首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The medium shallow lake Grimnitzsee (maximum depth: 9.9 m; mean depth: 4.6 m; area: 7.7 · 106 m2) which is situated in the biosphere reserve “Schorfheide-Chorin” in northern Brandenburg (Germany) was studied in 1994 and 1995. A bathymetric map of Grimnitzsee is given for the first time. The lake is usually polymictic although in 1994 and 1995 relatively long summer stratification was observed due to very high global radiation input. Nutrient concentration, light climate, oxygen status, phytoplankton biomass and the species composition of littoral diatoms characterize the lake as eutrophic. Special features deducible from the lake's polymictic character were the multiple development of aerobic or anaerobic strata above the sediment, the fast recovery of silicon concentration in the water column after diatom sedimentation, the importance of resuspension for the success of planktonic diatom populations, and an only moderate correlation between chlorophyll a concentration and light attenuation as well as seston dry weight probably due to the influence of suspended particles.  相似文献   

2.
Petteri Alho  Joni Mkinen 《水文研究》2010,24(18):2578-2593
There have been a number of flume tests of flow round bends with idealized geometry and recently hydraulic simulations of such experiment. However, studies of hydraulic models in natural river bend are rather limited because of greater complexity of the flow characteristics and lack of detailed data. In this article, we study how 2D hydraulic model and raster‐based hydraulic parameter calculations predict flow characteristics on the natural point bar environment. We will compare calculations of various hydraulic parameters (velocity, bed shear stress and stream power) by the 2D model and the associated sedimentology of the point bars. As a result of comparison, the usability of the 2D model for flow‐form‐product relationship predictions will be evaluated in natural river bend environment. The study shows that the 2D model can be generally utilized to predict the flood‐generated flow‐form‐product relationship in coarse‐grained and structurally complex point bar environments with sand‐dominated bedload. For example, point bar sections submerged in water depths greater than 50 cm showed a relatively good match laterally between the model and sedimentological estimations. Furthermore, this approach allows us to estimate flood processes on a local scale in similar point bar environments with width–length ratio. The flow direction estimates of the 2D model coincided relatively well with the sedimentological estimations on the bar head. However, flow directions on the downstream section could not be modelled because the 2D model cannot handle the helicoidal flow of the river bend. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Gravel bars (GBs) contribute to carbon dioxide (CO2) emissions from stream corridors, with CO2 concentrations and emissions dependent on prevailing hydraulic, biochemical, and physicochemical conditions. We investigated CO2 concentrations and fluxes across a GB in a prealpine stream over three different discharge‐temperature conditions. By combining field data with a reactive transport groundwater model, we were able to differentiate the most relevant hydrological and biogeochemical processes contributing to CO2 dynamics. GB CO2 concentrations showed significant spatial and temporal variability and were highest under the lowest flow and highest temperature conditions. Further, observed GB surface CO2 evasion fluxes, measured CO2 concentrations, and modelled aerobic respiration were highest at the tail of the GB over all conditions. Modelled CO2 transport via streamwater downwelling contributed the largest fraction of the measured GB CO2 concentrations (31% to 48%). This contribution increased its relative share at higher discharges as a result of a decrease in other sources. Also, it decreased from the GB head to tail across all discharge‐temperature conditions. Aerobic respiration accounted for 17% to 36% of measured surface CO2 concentrations. Zoobenthic respiration was estimated to contribute between 4% and 8%, and direct groundwater CO2 inputs 1% to 23%. Unexplained residuals accounted for 6% to 37% of the observed CO2 concentrations at the GB surface. Overall, we highlight the dynamic role of subsurface aerobic respiration as a driver of spatial and temporal variability of CO2 concentrations and evasion fluxes from a GB. As hydrological regimes in prealpine streams are predicted to change following climatic change, we propose that warming temperatures combined with extended periods of low flow will lead to increased CO2 release via enhanced aerobic respiration in newly exposed GBs in prealpine stream corridors.  相似文献   

