首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We report investigations of digital array scanned interferometers (DASI) with silicon CCD array detectors to define the operational capabilities of a mapping (polarimetric) spectrometer for astronomical applications based on these instruments. For spectral mapping, we demonstrate spatially resolved spectra using a cylindrical lens to image in the interferometer's redundant coordinate. We demonstrate enhanced spectral resolution with a band limiting filter and standard aliasing techniques. The signal-to-noise characteristics of the Fourier transformed data are demonstrated with regard to the effects of a rectangular sampling function, spectral multiplexing and the pixel-to-pixel variation of the CCD array.These data indicate that DASIs can offer simple, versatile (polarization) mapping spectrometers suitable for spectral mapping observations from the ultraviolet to the infrared of extended sources at variable spatial resolution, particularly where long term stable operation is essential, as for spaceraft instruments.This research was supported by NASA under grants NAGW-122 and NAGW-1801.  相似文献   

2.
The study of Young Stellar Objects (YSOs) is one of the most exciting topics that can be undertaken by long baseline optical interferometry. The magnitudes of these objects are at the edge of capabilities of current optical interferometers, limiting the studies to a few dozen, but are well within the capability of coming large aperture interferometers like the VLT Interferometer, the Keck Interferometer, the Large Binocular Telescope or 'OHANA. The milli-arcsecond spatial resolution reached by interferometry probes the very close environment of young stars, down to a tenth of an astronomical unit. In this paper, I review the different aspects of star formation that can be tackled by interferometry: circumstellar disks, multiplicity, jets. I present recent observations performed with operational infrared interferometers, IOTA, PTI and ISI, and I show why in the next future one will extend these studies with large aperture interferometers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Interferometry in the visible provides milliarcsecond spatial resolution and thus has been used for studying the circumstellar environment of active hot stars. In this paper I will illustrate how the visibility modulus and phase can be used to better constrain the physics of Be disks through results from the VLA, the MkII and the GI2T interferometers. I will insist on the importance and the potential of coupling high angular resolution with high spectral resolution to the study of Be shells. Finally I will present a possible study of the circumstellar disk of Be stars using the VLTI. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
This paper describes a new Heterodyne Array Receiver Program (HARP) and Auto-Correlation Spectral Imaging System (ACSIS) that have recently been installed and commissioned on the James Clerk Maxwell Telescope. The 16-element focal-plane array receiver, operating in the submillimetre from 325 to 375 GHz, offers high (three-dimensional) mapping speeds, along with significant improvements over single-detector counterparts in calibration and image quality. Receiver temperatures are ∼120 K across the whole band, and system temperatures of ∼300 K are reached routinely under good weather conditions. The system includes a single-sideband (SSB) filter so these are SSB values. Used in conjunction with ACSIS, the system can produce large-scale maps rapidly, in one or more frequency settings, at high spatial and spectral resolution. Fully sampled maps of     size can be observed in under 1 h.
The scientific need for array receivers arises from the requirement for programmes to study samples of objects of statistically significant size, in large-scale unbiased surveys of galactic and extra-galactic regions. Along with morphological information, the new spectral imaging system can be used to study the physical and chemical properties of regions of interest. Its three-dimensional imaging capabilities are critical for research into turbulence and dynamics. In addition, HARP/ACSIS will provide highly complementary science programmes to wide-field continuum studies and produce the essential preparatory work for submillimetre interferometers such as the Submillimeter Array (SMA) and Atacama Large Millimeter/Submillimeter Array (ALMA).  相似文献   

5.
In 2006 ESO Council authorized a Phase B study of a European AO‐telescope with a 42 m segmented primary with a 5‐mirror design, the E‐ELT. Several reports and working groups have already presented science cases for an E‐ELT, specifically exploiting the new capabilities of such a large telescope. One of the aims of the design has been to find a balance in the performances between an E‐ELT and the James Webb Space Telescope, JWST. Apart from the larger photon‐collecting area, the strengths of the former is the higher attainable spatial and spectral resolutions. The E‐ELT AO system will have an optimal performance in the near‐IR, which makes it specially advantageous. High‐resolution spectroscopy in the near‐infrared has, however, not been discussed much. This paper aims at filling that gap, by specifically discussing spectroscopy of stellar (mainly red giant), photospheric abundances. Based on studies in the literature of stellar abundances, at the needed medium to high spectral resolutions in the near‐infrared (0.8–2.4 μm), I will try to extrapolate published results to the performance of the E‐ELT and explore what could be done at the E‐ELT in this field. A discussion on what instrument characteristics that would be needed for stellar abundance analyses in the near‐IR will be given (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The combination of high spatial and spectral resolution in optical astronomy enables new observational approaches to many open problems in stellar and circumstellar astrophysics. However, constructing a high-resolution spectrograph for an interferometer is a costly and time-intensive undertaking. Our aim is to show that, by coupling existing high-resolution spectrographs to existing interferometers, one could observe in the domain of high spectral and spatial resolution, and avoid the construction of a new complex and expensive instrument. We investigate in this article the different challenges which arise from combining an interferometer with a high-resolution spectrograph. The requirements for the different sub-systems are determined, with special attention given to the problems of fringe tracking and dispersion. A concept study for the combination of the VLTI (Very Large Telescope Interferometer) with UVES (UV-Visual Echelle Spectrograph) is carried out, and several other specific instrument pairings are discussed. We show that the proposed combination of an interferometer with a high-resolution spectrograph is indeed feasible with current technology, for a fraction of the cost of building a whole new spectrograph. The impact on the existing instruments and their ongoing programs would be minimal.  相似文献   

