首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Composition and accumulation rates of organic carbon in Holocene sediments provided data to calculate an organic carbon budget for the Laptev Sea continental margin. Mean Holocene accumulation rates in the inner Laptev Sea vary between 0.14 and 2.7 g C cm−2 ky−1; maximum values occur close to the Lena River delta. Seawards, the mean accumulation rates decrease from 0.43 to 0.02 g C cm−2 ky−1. The organic matter is predominantly of terrigenous origin. About 0.9 × 106 t year−1 of organic carbon are buried in the Laptev Sea, and 0.25 × 106 t year−1 on the continental slope. Between about 8.5 and 9 ka, major changes in supply of terrigenous and marine organic carbon occur, related to changes in coastal erosion, Siberian river discharge, and/or Atlantic water inflow along the Eurasian continental margin. Received: 26 October 1998 / Revision accepted: 15 June 1999  相似文献   

2.
Information on grain-size distribution and total organic carbon (TOC) content of surface sediment and cores from the Bornholm Basin, together with dating of cores using the 210Pb method and shallow seismic chirp profiling, has been analysed to elucidate long-term accumulation patterns. The presence of non-depositional areas with lag sediments and low TOC content below the wave base indicates that inflows of dense bottom water originating in the North Sea and associated near-bottom currents have strong influence on the depositional patterns of bulk sediment and organic matter in this deep basin. The general fining in mean grain size towards the northeast corresponds to the direction of inflow currents and prevailing winds. Recent and previously found 210Pb-based mean accumulation rates vary greatly within the basin, between 129 and 1,144 g m−2 year−1. The accumulation rate may vary by a factor of three even between stations located only 3–4 km apart. Rates recorded close to a seismic profile are consistent with the variation in Holocene sediment thickness. This variation reflects a depositional system controlled by near-bottom inflow currents, consisting of a large-scale channel and a wedge-formed sediment package. The spatial variation in TOC content depends partly on water depth, presumably due to generally poorer degradation in the deepest part of the basin because of less frequent oxygen supply by inflow water. Moreover, there is a tendency of higher TOC contents in the southern part of the basin, which may be due to the input of sediments originating from the Oder River. Compared to values for the central, deep Baltic Sea, TOC contents show lower values of 4–6% and insignificant temporal variations. This may be due to the Bornholm Basin being located much closer to the source of the more oxic inflow water, resulting in more favourable degradation conditions.  相似文献   

3.
This paper reports all available geochemical data on sediments and pore waters from the Xisha Trough on the northern continental margin of the South China Sea. The methane concentrations in marine sediments display a downhole increasing trend and their carbon isotopic compositions (δ 13C = −25 to −51‰) indicate a thermogenic origin. Pore water Cl concentrations show a range from 537 to 730 mM, and the high Cl samples also have higher concentrations of Br, Na+, K+, and Mg2+, implying mixing between normal seawater and brine in the basin. The SO4 2− concentrations of pore waters vary from 19.9 to 36.8 mM, and show a downhole decreasing trend. Calculated SMI (sulfate-methane interfaces) depths and sulfate gradients are between 21 and 47 mbsf, and between −0.7 and −1.7 mM/m, respectively, which are similar to values in gas hydrate locations worldwide and suggest a high methane flux in the basin. Overall, the geochemical data, together with geological and geophysical evidence, such as the high sedimentation rates, high organic carbon contents, thick sediment piles, salt and mud diapirs, active faulting, abundant thermogenic gases, and occurrence of huge bottom simulating reflector (BSR), are suggestive of a favorable condition for occurrence of gas hydrates in this region.  相似文献   