4.
Vegetation can have an important role in controlling channel planform, through its effects on channel roughness, and root‐reinforcement of bank and bar materials. Along the Platte River in central Nebraska, USA, The Platte River Recovery Implementation Program (PRRIP) has been tasked with managing the planform of the river to benefit endangered species. To investigate the potential use of planned short duration high flow (SDHF) events to manage bar vegetation, this study combined several approaches to determine whether flows of up to 227 m3s?1 through the central Platte River, could remove cottonwood, Phragmites and reed canarygrass stands of various ages and densities from in‐channel bars. First, fieldwork was carried out to measure the uprooting resistance, and resistance to bending for each species. Second, a set of flume experiments was carried out to measure the forces exerted on the three species of interest under different flow conditions. Finally, a numerical study comparing drag forces (driving) measured in the flume study, with uprooting forces (resisting) measured in the field, was carried out for each species to determine the likelihood of plant removal by SDHF events. Results showed that plants with more than a year of root growth, likely cannot be removed through drag and local scour alone, even at the 100‐year recurrence interval discharge. At most, a few cottonwood seedlings could be removed from bars through drag, scour and undercutting, where rooting depths are still small. The results presented here help us further understand the positive feedbacks that lead to the creation of permanent, vegetated bars rather than mobile braided channels. As such, the findings could help inform management decisions for other braided rivers, and the combined field, flume and modeling techniques used in this study could be applied to other fluvial systems where vegetation and planform dynamics are of interest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Toxic cyanobacteria have become a common nuisance in freshwater lakes and reservoirs throughout the world, sometimes resulting in the closure of sites with high amenity value. Cyanobacteria are able to regulate their buoyancy state in response to changing photosynthetic rates. Additionally, the cyanobacteria are liable to become entrained within wind-induced near-surface turbulent currents, resulting in mixing and mass transport. These movement processes have been modelled. A mathematical function is presented which describes light- and nutrient-limited cyanobacterial growth. The growth model is integrated with a previous movement model (SCUM: simulation of cyanobacterial underwater movement) as movement patterns and wind-induced lake mixing strongly affect the intensity and duration of light received by the cyanobacteria and thereby determine the photosynthetic potential. Results of the model suggest that cyanobacteria are resistant to periods of lake mixing and continue to increase their biomass, but at a depressed rate. Growth is most rapid under calm conditions. The results agree well with field-based findings, confirming the validity of the growth function.  相似文献   

6.
The simulation of solute transport in rivers is frequently based on numerical models of the Advection-Dispersion Equation. The construction of reliable computational schemes, however, is not necessarily easy. The paper reviews some of the most important issues in this regard, taking the finite volume method as the basis of the simulation, and compares the performance of several types of scheme for a simple case of the transport of a patch of solute along a uniform river. The results illustrate some typical (and well known) deficiencies of explicit schemes and compare the contrasting performance of implicit and semi-Lagrangian versions of the same schemes. It is concluded that the latter have several benefits over the other types of scheme.  相似文献   

7.
运用复合生态学原理,按照洪泽湖源的自然条件,建立垛-塘生态系统工程,作为开发利用的新途径。氢利用与调蓄洪水的矛盾降到了最小程度,达到塘养鱼,坡种草,垛面载桌粮,立体利用,同时研究其他利用途径。经过三年实验证明,经济、社会、生态效益显著。  相似文献   