7.
Through the continuing development of improved detectors and detector arrays, far-infrared/submillimeter astronomical space missions have had enormous successes in recent years. Despite these advances, the diffraction-limited angular resolving power has remained virtually constant. The advent of telescopes with apertures of several meters will improve this capability, but will still leave image resolution many orders of magnitude poorer than in most other spectral ranges. Here we point out that the only foreseeable way to improve image quality to rival that of modern optical telescopes will be with interferometers whose light collectors are connected by tethers. After making the scientific case for high spatial resolution far-infrared/submillimeter imaging and the use of interferometry as the most immediate way of producing results, we discuss recent advances in dynamic analysis and control of tethered formations, and argue that the further development and testing of tethers in space is a first step toward providing improved far-infrared/submillimeter angular resolution and astronomical image quality.  相似文献   

8.
We present an overview of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief review of these observations, highlighting some new discoveries made possible by the Observatory’s unique capabilities. This includes our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC443 SNR.   相似文献   

9.
D. Oberoi  L. Benkevitch 《Solar physics》2010,265(1-2):293-307
The Murchison Widefield Array (MWA) is one of the new technology low frequency radio interferometers currently under construction at an extremely radio-quiet location in Western Australia. The MWA design brings to bear the recent availability of powerful high-speed computational and digital signal processing capabilities on the problem of low frequency high-fidelity imaging with a rapid cadence and high spectral resolution. Solar and heliosphere science are among the key science objectives of the MWA and have guided the array design from its very conception. We present here a brief overview of the design and capabilities of the MWA with emphasis on its suitability for solar physics and remote-sensing of the heliosphere. We discuss the solar imaging and interplanetary scintillation (IPS) science capabilities of the MWA and also describe a new software framework. This software, referred to as Haystack InterPlanetary Software System (HIPSS), aims to provide a common data repository, interface, and analysis tools for IPS data from all observatories across the world.  相似文献   

10.
We have investigated spatial and spectral associations between mineral species and organic matter in the Tagish Lake meteorite. Synchrotron‐based infrared microspectroscopy allowed us to spatially locate specific organic and inorganic compounds within multiple Tagish Lake grains with high spatial resolution. Generated two‐dimensional infrared maps present strong spatial association between aliphatic C‐H and OH in phyllosilicates in Tagish Lake grains. These observations indicate possible roles of phyllosilicates for the formation, evolution, and preservation of organic matter. Infared spectra of all studied Tagish Lake grains show a strong carbonate band, which also shows a weak but positive correlation with organic matter in some grains. However, intergrain correlation was not observed between carbonates and organics, which is likely due to the difference of carbonate occurrence, e.g., presence of larger grains or intergrowth of carbonates on phyllosilicates. Possible scenarios further explaining the observed associations of organics with phyllosilicates and carbonates are presented.  相似文献   

11.
Rapidly oscillating chemically peculiar A stars (roAp) pulsate in high-overtone, low degree p-modes and form a sub-group of chemically peculiar magnetic A stars (Ap). Until recently, the classical asteroseismic research, i.e., frequency analysis, of these stars was based on photometric observations both ground-based and space-based. Significant progress has been achieved by obtaining uninterrupted, ultra-high precision data from the MOST, COROT, and Kepler satellites. Over the last ten years, a real breakthrough was achieved in the study of roAp stars due to the time-resolved, high spectral resolution spectroscopic observations. Unusual pulsational characteristics of these stars, caused by the interaction between propagating pulsationwaves and strong stratification of chemical elements, provide an opportunity to study the upper roAp star atmosphere in more detail than is possible for any star but the Sun, using spectroscopic data. In this paper the results of recent pulsation studies of these stars are reviewed.  相似文献   