4.
Organic carbon content and sedimentation rate data may give information about the depositional environment of marine sediments. For sediments deposited under oxic deep-water conditions, a positive correlation exists between organic carbon content and sedimentation rate, with very high organic carbon values and high sedimentation rates typical for coastal upwelling areas. Under anoxic deep-water conditions, no such correlation exists. This relationship between (marine) organic carbon and sedimentation rate (the “OCSR diagram”) has been used to characterize the depositional environments of Deep-Sea Drilling Project/Ocean Drilling Program (DSDP/ODP) sediments of Late Cenozoic and Cretaceous age. Furthermore, the results are compared with organic carbon/sulfur data.  相似文献   

5.
Approximately 12,000 km2 of acoustic backscatter imagery (sidescan) data and swath bathymetry data were collected jointly by Republic of Korea (ROK) Navy, the Naval Oceanographic Office (NAVOCEANO), Hawaii Mapping Research Group (HMRG) and the Naval Research Laboratory (NRL) in the East Sea (Sea of Japan) in 1995. Preliminary analysis of these data have revealed a large network of canyons with well-developed fan deposits and slumps which were not previously mapped. Also identified is a 1400 km2 area occupied by more than 300 circular, low-backscatter features ca. 50–1000 m in diameter which are interpreted to be pockmarks or mounds created by escaping methane gas, methane-rich porewater and mud.Indirect evidence for the probable existence of methane gas hydrate include the five following observations: (1) Core samples in the region contain high levels of organic carbon (>7%), degassing cracks caused by gas expansion, and emit a strong H2S odor. (2) Extensive canyon formation and slumping may have occurred as the result of the destabilization of sediments due to gas accumulation. (3) Several of the high backscatter objects occur at the crest of a bathymetric high under which gas could be accumulating and periodically releasing in a manner similar to that documented on the Vestnesa Ridge in the Norwegian-Greenland Sea. (4) Pockmark-like features have been identified in 3.5 kHz records on the northern edge of the Ulleung Basin. (5) Drill core samples from the morphologically similar Yamato Basin, which is adjacent to the Ulleung Basin, have positively identified methane and numerous gas voids in unconsolidated sediments. No bottom simulating reflector (BSR) has been identified in seismic reflection profiles collected across the slope in Ulleung Basin.  相似文献   

6.
《Marine Chemistry》2005,93(2-4):159-177
Sediment core samples were collected from two sites in the lower Mississippi River, an oxic shelf site and a hypoxic shelf site (in September 1998 and July 1999), and from a cross-shelf transect (in April 2000), to examine the differential effects of redox and sedimentation rate on carbon decay dynamics in a river-dominated margin. Downcore distribution of pigments, bulk organic carbon and nitrogen, and radioactive isotopes (210Pb, 7Be) were used to evaluate the decomposition and preservation of pigments and bulk organic carbon. The distinctly different sedimentary regimes and dynamic nature of the LA shelf limit the application of diagenetic models. Sedimentation processes in the lower Mississippi River and oxic shelf sites were significantly impacted by the river discharge. In areas with low sedimentation, the depth of the surface mixed layer fluctuated with seasonal variation of weather forcing. It was observed that pigment decay rate constants in the mixed layer (7.52 year−1 for chlorophyll-a) were greater than those in the accumulation layer (0.14–0.22 year−1 for chlorophyll-a) by 1–2 orders of magnitude. This suggests that enhanced decomposition of reactive organic carbon occurred in the mixed layer at locations with low sedimentation rates—due to higher decay rates. Conversely, at locations with high sedimentation rates (>10 cm year−1), the reactive carbon pool was rapidly buried below the mixed layer. The surface mixed layer likely worked as a biogeochemical reactor receiving high inputs of phytodetritus, supported by an active microbial community. We propose that despite the frequency of occurrence of bottom water hypoxia on the Louisiana shelf, sedimentation rate and lability of organic matter are more important in controlling the preservation of organic carbon.  相似文献   

