首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main purpose of this study is to develop a new hazard evaluation technique considering the current limitations, particularly for shallow landslides. For this purpose, the Buyukkoy catchment area, located in the East Black Sea Region in the east of Rize province and the south of Cayeli district, was selected as the study area. The investigations were executed in four different stages. These were (1) preparation of a temporal shallow landslide inventory of the study area, (2) assessment of conditioning factors in the catchment, (3) susceptibility analyses and (4) hazard evaluations and mapping. A total of 251 shallow landslides in the period of 1955–2007 were recognised using different data sources. A ‘Sampling Circle’ approach was proposed to define shallow landslide initiation in the mapping units in susceptibility evaluations. To accomplish the susceptibility analyses, the method of artificial neural networks was implemented. According to the performance analyses conducted using the training and testing datasets, the prediction and generalisation capacities of the models were found to be very high. To transform the susceptibility values into hazard rates, a new approach with a new equation was developed, taking into account the behaviour of the responsible triggering factor over time in the study area. In the proposed equation, the threshold value of the triggering factor and the recurrence interval are the independent variables. This unique property of the suggested equation allows the execution of more flexible and more dynamic hazard assessments. Finally, using the proposed technique, shallow landslide initiation hazard maps of the Buyukkoy catchment area for the return periods of 1, 2, 5, 10, 50 and 100 years were produced.  相似文献   

2.
A segment of natural gas pipeline was damaged due to landsliding near Hendek. Re-routing of the pipeline is planned, but it requires the preparation of a landslide susceptibility map. In this study, the statistical index (Wi) and weighting factor (Wf) methods have been used with GIS to prepare a landslide susceptibility map of the problematic segment of the pipeline. For this purpose, thematic layers including landslide inventory, lithology, slope, aspect, elevation, land use/land cover, distance to stream, and drainage density were used. In the study area, landslides occur in the unconsolidated to semi-consolidated clayey unit and regolith. The Wf method gives better results than the Wi method. Lithology is found to be the most important aspect in the study area. Based on the findings obtained in this study, the unconsolidated to semi-consolidated clayey unit and alluvium should be avoided during re-routing. Agricultural activities should not be allowed in the close vicinity of the pipeline.  相似文献   

3.
新疆巩留县广泛发育冻融降雨型滑坡地质灾害,对其现有的研究多考虑降水,而缺乏温度影响的研究,为此,本文特增加了温度因子来进行巩留县滑坡灾害危险性评价。基于巩留县已发生的682个滑坡灾害点,选取坡度、起伏度、坡向、曲率、温度、距断层距离、距河流距离、距道路距离、工程地质岩组等9个评价因子。采用信息量模型(I)、确定性系数模型(CF)、信息量模型+逻辑回归模型(I+LR)以及确定性系数模型+逻辑回归模型(CF+LR)等4种模型对巩留县滑坡危险性进行了评价,划分为极高、高、中和低4个危险等级分区并进行了精度检验与现场实际验证。结果表明:(1)温度对滑坡有较大的触发作用;(2)耦合模型极高、高危险性分区面积明显低于单一模型极高、高危险性分区面积,其中CF+LR模型的极高、高危险性分区面积最小,低危险性分区面积最大;(3)4种模型ROC精度检验AUC值分别为0.889、0.893、0.895和0.900,均能较为客观地评价巩留县滑坡危险性。CF+LR模型精度最高,且经局部地区现场检验,CF+LR模型评价结果与实际情况也最为相符,研究成果对新疆地区巩留县滑坡地质灾害的预防和治理具有一定的借鉴意义。  相似文献   