12.
We describe a multi-order spectrograph concept suitable for 8-m class telescopes, using the intrinsic spectral resolution of superconducting tunnelling junction detectors to sort the spectral orders. The spectrograph works at low orders, 1–5 or 1–6, and provides spectral coverage with a resolving power of   R ≃ 8000  from the atmospheric cut-off at 320 nm to the long-wavelength end of the infrared H or K band at 1800 nm or 2400 nm. We calculate that the spectrograph would provide substantial throughput and wavelength coverage, together with high time resolution and sufficient dynamic range. The concept uses currently available technology, or technologies with short development horizons, restricting the spatial sampling to two linear arrays; however, an upgrade path to provide more spatial sampling is identified. All of the other challenging aspects of the concept – the cryogenics, thermal baffling and magnetic field biasing – are identified as being feasible.  相似文献   

13.
VLTI interferometry will allow imaging of galactic and extragalactic sources with milliarcsecond angular resolution. For moderately bright sources the spectral resolution will be of the order of 10000. These capabilities will allow detailed studies of solar system objects, stars, proto-planetary systems and the detection of hot extra-solar planets. The observations of galactic nuclei will allow unprecedented measurements of physical parameters in these systems. VLTI will be a prime instrument to study the immediate environment of the massive black hole at the center of the Milky Way. With the exception of a few `self-referencing' sources the observations of extragalactic nuclei will benefit from an extended capability for simultaneous measurements of nearby reference sources for fringe tracking. With beam combination instruments like AMBER, MIDI, PRIMA, and GENIE the VLTI will reach full maturity at a time when other interferometric instruments at different wavelengths will be fully operational. Most important are ALMA (in the mm- and sub-mm-domain), LOFAR and SKA (in the radio meter to centimeter domain) and of course VLB-networks in the radio, and other – at that time –well developed interferometers in the optical. A major scientific potential of future scientific VLTI programs will lie in an efficient combination of these high angular resolution capabilities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The polarimetric Littrow Spectrograph POLIS is designed for vector polarimetry at high angular and spectral resolution. It measures the magnetic field simultaneously in the photosphere and the chromosphere of the sun. Both branches of the polarimetry unit are dual beam systems with a single rotating modulator for both wavelengths and polarizing beam splitters in front of each CCD camera. POLIS has been installed at the VTT on Tenerife and has seen First Light on 17 May 2002. A modified version of POLIS will be developed for the balloon mission Sunrise . That version will have UV capabilities down to 200 nm.  相似文献   

15.
Brekke  Pål 《Solar physics》1999,190(1-2):379-408
Recent space missions have changed our view of the solar transition region. In particular the ESA/NASA Solar and Heliospheric Observatory (SOHO) and NASA's TRACE satellite have provided a unique opportunity to explore the solar atmosphere in detail. The combination of high spatial, spectral and temporal observations has made it possible to derive three dimensional images of the emission and velocity structures of solar features. Active region loop structures at transition region temperatures appear to be extremely time variable and dynamic, a result with profound implications for our understanding and modeling of the upper solar atmosphere. Large Dopplershifts have also been observed in these structures. A 3-minute transition region oscillation has been observed above sunspots suggesting upward-propagating acoustic waves. Clear evidence of velocity oscillations in the internetwork regions has also been observed in both the chromosphere and the transition region. The longstanding and puzzling problem of the apparent net red shift of emission lines from the transition region has been revisited. The extensive wavelength coverage of the SOHO spectrometers has made it possible to extend the measurements to much higher temperatures compared to previous instruments. The combination of magnetograms, EUV spectral imaging and the high resolution broad-band images from TRACE has also given us new insight concerning the structure of the transition region and its relation with the photospheric magnetic field. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005224709046  相似文献   

16.
F. Cavallini 《Solar physics》2006,236(2):415-439
A new instrument for solar bi-dimensional spectroscopy, the Interferometric BIdimensional Spectrometer (IBIS), has been successfully installed at the Dunn Solar Telescope of the National Solar Observatory (USA-NM) in June 2003. This instrument is essentially composed of a series of two Fabry-Perot interferometers and a set of narrow-band interference filters, used in a classic mount and in axial-mode. It has been designed to take monochromatic images of the solar surface with high spectral (R ≥ 200 000), spatial ≃ 0.2″), and temporal resolution (several frames s−1). IBIS has a circular field of view, 80″ in diameter and, with suitable interference filters, it can be used in the wavelength range 580 – 860 nm. The wavelength stability of the instrumental profile is very high, the maximum drift in 10 hours amounting to ≃10 m s−1. In this paper the criteria used in the design and the expected instrumental characteristics are described.  相似文献   