7.
Natural marine gas hydrate was discovered in Korean territorial waters during a 2007 KIGAM cruise to the central/southwestern Ulleung Basin, East Sea. The first data on the geochemical characterization of hydrate-bound water and gas are presented here for cold seep site 07GHP-10 in the central basin sector, together with analogous data for four sites (07GHP-01, 07GHP-02, 07GHP-03, and 07GHP-14) where no hydrates were detected in other cores from the central/southwestern sectors. Hydrate-bound water displayed very low concentrations of major ions (Cl, SO42−, Na+, Mg2+, K+, and Ca2+), and more positive δD (15.5‰) and δ18O (2.3‰) signatures compared to seawater. Cl freshening and more positive isotopic values were also observed in the pore water at gas hydrate site 07GHP-10. The inferred sulfate–methane interface (SMI) was very shallow (<5 mbsf) at least at four sites, suggesting the widespread occurrence of anaerobic oxidation of methane (AOM) at shallow sediment depths, and possibly high methane flux. Around the SMI, pore water alkalinity was very high (>40 mM), but the carbon isotopic ratios of dissolved inorganic carbon (δ13CDIC) did not show minimum values typical of AOM. Moreover, macroscopic authigenic carbonates were not observed at any of the core sites. This can plausibly be explained by carbon with high δ13C values diffusing upward from below the SMI, increasing alkalinity via deep methanogenesis and eventually escaping as alkalinity into the water column, with minor precipitation as solid phase. This contrasts, but is not inconsistent with recent reports of methane-fuelled carbonate formation at other sites in the southwestern basin sector. Methane was the main hydrocarbon component (>99.85%) of headspace, void, and hydrate-bound gases, C1/C2+ ratios were at least 1,000, and δ13CCH4 and δDCH4 values were in the typical range of methane generated by microbial reduction of CO2. This is supported by the δ13CC2H6 signatures of void and hydrate-bound gases, and helps clarify some contradictory interpretations existing for the Ulleung Basin as a whole. In combination, these findings suggest that deep biogenic gas and pore waters migrate upward through pathways such as hydrofractures, and measurably influence the shallow carbon cycle. As a result, cation-adjusted alkalinity/removed sulfate diagrams cannot always serve to estimate the degree of alkalinity produced by sulfate reduction and AOM in high methane flux areas.  相似文献   

8.
Sedimentation rates in ten sediment cores from Hiroshima Bay in the Seto Inland Sea of Japan were determined with the |2210|0Pb technique, and heavy metals were analyzed. The sedimentation rates vary from 0.18 to 0.33 g cm|2-2|0 yr|2-1|0. The highest sedimentation rates were observed in the northern part of the bay at the mouth of Ota River, while lower sedimentation rates not more than 0.20 g cm−2 yr−1 were observed at stations close to narrow water-ways, or where water depth was shallow. The contents of copper and zinc in the sediment cores began to increase around 1930 as a result of increased human activity, and have remained almost unchanged since 1970 possibly because of regulation of pollutant discharge. The natural background values of copper and zinc in the sediment of this bay range from 16 to 27 mgkg−1 and 70 to 105 mg kg−1, respectively. The total amounts of anthropogenic copper and zinc deposited in the sediments since about 1930 are estimated to be 0.5–2.7 ton km−2 and 2.2–14.5 ton km−2, respectively. At the present-day, the anthropogenic loads of copper and zinc to the sediments of the whole bay are 26 ton yr−1 and 183 ton yr−1, and these values constitute 39% and 48% of the total sedimentary loads at the present-day, respectively.  相似文献   