4.
The purpose of this study is to assess the susceptibility of landslides around Yomra and Arsin towns near Trabzon, in northeast of Turkey, using a geographical information system (GIS). Landslide inventory of the area was made by detailed field surveys and the analyses of the topographical map. The landslide triggering factors are considered to be slope angle, slope aspect, distance from drainage, distance from roads and the weathered lithological units, which were called as “geotechnical units” in the study. Idrisi and ArcGIS packages manipulated all the collected data. Logistic regression (LR) and weighted linear combination (WLC) statistical methods were used to create a landslide susceptibility map for the study area. The results were assessed within the scope of two different points: (a) effectiveness of the methods used and (b) effectiveness of the environmental casual parameters influencing the landslides. The results showed that the WLC model is more suitable than the LR model. Regarding the casual parameters, geotechnical units and slopes were found to be the most important variables for estimating the landslide susceptibility in the study area.  相似文献   

5.
Landslide susceptibility mapping is an indispensable prerequisite for landslide prevention and reduction. At present, research into landslide susceptibility mapping has begun to combine machine learning with remote sensing and geographic information system (GIS) techniques. The random forest model is a new integrated classification method, but its application to landslide susceptibility mapping remains limited. Landslides represent a serious threat to the lives and property of people living in the Zigui–Badong area in the Three Gorges region of China, as well as to the operation of the Three Gorges Reservoir. However, the geological structure of this region is complex, involving steep mountains and deep valleys. The purpose of the current study is to produce a landslide susceptibility map of the Zigui–Badong area using a random forest model, multisource data, GIS, and remote sensing data. In total, 300 pre-existing landslide locations were obtained from a landslide inventory map. These landslides were identified using visual interpretation of high-resolution remote sensing images, topographic and geologic data, and extensive field surveys. The occurrence of landslides is closely related to a series of environmental parameters. Topographic, geologic, Landsat-8 image, raining data, and seismic data were used as the primary data sources to extract the geo-environmental factors influencing landslides. Thirty-four layers of causative factors were prepared as predictor variables, which can mainly be categorized as topographic, geological, hydrological, land cover, and environmental trigger parameters. The random forest method is an ensemble classification technique that extends diversity among the classification trees by resampling the data with replacement and randomly changing the predictive variable sets during the different tree induction processes. A random forest model was adopted to calculate the quantitative relationships between the landslide-conditioning factors and the landslide inventory map and then generate a landslide susceptibility map. The analytical results were compared with known landslide locations in terms of area under the receiver operating characteristic curve. The random forest model has an area ratio of 86.10%. In contrast to the random forest (whole factors, WF), random forest (12 major factors, 12F), decision tree (WF), decision tree (12F), the final result shows that random forest (12F) has a higher prediction accuracy. Meanwhile, the random forest models have higher prediction accuracy than the decision tree model. Subsequently, the landslide susceptibility map was classified into five classes (very low, low, moderate, high, and very high). The results demonstrate that the random forest model achieved a reasonable accuracy in landslide susceptibility mapping. The landslide hazard zone information will be useful for general development planning and landslide risk management.  相似文献   

6.
For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence, such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42% in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover.  相似文献   

7.
. Regional landslide susceptibility assessments pose complex problems. To solve these problems, numerous approaches, such as statistical analysis, geotechnical engineering approach, geomorphologic approach and fuzzy logic, have been employed. However, all the available methods for regional landslide susceptibility assessments have some uncertainties due to a lack of knowledge and variability. Minimizing these uncertainties provides realistic approaches. Use of the fuzzy logic approach to produce a landslide susceptibility map of a landslide-prone area in NW Turkey is the main purpose of the present study. For this purpose, the study includes five main stages, these being the preparation of a landslide inventory of the study area, the application of factor analysis, the extraction of fuzzy if-then rules, the use of a geographical information system, and the control of the reliability of the resulting landslide susceptibility map. Slope angle, slope aspect, land use, weathering depth, water conditions and topographical elevation were considered as landslide conditioning factors for the study area. A total of 23 if-then rules was extracted from the field data. Employing these rules, fuzzified index maps representing each parameter were obtained. Finally, combining these maps, the landslide susceptibility map of the area was prepared. When compared with the landslide susceptibility map, the landslides identified in the area were found to be located in the very high- and high-susceptibility zones. As far as the performance of the fuzzy approach for processing is concerned, the images appear to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.  相似文献   