8.
A 2 m deep ground thermal pro?le is constructed from temperature data collected over the winter and spring of 2000 at 3220 m a.s.l. near the Thabana Ntlenyana summit (3482 m) in Lesotho, southern Africa. The zero isotherm is found to have penetrated to 0·16 m soil depth. Ground remained frozen at 0·05 m for a total of 79 days and for shorter periods at 0·02 m and 0·10 m. Diurnal freezing and thawing is restricted to the upper 0·10 m and conforms to the observed depth of active micro‐patterned ground found in the region. Holocene temperature depressions projected along the thermal pro?le can account for freezing down to 0·45 to 0·65 m. Deeper sorting to 1 m, evident from relict patterned ground near the logger site, corresponds to at least a 2·5 °C temperature depression and such landforms are evidently pre‐Holocene. Projections indicate a seasonal freezing depth exceeding 2 m during the Pleistocene Last Glacial Maximum although the existence of permafrost appears unlikely. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Eruption styles on the subaerial East Rift Zone (ERZ) of Kilauea volcano are reviewed and a classification scheme for the different types of eruption is proposed. The various eruption types are produced by differing thermal and driving pressure behaviour in the feeder dikes. Existing evidence is reviewed and new evidence presented of the types and volumes of eruptions on the Puna Ridge, which is the submarine extension of the ERZ. Eruptions on the Puna Ridge fall into the same five classes as, and are of comparable volume to, those on the subaerial ERZ. Evidence is presented which suggests that feeder dikes for Puna Ridge eruptions are more thermally viable than those feeding subaerial eruptions, and this difference causes long-lived, large-volume eruptions to be more common on the Puna Ridge than on the subaerial ERZ. This systematic variation in thermal viability may be due to increased dike width for Puna Ridge dikes or increased pressure gradients driving magma flow. Lateral dike emplacement is common to many basaltic systems including on other Hawaiian volcanoes, in Iceland and at mid-ocean ridges. The systematic trend inferred for the ERZ of Kilauea implies that in the other systems large-volume eruptions may also be more common at great distances than they are close to the magma centre.  相似文献   

10.
Abstract

River water temperature regimes are expected to change along with climate over the next decades. This work focuses on three important salmon rivers of eastern Canada, two of which warm up most summers to temperatures higher than the Atlantic salmon lethal limit (>28°C). Water temperature was monitored at 53 sites on the three basins during 2–18 summers, with about half of these sites either known or potential thermal refugia for salmon. Site-specific statistical models predicting water temperature, based on 10 different climate scenarios, were developed in order to assess how many of these sites will remain cool enough to serve as refugia in the future (2046–2065). The results indicate that, while 19 of the 23 identified refugia will persist, important increases in the occurrence and duration of temperature events in excess of 24°C and 28°C, respectively, in the mainstems of the rivers, will lead to higher demands for thermal refugia in the salmonid populations.
Editor Z.W. Kundzewicz; Associate editor T. Okruszko  相似文献   

11.
The pelagic ciliate communities from 58 north German lakes differing in their origin (natural lakes and artificial ponds), morphology (from shallow ponds with a maximum depth of below 0.5 m to relatively deep lakes with a maximum depth of more than 10 m, surface areas from below 10 ha to more than 100 ha), trophic state (from mesotrophic to hypertrophic) and salinity (freshwater lakes and brackish water lakes) are described and compared at species level. Each lake was comprehensively sampled quarterly in the years 1996 and 1997, respectively. Applying a quantitative protargol stain, about 140 ciliate species could be identified and quantified in all investigated lakes. 35 species, mainly members of the Prostomatida and Oligotrichida, were found commonly in all types of lakes at all seasons and dominated the pelagic ciliate communities. 3 species were common in freshwaters, but never occurred in brackish lakes. In the brackish waters a mixture of common freshwater species and marine species was found with 13 species exclusively occurring in brackish waters. Lowest ciliate cell numbers were observed for deep freshwater lakes, highest cell numbers were determined for brackish waters. Highest species richness was found in artificial peat ponds with an average of 24 pelagic ciliate species in spring samples. The range of occurrence for the identified species was wide for most common species. However, the influence of some environmental factors could be enlightened.  相似文献   

