首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Stellar photometry derived from the INT/WFC Photometric Hα Survey (IPHAS) of the Northern Galactic plane can be used to identify large, reliable samples of A0–A5 stars. For every A-type star, so identified, it is also possible to derive individual reddening and distance estimates, under the assumption that most selected objects are on or near the main sequence, at a mean absolute r ' magnitude of 1.5–1.6. This study presents the method for obtaining such samples and shows that the known reddenings and distances to the open clusters NGC 7510 and NGC 7790 are successfully recovered. A sample of over 1000 A-type stars is then obtained from IPHAS data in the magnitude range  13.5 < r ' < 20  from the region of sky including the massive northern OB association Cyg OB2. An analysis of these data reveals a concentration of ∼200 A stars over an area about a degree across, offset mainly to the south of the known 1–3 Myr old OB stars in Cyg OB2: their dereddened r ' magnitudes fall in the range 11.8–12.5. These are consistent with a ∼7 Myr old stellar population at distance modulus DM = 10.8, or with an age of ∼5 Myr at DM = 11.2. The number of A-type stars found in this clustering alone is consistent with a lower limit to the cluster mass of  ∼104 M  .  相似文献   

2.
We present CCD BVI photometry for the southern open cluster NGC 2489 and its surrounding field. The sample consists of 2182 stars measured in an area of 13.6 × 13.6 arcmin2, extending down to   V ∼ 21.5  . These data are supplemented with CORAVEL radial-velocity observations for seven red giant candidates. A cluster angular radius of 6.7 ± 0.6 arcmin, equivalent to 3.5 ± 0.3 pc, is estimated from star counts carried out inside and outside the cluster region. The comparison of the cluster colour–magnitude diagrams with isochrones of the Padova group yields   E ( B − V ) = 0.30 ± 0.05, E ( V − I ) = 0.40 ± 0.05  and   V − M V = 12.20 ± 0.25  for log   t = 8.70 ( t = 500+130−100 Myr)  and   Z = 0.019  . NGC 2489 is then located at 1.8 ± 0.3 kpc from the Sun and 25 pc below the Galactic plane. The analysis of the kinematical data allowed us to confirm cluster membership for six red giants, one of them being a spectroscopic binary. A mean radial velocity of 38.13 ± 0.33 km s−1 was derived for the cluster red giants. The properties of a sample of open clusters aligned along the line of sight of NGC 2489 are examined.  相似文献   

3.
We study protoplanetary disc evolution assuming that angular momentum transport is driven by gravitational instability at large radii, and magnetohydrodynamic (MHD) turbulence in the hot inner regions. At radii of the order of 1 au such discs develop a magnetically layered structure, with accretion occurring in an ionized surface layer overlying quiescent gas that is too cool to sustain MHD turbulence. We show that layered discs are subject to a limit cycle instability, in which accretion on to the protostar occurs in ∼104-yr bursts with ̇ ∼10−5 M yr−1, separated by quiescent intervals lasting ∼105 yr where ̇ ≈10−8 M yr−1. Such bursts could lead to repeated episodes of strong mass outflow in young stellar objects. The transition to this episodic mode of accretion occurs at an early epoch ( t ≪1 Myr), and the model therefore predicts that many young pre-main-sequence stars should have low rates of accretion through the inner disc. At ages of a few Myr, the discs are up to an order of magnitude more massive than the minimum-mass solar nebula, with most of the mass locked up in the quiescent layer of the disc at r ∼1 au. The predicted rate of low-mass planetary migration is reduced at the outer edge of the layered disc, which could lead to an enhanced probability of giant planet formation at radii of 1–3 au.  相似文献   

4.
During a systematic search for periodic signals in a sample of ROSAT PSPC (0.1–2.4 keV) light curves, we have discovered ∼12-min large-amplitude X-ray pulsations in 1WGA J1958.2+3232, an X-ray source which lies close to the Galactic plane. The energy spectrum is well fitted by a power law with a photon index of 0.8, corresponding to an X-ray flux level of ∼ 10−12 erg cm−2 s−1. The source is probably a long-period, low-luminosity X-ray pulsar, similar to X Per, or an intermediate polar.  相似文献   