17.
Near‐Infrared high spectral and spatial resolution spectroscopy offers new and innovative observing opportunities for astronomy. The “traditional” benefits of IR‐astronomy – strongly reduced extinction and availability of adaptive optics – more than offset for many applications the compared to CCD‐based astronomy strongly reduced sensitivity. Especially in high resolution spectroscopy interferences by telluric lines can be minimized. Moreover for abundance studies many important atomic lines can be accessed in the NIR. A novel spectral feature available for quantitative spectroscopy are the molecular rotational‐vibrational transitions which allow for fundamentally new studies of condensed objects and atmospheres. This is also an important complement to radio‐astronomy, especially with ALMA, where molecules are generally only observed in the vibrational ground state. Rot‐vib transitions also allow high precision abundance measurements – including isotopic ratios – fundamental to understand the thermo‐nuclear processes in stars beyond the main sequence. Quantitative modeling of atmospheres has progressed such that the unambiguous interpretation of IR‐spectra is now well established. In combination with adaptive optics spectro‐astrometry is even more powerful and with VLT‐CRIRES a spatial resolution of better than one milli‐arcsecond has been demonstrated. Some highlights and recent results will be presented: our solar system, extrasolar planets, star‐ and planet formation, stellar evolution and the formation of galactic bulges (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
AMBER is the General User near infrared focal instrument of the Very Large Telescope Interferometer. It is a single mode, dispersed fringes, three telescope instrument. A limiting magnitude of the order of H=13 will allow tackling of a fair sample of extra galactic targets. A very high accuracy, in particular in color differential phase and closure phase modes gives good hope for very high dynamical range observations, possibly including hot extra solar planets. The relatively high maximum spectral resolution, up to 10000, will allow stellar activity observations. Between these extreme goals, AMBER has a wide range of applications including Young Stellar Objects, Evolved Stars, circumstellar material and many others. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
This paper discusses some of the challenges of spectro‐polarimetric observations with a large aperture solar telescope such as the ATST or the EST. The observer needs to reach a compromise between spatial and spectral resolution, time cadence, and signal‐to‐noise ratio, as only three of those four parameters can be pushed to the limit. Tunable filters and grating spectrographs provide a natural compromise as the former are more suitable for high‐spatial resolution observations while the latter are a better choice when one needs to work with many wavelengths at full spectral resolution. Given the requirements for the new science targeted by these facilities, it is important that 1) tunable filters have some multi‐wavelength capability; and 2) grating spectrographs have some 2D field of view (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Wilhelm  K.  Lemaire  P.  Curdt  W.  Schühle  U.  Marsch  E.  Poland  A. I.  Jordan  S. D.  Thomas  R. J.  Hassler  D. M.  Huber  M. C. E.  Vial  J.-C.  Kühne  M.  Siegmund  O. H. W.  Gabriel  A.  Timothy  J. G.  Grewing  M.  Feldman  U.  Hollandt  J.  Brekke  P. 《Solar physics》1997,170(1):75-104
SUMER – the Solar Ultraviolet Measurements of the Emitted Radiation instrument on the Solar and Heliospheric Observatory (SOHO) – observed its first light on January 24, 1996, and subsequently obtained a detailed spectrum with detector B in the wavelength range from 660 to 1490 Å (in first order) inside and above the limb in the north polar coronal hole. Using detector A of the instrument, this range was later extended to 1610 Å. The second-order spectra of detectors A and B cover 330 to 805 Å and are superimposed on the first-order spectra. Many more features and areas of the Sun and their spectra have been observed since, including coronal holes, polar plumes and active regions. The atoms and ions emitting this radiation exist at temperatures below 2 × 106 K and are thus ideally suited to investigate the solar transition region where the temperature increases from chromospheric to coronal values. SUMER can also be operated in a manner such that it makes images or spectroheliograms of different sizes in selected spectral lines. A detailed line profile with spectral resolution elements between 22 and 45 mÅ is produced for each line at each spatial location along the slit. From the line width, intensity and wavelength position we are able to deduce temperature, density, and velocity of the emitting atoms and ions for each emission line and spatial element in the spectroheliogram. Because of the high spectral resolution and low noise of SUMER, we have been able to detect faint lines not previously observed and, in addition, to determine their spectral profiles. SUMER has already recorded over 2000 extreme ultraviolet emission lines and many identifications have been made on the disk and in the corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号