9.
De-embankment in the salt marshes of the island of Langeoog was carried out in 2004, thereby inducing an artificial transgression within an area of 2.2 km2. Material from three suspended matter traps (SMTs) located along a N–S transect was collected monthly between January 2006 and February 2007. Besides geochemical (major and trace elements) and grain-size analyses, the duration and height of water cover were continuously measured by pressure gauges during the sampling period at two sites, thus revealing inundation frequency (max. 280 year−1) and level (max. 2.4 m). Generally, the silt-dominated SMT material exhibits a geochemical composition similar to that of suspended particulate matter from the adjacent Wadden Sea. However, distinctly increasing enrichments of TOC, P, Mn and Mo from the shoreline towards the higher salt marsh clearly indicate fractionation processes during material transport. Geochemical comparison with older Holocene coastal deposits reveals a mixture of brackish and tidal flat sediments, thus reflecting an early stage of sea-level rise and the development from a terrestrial towards a marine-dominated system. Sedimentation rates are higher than the local sea-level rise, as revealed by vertical salt marsh growth. Storm surges deliver the highest amounts of sediment and play an important role in salt marsh accumulation within the study area. Average accumulation rates of TOC (780 t year−1), P (54 t year−1) and Mn (5.2 t year−1) in the de-embanked area suggest that the former sand-dominated sediments currently receive significant amounts of reactive organic-rich material, thus fostering biogeochemical cycling.  相似文献   

10.
Recent efforts to construct global ocean budgets for carbon have recognized the importance of continental margins. In this study, we constructed budgets for the Strait of Georgia, a temperate, North American west coast basin that receives the inflow of one of the world's major rivers. Drawing from published and unpublished data, we have estimated the magnitude of the various sources and sinks of fresh water, sediment and organic carbon.The Fraser River is the dominant source of fresh water and particles to the strait, contributing approximately 73% of the 158×109 m3 year−1 of water and 64% of the 30×109 kg year−1 of particles. Other rivers supply most of the remainder, while rain, groundwater and anthropogenic sources of water and particles are negligible in comparison. Fresh water escapes the Strait of Georgia through Juan de Fuca Strait, but particulate inputs are approximately balanced by sedimentation within the greater Strait of Georgia, implying almost complete trapping of particles.Dissolved and particulate organic carbon are derived mainly from in situ primary production (855×106 kg year−1) and from the Fraser River (550×106 kg year−1). Other rivers contribute 200×106 kg year−1 of organic carbon, and anthropogenic sources (ocean dumping, sewage, pulp mills and aquaculture) a further 119×106 kg year−1. Particulate organic carbon is predominantly buried (428×106 kg year−1) or oxidized (90×106 kg year−1) in the sediments of the strait. About 70% of the organic carbon that enters or is produced in the strait is dissolved. Most of the dissolved organic carbon is oxidized within the strait (784×106 kg year−1), but the remainder (400×106 kg year−1) is exported to the Pacific Ocean. Although the particulate organic carbon budget by itself implies net autotrophy, dissolved organic carbon oxidation may make the Strait of Georgia slightly net heterotrophic.  相似文献   

11.
The petrophysical properties of sediment drill core samples recovered from the Sardinian margin and the abyssal plain of the Southern Tyrrhenian Basin were used to estimate the downhole change in porosity and rates of deposition and mass accumulation. We calculated how the deposited material has changed its thickness as a function of depth, and corrected the thickness for the compaction. The corresponding porosity variation with depth for terrigenous and pelagic sediments and evaporites was modelled according to an exponential law. The mass accumulation rate for the Plio-Quaternary is on average 4.8×104 kg m−2 my−1 on the Sardinian margin and for the Pliocene in the abyssal plain. In the latter area, the Quaternary attains its greatest thickness and a mass accumulation rate of 11–40×104 kg m−2 my−1. The basement response to sediment loading was calculated with Airy-type backstripping. On the lower part of the Sardinian margin, the basement subsidence rate due to sediment loading has decreased from a value of 300 m my−1 in the Tortonian and during the Messinian salinity crisis (7.0–5.33 Ma) to about 5 m my−1 in the Plio-Quaternary. In contrast, on the abyssal plain this rate has changed from 8–50 m my−1 during the period 3.6–0.46 Ma, to 95–130 m my−1 since 0.46 Ma, with the largest values in the Marsili Basin. The correlation between age and the depth to the basement corrected for the loading of the sediment in the ocean domain of the Tyrrhenian Basin argues for a young age of basin formation.  相似文献   