12.
Coastal cliff erosion represents a significant geohazard for people and infrastructure. Forecasting future erosion rates is therefore of critical importance to ensuring the resiliency of coastal communities. We use high precision monitoring of chalk cliffs at Telscombe, UK to generate monthly mass movement inventories between August 2016 and July 2017. Frequency–magnitude analysis of our inventories demonstrate negative power law scaling over 7 orders of magnitude and, for the first time, we report statistically significant correlations between significant wave height (Hs) and power law scaling coefficients (r2 values of 0.497 and 0.590 for β and s respectively). Applying these relationships allows for a quantitative method to predict erosion at the site based on Hs probabilities and sea level forecasts derived from the UKCP09 medium emission climate model (A1B). Monte‐Carlo simulations indicate a range of possible erosion scenarios over 70 years (2020–2090) and we assess the impact these may have on the A259 coastal road which runs proximal to the cliffs. Results indicate a small acceleration in erosion compared with those based on current conditions with the most likely scenario at the site being 21.7 m of cliff recession by 2090. However, low‐probability events can result in recession an order of magnitude higher in some scenarios. In the absence of negative feedbacks, we estimate an ~11% chance that the A259 will be breached by coastal erosion by 2090. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
华北克拉通破坏存在空间上的差异性,至今其内在的动力学机制仍存在较大的争议,这种差异性在岩石圈热结构上必然有所表现.广义上岩石圈热结构包括热流结构、温度场结构和热岩石圈厚度,是揭示岩石圈演化及其内在动力学过程的重要基础.基于二维地震剖面和大地热流数据,建立二维稳态热传导有限元模型,对华北克拉通东部岩石圈热结构进行模拟计算并与西部进行对比分析,在此基础上对比热岩石圈与地震岩石圈厚度差异的变化.结果显示,华北克拉通东、西部岩石圈热结构有着较为明显的差异,地幔热流值波动范围分别在24~44/20.5~24.5 mW·m-2,壳幔比1.61~0.70/1.84~1.51,以1300℃等温线计算得到的热岩石圈厚度变化范围在75~139 km/128~162 km.华北克拉通东部相对西部有着较高的深部地幔热流值和较小的地震/热岩石圈厚度差异,这可能意味着东部软流圈地幔有效黏度相比西部低,估算差异可达2~3个数量级.  相似文献   

14.
The formation of ice cover on lakes alters heat and energy transfer with the water column. The fraction of surface area covered by ice and the timing of ice-on and ice-off therefore affects hydrodynamics and the seasonal development of stratification and related ecosystem processes. Multi-year model simulations of temperate lake ecosystems that freeze partially or completely therefore require simulation of the formation and duration of ice cover. Here we present a multi-year hydrodynamic simulation of an alpine lake with complex morphology (Lower Lake Constance, LLC) using the three-dimensional (3D) model Aquatic Ecosystem Model (AEM3D) over a period of 9 years. LLC is subdivided into three basins (Gnadensee, Zeller See and Rheinsee) which differ in depth, morphological features, hydrodynamic conditions and ice cover phenology and thickness. Model results were validated with field observations and additional information on ice cover derived from a citizen science approach using information from social media. The model reproduced the occurrence of thin ice as well as its inter-annual variability and differentiated the frequency and extent of ice cover between the three sub-basins. It captured that full ice cover occurs almost each winter in Gnadensee, but only rarely in Zeller See and Rheinsee. The results indicate that the 3D model AEM3D is suitable for simulating long-term dynamics of thin ice cover in lakes with complex morphology and inter-annual changes in spatially heterogeneous ice cover.  相似文献   

15.
溶解氧(DO)对湖库的生物地球化学循环、生态系统结构和功能起着至关重要的作用,也是评价水生态系统的敏感性指标.DO浓度的降低对水生态有着重要影响.结果显示,多数湖库在夏秋季热分层期间,由于温跃层较高的密度梯度、藻类衰亡和有机质的降解以及微生物的呼吸作用会消耗大量的DO,从而形成温跃层溶解氧最小值(MOM),甚至在该区域诱发厌氧状态.MOM可驱动浮游动物日夜垂向迁移,影响无脊椎动物和鱼类分布迁移模式及种群结构,破坏水体生态分布,致使生物非正常死亡,危害水体生态安全;此外,MOM也可诱发温跃层温室气体(CH4和CO2)大量形成,影响水源地水质,成为湖库生态安全隐患.目前对MOM所导致的生态风险和水质问题以及最终的控制方法已有较多研究成果,但缺乏综述性的研究.本文从MOM研究历史、研究方法、形成原因、生态风险及控制方法等方面进行论述,并展望今后研究热点,旨在推进MOM的相关研究进展,保障湖库生态平衡和供水水质安全.  相似文献   