8.
Devrek town with increasing population is located in a hillslope area where some landslides exist. Therefore, landslide susceptibility map of the area is required. The purpose of this study was to generate a landslide susceptibility map using a bivariate statistical index and evaluate and compare the results of the statistical analysis conducted with three different approaches in seed cell concept resulting in different data sets in Geographical Information Systems (GIS) based landslide susceptibility mapping applied to the Devrek region. The data sets are created from the seed cells of (a) crowns and flanks, (b) only crowns, and (c) only flanks of the landslides by using ten different causative parameters of the study area. To increase the data dependency of the analysis, all parameter maps are classified into equal frequency classes based directly on the percentile divisions of each corresponding seed cell data set. The resultant maps of the landslide susceptibility analysis indicate that all data sets produce fairly acceptable results. In each data set analysis, elevation, lithology, slope, aspect, and drainage density parameters are found to be the most contributing factors in landslide occurrences. The results of the three data sets are compared using Seed Cell Area Indexes (SCAI). This comparison shows that the crown data set produces the most accurate and successful landslide susceptibility map of the study area.  相似文献   

9.
In the international literature, although considerable amount of publications on the landslide susceptibility mapping exist, geomorphology as a conditioning factor is still used in limited number of studies. Considering this factor, the purpose of this article paper is to implement the geomorphologic parameters derived by reconstructed topography in landslide susceptibility mapping. According to the method employed in this study, terrain is generalized by the contours passed through the convex slopes of the valleys that were formed by fluvial erosion. Therefore, slope conditions before landsliding can be obtained. The reconstructed morphometric and geomorphologic units are taken into account as a conditioning parameter when assessing landslide susceptibility. Two different data, one of which is obtained from the reconstructed DEM, have been employed to produce two landslide susceptibility maps. The binary logistic regression is used to develop landslide susceptibility maps for the Melen Gorge in the Northwestern part of Turkey. Due to the high correct classification percentages and spatial effectiveness of the maps, the landslide susceptibility map comprised the reconstructed morphometric parameters exhibits a better performance than the other. Five different datasets are selected randomly to apply proper sampling strategy for training. As a consequence of the analyses, the most proper outcomes are obtained from the dataset of the reconstructed topographical parameters and geomorphologic units, and lithological variables that are implemented together. Correct classification percentage and root mean square error (RMSE) values of the validation dataset are calculated as 86.28% and 0.35, respectively. Prediction capacity of the different datasets reveal that the landslide susceptibility map obtained from the reconstructed parameters has a higher prediction capacity than the other. Moreover, the landslide susceptibility map obtained from the reconstructed parameters produces logical results.  相似文献   

10.
The northeast part of Turkey is prone to landslides because of the climatic conditions, as well as geologic and geomorphologic characteristics of the region. Especially, frequent landslides in the Rize province often result in significant damage to people and property. Therefore, in order to mitigate the damage from landslides and help the planners in selecting suitable locations for implementing development projects, especially in large areas, it is necessary to scientifically assess susceptible areas. In this study, the frequency ratio method and the analytical hierarchy process (AHP) were used to produce susceptibility maps. Especially, AHP gives best results because of allowing better structuring of various components, including both objective and subjective aspects and comparing them by a logical and thorough method, which involves a matrix-based pairwise comparison of the contribution of different factors for landslide. For this purpose, lithology, slope angle, slope aspect, land cover, distance to stream, drainage density, and distance to road were considered as landslide causal factors for the study area. The processing of multi-geodata sets was carried out in a raster GIS environment. Lithology was derived from the geological database and additional field studies; slope angle, slope aspect, distance to stream, distance to road and drainage density were invented from digital elevation models; land cover was produced from remote sensing imagery. In the end of study, the results of the analysis were verified using actual landslide location data. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.  相似文献   