5.
We consider the possibility that the excess of cosmic rays near ∼1018 eV, reported by the AGASA and SUGAR groups from the direction of the Galactic Centre, is caused by a young, very fast pulsar in the high-density medium. The pulsar accelerates iron nuclei to energies ∼1020 eV, as postulated by the Galactic models for the origin of the highest-energy cosmic rays. The iron nuclei, about 1 yr after pulsar formation, leave the supernova envelope without energy losses and diffuse through the dense central region of the Galaxy. Some of them collide with the background matter creating neutrons (from disintegration of Fe), neutrinos and gamma-rays (in inelastic collisions). We suggest that neutrons produced at a specific time after the pulsar formation are responsible for the observed excess of cosmic rays at ∼1018 eV. From normalization of the calculated neutron flux to the one observed in the cosmic ray excess, we predict the neutrino and gamma-ray fluxes. It has been found that the 1 km2 neutrino detector of the IceCube type should detect from a few up to several events per year from the Galactic Centre, depending on the parameters of the considered model. Moreover, future systems of Cherenkov telescopes (CANGAROO III, HESS, VERITAS) should be able to observe  1–10 TeV  gamma-rays from the Galactic Centre if the pulsar was created inside a huge molecular cloud about  3–10×103 yr  ago.  相似文献   

6.
The 'Carina Flare' supershell, GSH 287+04−17, is a molecular supershell originally discovered in  12CO( J = 1–0)  with the NANTEN 4 m telescope. We present the first study of the shell's atomic ISM, using H  i 21-cm line data from the Parkes 64-m telescope Southern Galactic Plane Survey. The data reveal a gently expanding,  ∼230 × 360  pc H  i supershell that shows strong evidence of Galactic Plane blowout, with a break in its main body at   z ∼ 280  pc and a capped high-latitude extension reaching   z ∼ 450  pc. The molecular clouds form comoving parts of the atomic shell, and the morphology of the two phases reflects the supershell's influence on the structure of the ISM. We also report the first discovery of an ionized component of the supershell, in the form of delicate, streamer-like filaments aligned with the proposed direction of blowout. The distance estimate to the shell is re-examined, and we find strong evidence to support the original suggestion that it is located in the Carina Arm at a distance of  2.6 ± 0.4 kpc  . Associated H  i and H2 masses are estimated as   M H I≈ 7 ± 3 × 105 M  and     , and the kinetic energy of the expanding shell as   E K ∼ 1 × 1051  erg. We examine the results of analytical and numerical models to estimate a required formation energy of several 1051 to  ∼1052  erg, and an age of  ∼107 yr  . This age is compatible with molecular cloud formation time-scales, and we briefly consider the viability of a supershell-triggered origin for the molecular component.  相似文献   

7.
Evidence is found that large terrestrial impacts tend to cluster in discrete episodes, with characteristic separations 25–30 Myr and durations of about 1–2 Myr. The largest impactors are strongly concentrated within such events, and the Cretaceous–Tertiary extinctions occurred within one of them. The evidence also indicates the presence of a weak periodicity, which might be ∼24, ∼35 or ∼42 Myr depending on which peaks are taken as harmonics. The periodicity is most easily explained as a result of the action of the Galactic tide on the Oort comet cloud. The two longer period solutions are consistent with Galactic density estimates and with the current passage of the Solar system through the plane of the Galaxy. Other episodes may be a result of sporadic encounters with spiral arms, nebulae or stars.  相似文献   

8.
By conducting axisymmetrical hydrodynamical numerical simulations (2.5 dimensional code) we show that slow, massive, wide jets can reproduce the morphology of the huge X-ray deficient bubble pair in the cluster of galaxies MS 0735+7421. The total energy of the jets, composed of the energy in the bubble pair and in the shock wave, is constrained by observations conducted by McNamara et al. to be  ∼1062 erg  . We show that two opposite jets that are active for ∼100 Myr, each with a launching half opening angle of  α≃ 70°  , an initial velocity of   v j∼ 0.1 c   and a total mass loss rate of the two jets of     , can account for the observed morphology. Rapidly precessing narrow jets can be used instead of wide jets. In our model the cluster suffered from a cooling catastrophe ∼100 Myr ago. Most of the mass that cooled,  ∼1010 M  , was expelled back to the intracluster medium by the active galactic nuclei activity and is inside the bubbles now, ∼10 per cent formed stars and ∼10 per cent of the cold gas was accreted by the central black hole and was the source of the outburst energy. This type of activity is similar to that expected to occur in galaxy formation.  相似文献   

