, particularly terrain and hydrological data. This paper explores the adaptations and adjustments that are essential to employ hydrodynamic models like LISFLOOD-FP to route very high-magnitude floods by utilising freely available Shuttle Radar Topographic Mission digital elevation model, available topographical maps and sparse network of river gauging stations. A 110 km reach of the lower Damodar River in eastern India was taken as the study area since it suffers from chronic floods caused by water release from upstream dams during intense monsoon storm events. The uncertainty in model outputs, which is likely to increase with coarse data inputs, was quantified in a generalised likelihood uncertainty estimation framework to demonstrate the level of confidence that one can have on such flood routing approaches. Validation results with an extreme flood event of 2009 reveal an encouraging index of agreement of 0.77 with observed records, while most of the observed time series records of a 2007 major flood were found to be within 95 % upper and lower uncertainty bounds of the modelled outcomes.  相似文献   

18.
Coping with floods in the city of Dresden,Germany   总被引:5,自引:2,他引:3  
During August 2002 and again in March 2005 as well as in April 2006 the city of Dresden was hit by floods. The flood in 2002 was an extreme event, only comparable to flooding in 1862 and 1890 in Dresden. The flood discharge in 2006 was the second highest discharge since 1940 at the Dresden gauge although its return period was only about 15 years. This special situation enables a comparison of the preparedness of authorities and households in the flood endangered city of Dresden in 2002 after a long period of relatively low flood discharges and in 2005/2006 just a few years after a severe flood event. Before August 2002, the flood risk awareness and flood preparedness of authorities and households in Dresden was low. The inundation channels and the Elbe riverbed had not been maintained well. Just 13% of the households had undertaken building precautionary measures. The severe flood situation as well as the low flood preparedness led to tremendous damage, e.g., losses to residential buildings amounted to 304 million €. After 2002, the municipal authorities in Dresden developed a new flood management concept and many households were motivated to undertake precautionary measures. Building precautionary measures had been actually undertaken by 67% of the households before the floods in 2005 and 2006. Flood damage was significantly lower, due to the less severe flood situations and the much better preparedness. It is an important challenge for the future to keep preparedness at a high level also without recurrent flood experiences.  相似文献   

19.
三峡水库建成后长江中下游防洪战略思考   总被引:1,自引:0,他引:1       下载免费PDF全文
陈进 《水科学进展》2014,25(5):745-751
三峡水库建成后,长江中下游防洪形势显著改善,但由于经济社会发展,防洪要求的提高和江湖关系的变化,长江防洪形势发生了一些新的变化。以1954年和1998年典型大洪水为例,分析了三峡水库建成后长江中下游防洪形势出现的新变化,讨论了长江中下游蓄滞洪空间格局调整及江湖关系变化对于防洪的影响。根据长江水沙变化、河道演变、水库群调控和分蓄洪区使用几率变化等出现的新问题,提出未来防洪战略及对策。结果表明:三峡建成后,百年一遇以下洪水防御形势明显好转,而百年一遇以上特大防洪的防洪形势仍然严峻,洪水风险主要转移到水库群上;今后需要在加强蓄滞洪区建设的基础上,重点推动防洪非工程措施建设,以减轻特大洪水带来的灾害损失。  相似文献   

20.
新疆阿尔泰山地区极端水文事件对气候变化的响应   总被引:3,自引:2,他引:1  
新疆北部阿尔泰山地区受西风带气流影响, 降水丰沛, 尤其冬季积雪厚而稳定, 山区产流发育了额尔齐斯河与乌伦古河, 从西到东形成主要支流十余条. 在全球气候变化下, 山区气温上升明显, 极端降水增多, 气候变暖带来的水循环加快, 极端水文事件也趋于增多. 由于冬季气温升高, 春季积雪消融提前, 春季融雪洪水提前, 洪峰流量增强; 夏季极端降水增加, 使得暴雨洪水增多. 由于冬、 春季积雪增多, 雪灾发生频率增加, 春季的融雪洪水灾害危害增强. 极端水文事件引起的自然灾害已经威胁到阿勒泰地区的牧业生产、 交通安全和水资源供给, 应加强水文水资源安全对气候变化的应对措施, 提高水资源安全保障, 减缓气候变化的危害.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号