11.
Preparation of landslide susceptibility maps is important for engineering geologists and geomorphologists. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. For this reason, many procedures have been used to produce such maps. In this study, a new attempt is tried to produce landslide susceptibility map of a part of West Black Sea Region of Turkey. To obtain the fuzzy relations for producing the susceptibility map, a landslide inventory database is compiled by both field surveys and airphoto studies. A total of 266 landslides are identified in the study area, and dominant mode of failure is rotational slide while the other mode of failures are soil flow and shallow translational slide. The landslide inventory and the parameter maps are analyzed together using a computer program (FULLSA) developed in this study. The computer program utilizes the fuzzy relations and produces the landslide susceptibility map automatically. According to this map, 9.6% of the study area is classified as very high susceptibility, 10.3% as high susceptibility, 8.9% as moderate susceptibility, 27.5% as low susceptibility and 43.8% as very low susceptibility or nonsusceptible areas. The prediction performance of the susceptibility map is checked by considering actual landslides in the study area. For this purpose, strength of the relation (rij) and the root mean square error (RMSE) values are calculated as 0.867 and 0.284, respectively. These values show that the produced landslide susceptibility map in the present study has a sufficient reliability. It is believed that the approach employed in this study mainly prevents the subjectivity sourced from the parameter selection and provides a support to improve the landslide susceptibility mapping studies.  相似文献   

12.
Although some liquefaction assessment methods were proposed to evaluate the liquefaction potential of sandy soils, the conventional method based on the standard penetration test (SPT) has been commonly used in most countries and in Turkey. However, it alone is not a sufficient tool for the evaluation of liquefaction potential. The liquefaction potential index was proposed to quantify the severity of liquefaction. Nevertheless, the liquefaction potential index and the severity categories do not answer the question: "Which areas will not liquify?" Besides, the categories do not include a "moderate" category; on the other hand, the "high" and "low" categories are included. This situation is also contrary to the nature of classification schemes. In this study, the liquefaction potential index and the liquefaction potential categories were modified by considering the existing form of the categories based on the liquefaction potential index. While the category of low was omitted, the categories of moderate and "non-liquefied" were adopted. A factor of safety of 1.2 was assumed as the lowest value for the liquefaction potential category of non-liquefied. In addition, the town of Inegol in the Marmara region became the case study for checking the performance of the liquefaction potential categories suggested in this study.  相似文献   

13.
In the last decades, landslide hazard assessment has attracted many researchers' attention. A number of parameters are suggested to be responsible to quantitatively explain the mechanism of landslides; many of these parameters are very important and factual. However, some data types and models are site-specific and could not be applied to different locations. Furthermore, the data stored in continuous parameter maps are divided into a number of classes arbitrarily, depending on the vision of the expert. Basically, this division controls the result of bivariate analysis. Besides, the responsible portion of the parameter map controlling the mechanism is also weighted arbitrarily. Based on these two facts, the class boundaries put a prejudice on the produced susceptibility/hazard maps, which result in dependence on the knowledge of the user rather than being dependent on the data and the fact itself. The aim of this study is to refine the previously defined methods in a more data-dependent trend. To achieve this goal, two new concepts: seed cells and percentile maps are introduced. Seed cells are the zones that are considered to represent the best undisturbed morphological decision rules (conditions before landslide occurs) and would be achieved by adding a buffer zone to the crown and flank areas of the landslide. To quantitatively classify the input parameter maps, the data distributions of seed cells in the parameter maps are divided into a number of classes on the basis of their distribution's percentile break-points upon which the parameter maps are directly dependent on the seed cell distributions, hence to the data itself.  相似文献   