9.
Polarized diffuse emission observations at 1.4 GHz in a high Galactic latitude area of the Northern celestial hemisphere are presented. The  3.2 × 3.2 deg2  field, centred at  RA = 10h58m, Dec. =+42°18' (B1950)  , has Galactic coordinates   l ∼ 172°, b ∼+63°  and is located in the region selected as northern target of the Balloon-borne Radiometers for Sky Polarization Observations experiment. Observations have been performed with the Effelsberg 100-m telescope. We find that the angular power spectra of the E and B modes have slopes of  β E =−1.79 ± 0.13  and  β B =−1.74 ± 0.12  , respectively. Because of the very high Galactic latitude and the smooth emission, a weak Faraday rotation action is expected, which allows both a fair extrapolation to cosmic microwave background polarization (CMBP) frequencies and an estimate of the contamination by the Galactic synchrotron emission. We extrapolate the E -mode spectrum up to 32 GHz and confirm the possibility to safely detect the CMBP E -mode signal in the Ka band found in another low-emission region. Extrapolated up to 90 GHz, the Galactic synchrotron B mode looks to compete with the cosmic signal only for models with a tensor-to-scalar perturbation power ratio   T / S < 0.001  , which is even lower than the T / S value of 0.01 found to be accessible in the only other high Galactic latitude area investigated to date. This suggests that values as low as   T / S = 0.01  might be accessed at high Galactic latitudes. Such low-emission values can allow a significant redshift of the best frequency to detect the CMBP B mode, also reducing the contamination by Galactic dust, and opening interesting perspectives to investigate inflation models.  相似文献   

10.
We investigate shattering and coagulation of dust grains in turbulent interstellar medium (ISM). The typical velocity of dust grain as a function of grain size has been calculated for various ISM phases based on a theory of grain dynamics in compressible magnetohydrodynamic turbulence. In this paper, we develop a scheme of grain shattering and coagulation and apply it to turbulent ISM by using the grain velocities predicted by the above turbulence theory. Since large grains tend to acquire large velocity dispersions as shown by earlier studies, large grains tend to be shattered. Large shattering effects are indeed seen in warm ionized medium within a few Myr for grains with radius   a ≳ 10−6  cm. We also show that shattering in warm neutral medium can limit the largest grain size in ISM  ( a ∼ 2 × 10−5 cm)  . On the other hand, coagulation tends to modify small grains since it only occurs when the grain velocity is small enough. Coagulation significantly modifies the grain size distribution in dense clouds (DC), where a large fraction of the grains with   a < 10−6 cm  coagulate in 10 Myr. In fact, the correlation among   RV   , the carbon bump strength and the ultraviolet slope in the observed Milky Way extinction curves can be explained by the coagulation in DC. It is possible that the grain size distribution in the Milky Way is determined by a combination of all the above effects of shattering and coagulation. Considering that shattering and coagulation in turbulence are effective if dust-to-gas ratio is typically more than ∼1/10 of the Galactic value, the regulation mechanism of grain size distribution should be different between metal-poor and metal-rich environments.  相似文献   

11.
Red clump giant (RCG) stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration data base to constrain analytic triaxial models for the Galactic bar. We find the bar major-axis is oriented at an angle of 24°–27° to the Sun–Galactic Centre line-of-sight. The ratio of semimajor and semiminor bar axis scalelengths in the Galactic plane   x 0, y 0  , and vertical bar scalelength z 0, is   x 0 :  y 0 :  z 0= 10 : 3.5 : 2.6  , suggesting a slightly more prolate bar structure than the working model of Gerhard which gives the scalelength ratios as   x 0 :  y 0 :  z 0= 10 : 4 : 3  .  相似文献   