12.
The Ulleung Basin is one of three deep basins that are contained within the East/Japan Sea. Current meter moorings have been maintained in this basin beginning in 1996. The data from these moorings are used to investigate the mean circulation pattern, variability of deep flows, and volume transports of major water masses in the Ulleung Basin with supporting hydrographic data and help from a high-resolution numerical model. The bottom water within the Ulleung Basin, which must enter through a constricted passage from the north, is found to circulate cyclonically—a pattern that seems prevalent throughout the East Sea. A strong current of about 6 cms−1 on average flows southward over the continental slope off the Korean coast underlying the northward East Korean Warm Current as part of the mean abyssal cyclonic circulation. Volume transports of the northward East Korean Warm Current, and southward flowing East Sea Intermediate Water and East Sea Proper Water are estimated to be 1.4 Sv (1 Sv=10−6 m3 s−1), 0.8 Sv, and 3.0–4.0 Sv, respectively. Deep flow variability involves a wide range of time scales with no apparent seasonal variations, whereas the deep currents in the northern East Sea are known to be strongly seasonal.  相似文献   

13.
Particulate organic carbon (POC) in surface sediments of the Baltic Sea   总被引:2,自引:2,他引:0  
In this study, particulate organic carbon (POC) contents and their distribution pattern in surficial sediments of the Baltic Sea are presented for 1,471 sampling stations. POC contents range from approx. 0.1% in shallow sandy areas up to 16% in deep muddy basins (e.g. Gotland Basin). Some novel relationships were identified between sediment mass physical properties (dry bulk density (DBD), grain size) and POC levels. Notably, the highest POC concentrations (about 10–17 mg cm–3) occur in sandy mud to mud (60–100% mud content) with intermediate POC contents of about 3–7% and DBDs of 0.1–0.4 g cm–3. Areas with this range in values seem to represent the optimum conditions for POC accumulation in the Baltic Sea. The maximum POC contents (8–16%) are found in fluid mud of the central Baltic Sea characterized by extremely low DBDs (<0.1 g cm–3) and moderate POC concentrations (4–7 mg cm–3). Furthermore, sediment mass accumulation rates (MAR), based on 210Pb and 137Cs measurements and available for 303 sites of the Baltic Sea, were used for assessing the spatial distribution of POC burial rates. Overall, these vary between 14 and 35 g m–2 year–1 in the mud depositional areas and, in total, at least 3.5 (±2.9) Mt POC are buried annually. Distribution patterns of POC contents and burial rates are not identical for the central Baltic Sea because of the low MAR in this area. The presented data characterize Baltic Sea sediments as an important sink for organic carbon. Regional differences in organic carbon deposition can be explained by the origin and transport pathways of POC, as well as the environmental conditions prevailing at the seafloor (morphology, currents, redox conditions). These findings can serve to improve budget calculations and modelling of the carbon cycle in this large brackish-water marginal sea.  相似文献   