16.
Submarine groundwater discharge (SGD) introduces solute and nutrients to the global oceans, resulting in considerable nutrient cycling and dynamics in the coastal areas. We have conducted high‐resolution, spatio‐temporal, lunar tidal cycle patterns and variability of discharged solute/nutrient assessment to get an overview of seasonal nutrient flux to the Bay of Bengal in eastern parts of the Indian subcontinent. Whereas the premonsoon season SGD was found to be dominant in the marine influence (M‐SGD), the postmonsoon season was found to be predominated by the terrestrial component of SGD (T‐SGD), extending from coast to near offshore. The solute fluxes and redox transformation were found to be extensively influenced by tidal and diurnal cycles, overlapping on seasonal patterns. We have assessed the possible role of SGD‐associated solute/nutrient fluxes and their discharge mechanisms, and their associated temporal distributions have severe implications on the biological productivity of the Bay of Bengal. The estimated annual solute fluxes, using the average end‐member concentration of the SGD‐associated nutrients, were found to be 240 and 224 mM·m?2·day?1 for NO3? and Fetot, respectively. Together with huge freshwater flux from the Himalayan and Peninsular Indian rivers, the SGD has considerable influence on the bay water circulation, stratification, and solute cycling. Thus, the observation from this study implies that SGD‐associated nutrient flux to the Bay of Bengal may function as a nutrient sink, which might influence the long‐term solute/nutrient flux along the eastern coast of India.  相似文献   

17.
Tidal marshes form at the confluence between estuarine and marine environments where tidal movement regulates their developmental processes. Here, we investigate how the interplay between tides, channel morphology, and vegetation affect sediment dynamics in a low energy tidal marsh at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island. Poplar Island is an active restoration site where fine-grained material dredged from navigation channels in the upper Chesapeake Bay are being used to restore remote tidal marsh habitat toward the middle bay (Maryland, USA). Tidal currents were measured over multiple tidal cycles in the inlets and tidal creeks of one marsh at Poplar Island, Cell 1B, using Acoustic Doppler Current Profilers (ADCP) to estimate water fluxes throughout the marsh complex. Sediment fluxes were estimated using acoustic backscatter recorded by ADCPs and validated against total suspended solid measurements taken on site. A high-resolution geomorphic survey was conducted to capture channel cross sections and tidal marsh morphology. We integrated simple numerical models built in Delft3d with empirical observations to identify which eco-geomorphological factors influence sediment distribution in various channel configurations with differing vegetative characteristics. Channel morphology influences flood-ebb dominance in marshes, where deep, narrow channels promote high tidal velocities and incision, increasing sediment suspension and reducing resilience in marshes at Poplar Island. Our numerical models suggest that accurately modelling plant phenology is vital for estimating sediment accretion rates. In-situ observations indicate that Poplar Island marshes are experiencing erosion typical for many Chesapeake Bay islands. Peak periods of sediment suspension frequently coincide with the largest outflows of water during ebb tides resulting in large sediment deficits. Ebb dominance (net sediment export) in tidal marshes is likely amplified by sea-level rise and may lower marsh resilience. We couple field observations with numerical models to understand how tidal marsh morphodynamics contribute to marsh resilience. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
The evolutions of diatom floras and the total phosphorous (TP) concentrations in the historical period were reconstructed for two lakes, Longgan and Taibai in the middle Yangtze River,based on high resolutional fossil diatom study from two sediment cores and an established regional diatom-TP transfer function. The TP concentration in Longgan Lake changed slightly in the range of 36-62 μg/L and kept its middle trophic level in the past 200 years. The changes of diatom assemblages reflect a macrophyte-dominated history of the lake. During the nineteenth century, the lake TP concentration increased comparatively, corresponding to the increase in abundance of benthic diatoms. The progressive increase of epiphytic diatoms since the onset of the twentieth century indicates the development of aquatic plants, coinciding with the twice drops of water TP level. The TP concentration in Taibai Lake kept a stable status about 50 μg/L before 1953 AD, while diatoms dominated by facultative planktonic Aulacoseira granulata shifted quickly to epiphytic diatom species, indicating a rapid expansion of aquatic vegetation. During 1953-1970 AD, the coverage of aquatic plants decreased greatly inferred by the low abundance of epiphytic diatoms as well as declined planktonic types, and the reconstructed TP concentration shows an obvious rising trend firstly, suggesting the beginning of the lake eutrophication. The lake was in the eutrophic condition after 1970, coinciding with the successive increase of planktonic diatoms. The comparison of the two lakes suggests the internal adjustment and purification function of aquatic plants for nutrients in water. The discrepancy of TP trends in the two lakes after 1960 reflects two different patterns of lake environmental response to human disturbance. Sediments in Taibai Lake clearly recorded the process of lake ecological transformation from the macrophyte-dominated stage to the algae-dominated stage. The limits of TP concentration (68-118 μg/L) in the transitional state can be considered as the critical value between the two stable ecosystems. Further work will be necessary to provide more evidence from the sediments in more eutrophic lakes for the primary inference. The reconstructive TP level and the inference of aquatic plants from fossil diatoms in different lakes, as well as their comparison provide a scientific basis for ecological restoration of eutrophic lakes in research regions.  相似文献   