12.
We present 13 CO J  = 1 − 0 line observations of the H  ii region complex W51B located in the high-velocity (HV) stream. These observations reveal a filamentary and clumpy structure in the molecular gas. The mean local standard of rest (LSR) velocity ∼ + 65 km s−1 of the molecular gas in this region is greater than the maximum velocities allowed by kinematic Galactic rotation curves. The size and mass of the molecular clouds are ∼ 48 × 17 pc2 and ∼ 2.4 × 105 M⊙ respectively. In a position–velocity diagram, molecular gas in the southern part comprises a redshifted ring structure with v LSR=+ 60 to +73 km s−1. The velocity gradient of this ring is ∼ 0.5 km s−1 pc−1, and the mass is ∼ 6.2 × 104 M⊙. If we assume that the ring is expanding with a uniform velocity, the expansion velocity, radius and kinetic energy are ∼ 7 km s−1, ∼ 13 pc and ∼ 3.0 × 10 49 erg respectively. The kinetic energy and mass spectrum of the ring could be explained by an expanding cylindrical cloud with a centrally condensed mass distribution. The locations of two compact H  ii regions, G49.0−0.3 and G48.9−0.3, coincide with the two molecular clumps in this ring. We discuss star formation, and the mechanism that produced the ring structure.  相似文献   

13.
A method based on Lucy's iterative algorithm is developed to invert the equation of stellar statistics for the Galactic bulge and is then applied to the K -band star counts from the Two-Micron Galactic Survey in a number of off-plane regions (10°>| b |>2°, | l |<15°). The top end of the K -band luminosity function is derived and the morphology of the stellar density function is fitted to triaxial ellipsoids, assuming a non-variable luminosity function within the bulge. The results, which have already been outlined by López-Corredoira et al., are shown in this paper with a full explanation of the steps of the inversion: the luminosity function shows a sharp decrease brighter than M K =−8.0  mag when compared with the disc population; the bulge fits triaxial ellipsoids with the major axis in the Galactic plane at an angle with the line of sight to the Galactic centre of 12° in the first quadrant; the axial ratios are 1:0.54:0.33, and the distance of the Sun from the centre of the triaxial ellipsoid is 7860 pc. The major–minor axial ratio of the ellipsoids is found not to be constant, the best fit to the gradient being K z =(8.4±1.7)×exp(− t /(2000±920) pc), where t is the distance along the major axis of the ellipsoid in parsecs. However, the interpretation of this is controversial. An eccentricity of the true density-ellipsoid gradient and a population gradient are two possible explanations. The best fit for the stellar density, for 1300 pc< t <3000 pc, is calculated for both cases, assuming an ellipsoidal distribution with constant axial ratios, and when K z is allowed to vary. From these, the total number of bulge stars is ∼3×1010 or ∼4×1010, respectively.  相似文献   

14.
We present the results of a proper motion survey of the Hyades to search for brown dwarfs, based on UKIRT Deep Sky Survey (UKIDSS) and Two-Micron All Sky Survey (2MASS) data. This survey covers  ∼275 deg2  to a depth of   K ∼ 15  mag, equivalent to a mass of  ∼0.05 M  assuming a cluster age of 625 Myr. The discovery of 12 L dwarf Hyades members is reported. These members are also brown dwarfs, with masses between  0.05 < M < 0.075 M  . A high proportion of these L dwarfs appear to be photometric binaries.  相似文献   

15.
We present optical  ( UBVI C )  observations of a rich and complex field in the Galactic plane towards   l ∼ 305°  and   b ∼ 0°  . Our analysis reveals a significantly high interstellar absorption  ( A V ∼ 10)  and an abnormal extinction law in this line of sight. Availing a considerable number of colour combinations, the photometric diagrams allow us to derive new estimates of the fundamental parameters of the two open clusters Danks 1 and Danks 2. Due to the derived abnormal reddening law in this line of sight, both clusters appear much closer (to the Sun) than previously thought. Additionally, we present the optical colours and magnitudes of the WR 48a star, and its main parameters were estimated. The properties of the two embedded clusters, DBS2003 130 and 131, are also addressed. We identify a number of young stellar objects which are probable members of these clusters. This new material is then used to revisit the spiral structure in this sector of the Galaxy showing evidence of populations associated with the inner Galaxy Scutum-Crux arm.  相似文献   