14.
There are different approaches and techniques for landslide susceptibility mapping. However, no agreement has been reached in both the procedure and the use of specific controlling factors employed in the landslide susceptibility mapping. Each model has its own assumption, and the result may differ from place to place. Different landslide controlling factors and the completeness of landslide inventory may also affect the different result. Incomplete landslide inventory may produce significance error in the interpretation of the relationship between landslide and controlling factor. Comparing landslide susceptibility models using complete inventory is essential in order to identify the most realistic landslide susceptibility approach applied typically in the tropical region Indonesia. Purwosari area, Java, which has total 182 landslides occurred from 1979 to 2011, was selected as study area to evaluate three data-driven landslide susceptibility models, i.e., weight of evidence, logistic regression, and artificial neural network. Landslide in the study area is usually affected by rainfall and anthropogenic activities. The landslide typology consists of shallow translational and rotational slide. The elevation, slope, aspect, plan curvature, profile curvature, stream power index, topographic wetness index, distance to river, land use, and distance to road were selected as landslide controlling factors for the analysis. Considering the accuracy and the precision evaluations, the weight of evidence represents considerably the most realistic prediction capacities (79%) when comparing with the logistic regression (72%) and artificial neural network (71%). The linear model shows more powerful result than the nonlinear models because it fits to the area where complete landslide inventory is available, the landscape is not varied, and the occurence of landslide is evenly distributed to the class of controlling factor.  相似文献   

15.
This case study presented herein compares the GIS-based landslide susceptibility mapping methods such as conditional probability (CP), logistic regression (LR), artificial neural networks (ANNs) and support vector machine (SVM) applied in Koyulhisar (Sivas, Turkey). Digital elevation model was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index, stream power index, normalized difference vegetation index, distance from settlements and roads were used in the landslide susceptibility analyses. In the last stage of the analyses, landslide susceptibility maps were produced from ANN, CP, LR, SVM models, and they were then compared by means of their validations. However, area under curve values obtained from all four methodologies showed that the map obtained from ANN model looks like more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results also showed that the CP is a simple method in landslide susceptibility mapping and highly compatible with GIS operating features. Susceptibility maps can be easily produced using CP, because input process, calculation and output processes are very simple in CP model when compared with the other methods considered in this study.  相似文献   

16.
Landslides are recognized as one of the most important natural hazards in many areas throughout the world. Producing landslide susceptibility maps have received particular attention from a wide range of scientists. The main objective of this study was to produce landslide susceptibility maps using hybrid wavelet packet-statistical models (WP-SM). In the first step, landslide susceptibility maps were produced using single artificial neural network (ANN), support vector machine (SVM), maximum entropy (MaxEnt), and generalized linear model (GLM). In the next step, the input maps were preprocessed using different mother wavelets in different levels. Then, the hybrid models were developed using the wavelet-based preprocessed maps. Results showed that the wavelet packet transform can be effectively used to produce precise landslide susceptibility maps. It was shown that wavelet packet transform significantly enhanced the ability of the single statistical models. The kappa coefficients were increased from 0.829 to 0.941, 0.846 to 0.978, 0.744 to 0.829, and 0.735 to 0.817 in hybrid ANN, SVM, MaxEnt, and GLM, respectively. The best wavelet transform was performed using bior1.5 with a three-level decomposition. It was also recognized that MaxEnt and GLM produced approximately poor results. However, SVM performed better than the other three models both in single and hybrid forms. ANN also outperformed MaxEnt and GLM models. Spatial distribution of the susceptible area is consistent with the observed landslide distribution pattern particularly in maps obtained from the hybrid models. The produced maps showed that the general pattern of susceptible area intensively followed the pattern of roads and sensitive geological formations.  相似文献   