14.
A global ocean inverse model that includes the 3D ocean circulation as well as the production, sinking and remineralization of biogenic particulate matter is used to estimate the carbon export flux in the Pacific, north of 10°S. The model exploits the existing large datasets for hydrographic parameters, dissolved oxygen, nutrients and carbon, and determines optimal export production rates by fitting the model to the observed water column distributions by means of the “adjoint method”. In the model, the observations can be explained satisfactorily with an integrated carbon export production of about 3 Gt C yr−1 (equivalent to 3⋅1015 gC yr−1) for the considered zone of the Pacific Ocean. This amounts to about a third of the global ocean carbon export of 9.6 Gt C yr−1 in the model. The highest export fluxes occur in the coastal upwelling region off northwestern America and in the tropical eastern Pacific. Due to the large surface area, the open-ocean, oligotrophic region in the central North Pacific also contributes significantly to the total North Pacific export flux (0.45 Gt C yr−1), despite the rather small average flux densities in this region (13 gC m−2yr−1). Model e-ratios (calculated here as ratios of model export production to primary production, as inferred from satellite observations) range from as high a value as 0.4 in the tropical Pacific to 0.17 in the oligotrophic central north Pacific. Model e-ratios in the northeastern Pacific upwelling regions amount to about 0.3 and are lower than previous estimates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The narrow shelf along the coast of central Vietnam is seasonally supplied by large amounts of sediment from the adjacent mountainous hinterland following monsoonal precipitation. This study examines the fate of these sediments, and their accumulation rates along two transects across the shelf, based on analyses of radionuclides (210Pb, 137Cs), sediment texture and structure, as well as carbonate content. The inner shelf is covered by sands, and probably serves as bypass zone for fine sediments transported offshore. Sediment characteristics suggest that the transport to the mid and outer shelf is related to flood events. Averaged over the last century, the 210Pb-based mud mass accumulation rates on the mid and outer shelf vary between 0.25 g cm −2 and 0.56 g cm −2 year −1 (corresponding to linear sediment accumulation rates of 0.20–0.47 cm year −1). Along with high excess 210Pb inventories, these high accumulation rates suggest a significant sediment depocentre on the mid shelf. The 210Pb-derived sediment accumulation rates were found to be several times higher than 14C-derived rates previously reported for the Holocene, at the same location on the outer shelf. This is probably due to the incompleteness of the Holocene record, and an overestimation of the modern rate. Another explanation would be increased erosion within the rivers’ drainage basins, due to 20th century deforestation. This hypothesis is supported by the difference between recent (less sand, more lithic grains in the sand fraction) and older sediments. In terms of modern sedimentation processes and rates, the central Vietnam shelf, although being a part of a narrow passive continental margin, is similar to active flood-dominated continental margins.  相似文献   

16.
A wide variety of sedimentary subenvironments are found within a 10-km stretch of James River including a flood dominated channel (Rocklanding Channel) and its bank (Rocklanding Shoal), a shoal with a water depth of 1 m separating two channels (Point of Shoals), an ebb-dominated channel (Burwell Bay Channel) and its bank (Burwell Bay Bank) and a tributary (Warwick River). The concentrations of Cs-137, Cu, Pb, Zn and organic carbon in the fine-grained sediments (i.e. < 63 μm) and the amount of fine-grained sediments in eight cores covering these subenvironments were determined. The sedimentation rates, estimated by Cs-137 geochronology, range from 0·4 to > 3 cm year?1. The sedimentation rates in the Burwell Bay region are two or more, times those in the Point of Shoals and in the Rocklanding Channel and Shoal, reflecting the weaker currents in the Burwell Bay region. These sedimentation rates agree well with those obtained independently by measuring changes in the bathymetry of this area between 1873 and 1943. The concentrations of Cs-137, Cu, Pb, Zn and organic carbon in surface sediments vary by a factor of two to three. The concentrations are higher in the Burwell Bay region, probably as a result of the higher rates of accumulation of recently formed sediments in these subenvironments. The inventories of fine-grained sediments and of Cs-137, Cu, Pb, Zn and organic carbon accumulated since 1954 are also up to an order of magnitude higher in the Burwell Bay region. Although the concentrations of fine-grained sediments in three cores obtained in this region are similar, the inventories still vary by a factor of two to three. The inventories of Cs-137, Cu, Pb, Zn, organic carbon and fine-grained sediments correlate well with each other indicating that Cs-137 can be a useful tracer for studying the fate of these metals and organic carbon in estuarine environments. The inhomogeneity of the concentrations and inventories of the different elements along a 10-km segment of a river suggests that a closely-spaced sampling programme is essential for characterizing the sedimentary provinces within an estuary. The concentrations of Cs-137, metals and organic carbon in the coarse-grained sediments (i.e. > 63 μm) are considerably lower than those in fine-grained sediments. Thus, the contribution of coarse-grained sediments to the total inventory of these elements is small.  相似文献   