16.
Discs in the 6 Myr old cluster η Chamaeleontis were searched for emission from hot H2. Around the M3 star ECHA J0843.3−7905, we detect circumstellar gas orbiting at ∼2 au. If the gas is ultraviolet excited, the ro-vibrational line traces a hot gas layer supported by a disc of mass  ∼0.03 M  , similar to the minimum mass solar nebula. Such a gas reservoir at 6 Myr would promote the formation and the inwards migration of gas giant planets.  相似文献   

17.
Centaurus B (PKS B1343−601) is one of the brightest and closest radio galaxies, with flux density ∼250 Jy at 408 MHz and redshift 0.01215, but it has not been studied much because of its position (i) close to the Galactic plane (it is also known as G309.6+1.7 and Kes 19) and (ii) in the southern sky. It has recently been suggested as the centre of a highly obscured cluster behind the Galactic plane. We present radio observations made with the Australia Telescope Compact Array and Molonglo Observatory Synthesis Telescope to study the jets and lobes. The total intensity and polarization radio images of the FR I jets are used to determine the jet brightness and width variations, magnetic field structure and fractional polarization. The equipartition pressure calculated along the jets declines rapidly over the first 1 arcmin from the galaxy reaching a constant pressure of 10−13  h −4/7 Pa in the lobes blown in the intracluster medium.  相似文献   

18.
Magnetars, neutron stars with ultrastrong magnetic fields  ( B ∼ 1014−1015G)  , manifest their exotic nature in the form of soft gamma-ray repeaters and anomalous X-ray pulsars. This study estimates the birthrate of magnetars to be ∼0.22 per century with a Galactic population comprising ∼17 objects. A population synthesis was carried out based on the five anomalous X-ray pulsars detected in the ROSAT All Sky Survey by comparing their number to that of massive OB stars in a well-defined volume. Additionally, the group of seven X-ray dim isolated neutron stars detected in the same survey were found to have a birthrate of ∼2 per century with a Galactic population of ∼22 000 objects.  相似文献   

19.
In this, the third in a series of three papers concerning the SuperCOSMOS Sky Survey, we describe the astrometric properties of the data base. We describe the algorithms employed in the derivation of the astrometric parameters of the data, and demonstrate their accuracies by comparison with external data sets using the first release of data, the South Galactic Cap survey. We show that the celestial coordinates, which are tied to the International Celestial Reference Frame via the Tycho–2 reference catalogue, are accurate to better than ±0.2 arcsec at J , R ∼19,18 , rising to ±0.3 arcsec at J , R ∼22,21 , with positional-dependent systematic effects from bright to faint magnitudes at the ∼0.1-arcsec level. The proper motion measurements are shown to be accurate to typically ±10 mas yr−1 at J , R ∼19,18 , rising to ±50 mas yr−1 at J , R ∼22,21 , and are tied to zero using the extragalactic reference frame. We show that the zero-point errors in the proper motions are ≤1 mas yr−1 for R >17 , and are no larger than ∼10 mas yr−1 for R <17 mas yr−1 .  相似文献   

20.
We present observations of eight Galactic bulge microlensing events taken with the 1.0-m Jacobus Kapteyn Telescope (JKT) on La Palma during 2000 June and July. The JKT observing schedule was optimized using a prioritizing algorithm to automatically update the target list. For most of these events we have sampled the light curves at times where no information was available from the OGLE alert team. We assume a point-source point-lens (PSPL) model and perform a maximum likelihood fit to both our data and the OGLE data to constrain the event parameters of the fit. We then refit the data assuming a binary lens and proceed to calculate the probability of detecting planets with mass ratio   q = 10−3  . We have seen no clear signatures of planetary deviations on any of the eight events and we quantify constraints on the presence of planetary companions to the lensing stars. For two well-observed events, 2000BUL31 and 2000BUL33, our detection probabilities peak at ∼30 and ∼20 per cent respectively for   q = 10−3  and   a ∼ R E  for a  Δχ2  threshold value of 60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号