19.
The use of the term “biodiversity” in the aquatic literature has expanded rapidly during the last years. In this paper, we address the influence of the geographic, social and economic characteristics of a country in the published effort as it appears in the bibliography from the corresponding author of each publication. Social and geographic characteristics are expressed by coast length, population, the population living a maximum of 100 km from the coast, population density, total fish catches, and continental shelf surface. Economic characteristics are expressed by gross national product, gross national product per capita, footprint and ecological deficit. Our results showed that the majority of the published aquatic biodiversity research was in aquatic ecology journals. The number of publications referring to marine biodiversity per country of origin of the corresponding author was significantly correlated to the length of coastline, fisheries production, gross national product, population density and other economic, social and geographic characteristics of the country. Most of the highly publishing countries are developed countries with an ecologically harmful lifestyle. The research per country carried out in non-adjacent to the country sea zones remains low.  相似文献   

20.
Pool–riffle sequences (PRSs) are periodic river‐bed morphologies with wavelengths several times the channel width. Causes of PRS formation and maintenance are not clearly understood, which may limit the effectiveness of protection and rehabilitation measures. Some confusion has existed about whether the PRS morphology is the same as or distinct from alternate bars. In this paper we investigate whether the bar instability forming alternate bars also contributes to PRS formation, periodicity and maintenance. This was unclear because bar instability occurs only when the ratio of channel width/depth exceeds a critical value, generally understood to be approximately 10, which is larger than the width‐to‐depth ratio of many PRSs. A mobile‐bed physical model is used to test whether bar instability occurs in channels characteristic of PRS morphology, with low width‐to‐depth ratio, and high relative roughness. The physical model was scaled from a prototype PRS in a gravel and cobble bed river. Alternate bars formed in the model at channel width‐to‐depth ratios as low as 3·8. The wavelength of the alternate bars formed was generally 2·2–5 times channel width, which was similar to the prototype PRS. Therefore, bar instability can occur in virtually all PRSs, and it contributes to the widespread formation of periodic PRS morphology. The model showed that maintenance of the bar height in the prototype PRS also depends on variations in channel width. It is concluded that periodic PRSs are formed and maintained by the interaction between bar instability, and flow deflections associated with variations in channel geometry such as width variation. Resonance between bar instability and three‐dimensional bed forms such as alternate bars and variations in channel geometry. Variations in channel geometry are also important in determining the location and dimensions of individual pools and bars. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号