17.
Box cores were collected close to river mouths along the eastern Brazilian shelf at water depths of 10–30 m. One core was taken from more than 1000 m depth at the shelf slope. 210Pb and 226Ra activities were measured to establish sediment accumulation rates. Seven of the 10 cores exhibited an exponential decrease with depth of excess 210Pb activities. The sediments from the sheltered Sudeste Channel off Caravelas revealed the highest sediment accumulation rate of 0.81 cm yr−1. The sediments at the shelf slope seaward of the Rio Doce revealed the lowest accumulation rate of 0.13 cm yr−1. Sediment accumulation rates increased towards the Caravelas Bank. Current patterns and the morphology of the seabed favor sediment deposition in this area.  相似文献   

18.
 Recent sediment accumulation rates are 18–230 mg cm-2 yr-1 (0.02–0.2 cm yr-1) based on excess 210Pb activity profiles in the southwestern part of the East Sea (Sea of Japan). Assuming no mixing beneath surface mixed layers, 210Pb-derived sediment accumulation rates are 18–32 mg cm-2 yr-1 in the northern part of the Yamato Ridge and the Ulleung Basin, 29–136 mg cm-2 yr-1 in the Korea Plateau, and 230 mg cm-2 yr-1 in the southern shelf. These values generally agree with long-term sedimentation rates estimated from dated ash layers. Received: 6 October 1995 / Revision received: 31 May 1996  相似文献   

19.
Sedimentation rates were determined for the northern Gulf of Mexico margin sediments at water depths ranging from 770 to 3560 m, using radiocarbon determinations of organic matter. Resulting sedimentation rates ranged from 3 to 15 cm/kyr, decreasing with increasing water depth. These rates agree with long-term sedimentation rates estimated previously using stratigraphic methods, and with estimates of sediment delivery rates by the Mississippi River to the northern Gulf of Mexico, but are generally higher by 1–2 orders of magnitude than those estimated by 210Pbxs methods. Near-surface slope sediments from 2737 m water depth in the Mississippi River fan were much older than the rest. They had minimum 14C ages of 16–27 kyr and δ13C values ranging from −24‰ to −26.5‰, indicating a terrestrial origin of organic matter. The sediments from this site were thus likely deposited by episodic mass wasting of slope sediment through the canyon, delineating the previously suggested main pathway of sediment and clay movement to abyssal Gulf sediments.  相似文献   

20.
As a part of the JGOFS synthesis and modeling project, researchers have been working to synthesize the WOCE/JGOFS/DOE/NOAA global CO2 survey data to better understand carbon cycling processes in the oceans. Working with international investigators we have compiled a Pacific Ocean data set with over 35,000 unique samples analyzed for at least two carbon species, oxygen, nutrients, chlorofluorocarbon (CFC) tracers, and hydrographic parameters. We use these data here to estimate in-situ oxygen utilization rates (OUR) and organic carbon remineralization rates within the upper water column of the Pacific Ocean. OURs are derived from the observed apparent oxygen utilization (AOU) and the water age estimates based on CFCs in the upper water and natural radiocarbon in deep waters. The rates are generally highest just below the euphotic zone and decrease with depth to values that are much lower and nearly constant in water deeper than 1200 m. OURs ranged from about 0.02–10 μmol kg−1yr−1 in the upper water masses from about 100–1000 m, and averaged = 0.10 μmol kg−1yr−1 in deep waters below 1200 m. The OUR data can be used to directly estimate organic carbon remineralization rates using the C:O Redfield ratio given in Anderson and Sarmiento (1994). When these rates are integrated we obtain an estimate of 5.3 ± 1 Pg C yr−1 for the remineralization of organic carbon in the upper water column of the Pacific Ocean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号