17.
This study aimed to investigate the parameter effects in preparing landslide susceptibility maps with a data-driven approach and to adapt this approach to analytical hierarchy process (AHP). For this purpose, at the first stage, landslide inventory of an area located in the Western Black Sea region of Turkey covering approximately 567?km2 was prepared, and a total of 101 landslides were mapped. In order to assess the landslide susceptibility, a total of 13 parameters were considered as the input parameters: slope, aspect, plan curvature, topographical elevation, vegetation cover index, land use, distance to drainage, distance to roads, distance to structural elements, distance to ridges, stream power index, sediment transport capacity index, and wetness index. AHP was selected as the major assessment methodology since the adapted approach and AHP work in data pairs. Adapted to AHP, a similarity relation?Cbased approach, namely landslide relation indicator (LRI) for parameter selection method, was also proposed. AHP and parametric effect analyses were performed by the proposed approach, and seven landslide susceptibility maps were produced. Among these maps, the best performance was gathered from the landslide susceptibility map produced by 9 parameter combinations using area under curve (AUC) approach. For this map, the AUC value was calculated as 0.797, while the others ranged between 0.686 and 0.771. According to this map, 38.3?% of the study area was classified as having very low, 8.5?% as low, 15.0?% as moderate, 20.3?% as high, and 17.9?% as very high landslide susceptibility, respectively. Based on the overall assessments, the proposed approach in this study was concluded as objective and applicable and yielded reasonable results.  相似文献   

18.
This study presents the results of both field and laboratory tests that have been undertaken to assess liquefaction susceptibilities of the soils in Kütahya city, located in the well-known seismically active fault zone. Liquefaction potentials of the sub-surface materials at Kütahya city were estimated by using the geological aspect and geotechnical methods such as SPT method of field testing. And, the data obtained have been mapped according to susceptibility and hazard. The susceptibility map indicated “liquefable” and “marginally liquefable” areas in alluvium, and “non-liquefable” areas in Neogene unit for the magnitude of earthquake of M=6.5; whereas, liquefaction hazard map produced by using of liquefaction potential index showed the severity categories from “very low” to “high.” However, a large area in the study area is prone to liquefy according to liquefaction susceptibility map; the large parts of the liquefable horizon are mapped as “low” class of severity by the use of the liquefaction potential index. It can be said that hazard mapping of liquefaction for a given site is crucial than producing liquefaction susceptibility map for estimating the severity. Both the susceptibility and hazard maps should be produced and correlated with each other for planning in an engineering point of view.  相似文献   

19.
Akinci  Halil  Zeybek  Mustafa 《Natural Hazards》2021,108(2):1515-1543
Natural Hazards - Landslide susceptibility maps provide crucial information that helps local authorities, public institutions, and land-use planners make the correct decisions when they are...  相似文献   

20.
This study proposed a hybrid modeling approach using two methods, support vector machines and random subspace, to create a novel model named random subspace-based support vector machines (RSSVM) for assessing landslide susceptibility. The newly developed model was then tested in the Wuning area, China, to produce a landslide susceptibility map. With the purpose of achieving the objective of the study, a spatial dataset was initially constructed that includes a landslide inventory map consisting of 445 landslide regions. Then, various landslide-influencing factors were defined, including slope angle, aspect, altitude, topographic wetness index, stream power index, sediment transport index, soil, lithology, normalized difference vegetation index, land use, rainfall, distance to roads, distance to rivers, and distance to faults. Next, the result of the RSSVM model was validated using statistical index-based evaluations and the receiver operating characteristic curve approach. Then, to evaluate the performance of the suggested RSSVM model, a comparison analysis was performed to other existing approaches such as artificial neural network, Naïve Bayes (NB) and support vector machine (SVM). In general, the performance of the RSSVM model was better than the other models for spatial prediction of landslide susceptibility. The AUC results of the applied models are as follows: RSSVM (AUC = 0.857), followed by MLP (AUC = 0.823), SVM (AUC = 0.814) and NB (AUC = 0.783). The present study indicates that RSSVM can be used for landslide susceptibility evaluation, and the results are very useful for local governments and people living in the Wuning area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号