首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carbon isotopic ratio of atmospheric carbon dioxide at Tsukuba,Japan   总被引:1,自引:0,他引:1  
To find out the secular and seasonal trends of the 13C value and CO2 concentration in the surface air and the determination of the 13C in the atmospheric CO2 collected at Tsukuba Science City was carried out during the period from July 1981 to October 1983. The monthly average of the 13C value of CO2 in the surface air collected at 1400 LMT ranged from -7.52 to \s-8.45 with an average of -7.96±0.25 and the CO2 concentration in the air varied from 334.5 l 1-1 to 359 l 1-1 with an average of 347.2±6.3 l 1-1. The 13C value is high in summer and low in winter and is negatively correlated with the CO2 concentration. In general, the relationship between the 13C and the CO2 concentration is explainable by a simple mixing model of two different constant carbon isotopic species but the relationship does not always follow the model. The correlation between the 13C value and the CO2 concentration is low during the plant growth season and high at other times. The observed negative deviation of the 13C value from the simple mixing model in the plant growth season is partly due to the isotopic fractionation process which takes place in the land biota.  相似文献   

2.
3.
Tropical deforestation and atmospheric carbon dioxide   总被引:4,自引:0,他引:4  
Recent estimates of the net release of carbon to the atmosphere from deforestation in the tropics have ranged between 0.4 and 2.5 × 1015 g yr–1. Two things have happened to require a revision of these estimates. First, refinements of the methods used to estimate the stocks of carbon in the vegetation of tropical forests have produced new estimates that are intermediate between the previous high and low estimates of carbon stocks. When these revised estimates were used here to calculate the emissions of carbon from deforestation, the new range was 1.0–2.0 × 1015 g C.Second, the previous range of estimates of flux was based on rates of deforestation in 1980. Myers' recent estimate of the rates of tropical deforestation in 1989 is about 90% higher than the rates just 10 years ago. When these recent rates were used to calculate the current net flux of carbon to the atmosphere, the range was between 1.6 and 2.7 × 1015 g C.Other uncertainties expanded this range, however, to 1.1–3.6 × 1015 g C yr–1. Three factors contributed about equally to the expanded range: rates of deforestation, the fate of deforested lands (permanent or temporary clearing), and carbon stocks of forests, including anthropogenic reductions of carbon stocks within forests (thinning or degradation).  相似文献   

4.
5.
6.
Diurnal and annual variations of CO2, O3, SO2, black carbon and condensation nuclei and their source areas were studied by utilizing air parcel trajectories and tropospheric concentration measurements at a boreal GAW site in Pallas, Finland. The average growth trend of CO2 was about 2.5 ppm yr−1 according to a 4-yr measurement period starting in October 1996. The annual cycle of CO2 showed concentration difference of about 19 ppm between the summer minimum and winter maximum. The diurnal cycle was most pronounced during July and August. The variation between daily minimum and maximum was about 5 ppm. There was a diurnal cycle in aerosol concentrations during spring and summer. Diurnal variation in ozone concentrations was weak. According to trajectory analysis the site was equally affected by continental and marine air masses. During summer the contribution of continental air increased, although the southernmost influences decreased. During daytime in summer the source areas of CO2 were mainly located in the northern parts of the Central Europe, while during winter the sources were more evenly distributed. Ozone showed similar source areas during summer, while during winter, unlike CO2, high concentrations were observed in air arriving from the sea. Sulfur dioxide sources were more northern (Kola peninsula and further east) and CO2 sources west-weighted in comparison to sources of black carbon. Source areas of black carbon were similar to source areas of aerosols during winter. Aerosol source area distributions showed signs of marine sources during spring and summer.  相似文献   

7.
Directional dependence of horizontal wind direction fluctuations (Σθ) is studied at the coastal site of Madras Atomic Power Project, Kalpakkam with significant inhomogeneity in roughness element distribution around the location of measurement. Σθ is measured by a potentiometric wind vane mounted on a 30 m meteorological tower. Values of Σθ showed as high as threefold variation for the same atmospheric stability depending on the effective roughness length of the upwind sector. Average Σθ values separated for sea- and land-breeze conditions, when correlated with Pasquill stability categories showed a monotonic decrease with increasing stability for land breeze but was found to increase for change from D to F category during sea breezes presumably due to the influence of an internal boundary-layer development.  相似文献   

8.
An in-cloud scavenging case study of the major ions (NH4 +, SO4 2- and NO3 -) determining the cloudwater composition at a mountain site (1620 m.a.s.l.) is presented. A comparison between in-cloud measurements of the cloudwater composition, liquid water content, gas concentrations and aerosol concentrations and pre-cloud gas and aerosol concentrations yields the following results. Cloudwater concentrations resulted from scavenging of about half of the available NH3, aerosol NH4 +, aerosol NO3 -, and aerosol SO4 2-. Approximately a third of the SO2 was scavenged by the cloudwater and oxidized to SO4 2-. Cloud acidity during the first two hours of cloud interception (pH 3.24) was determined mostly by the scavenged gases (NH3, SO2, and HNO3); aerosol contributions to the acidity were found to be small. Observations of gas and aerosol concentrations at three elevations prior to several winter precipitation events indicated that NH3 concentrations are typically half (12–80 %) of the total (gas and aerosol) N (-III) concentrations. HNO3 typically is present at much lower concentrations (1–55 %) than aerosol NO3 -. Concentrations of SO2 are a substantial component of total sulfur, with concentrations averaging 60 % (14–76 %) of the total S (IV and VI).  相似文献   

9.
As part of the second Arctic Gas and Aerosol Sampling Program (AGASP II) continuous measurements of atmospheric aerosol black carbon (BC) were made at the NOAA/GMCC observatory at Barrow, Alaska (71°19N, 156°36W) during the period March 21–April 22, 1986. Black carbon is produced only by incomplete combustion of carbonaceous materials and so is a particularly useful atmospheric indicator of anthropogenic activities. The BC data have been analyzed together with the concurrent measurements of carbon dioxide (CO2), methane (CH4), and condensation nuclei (CN) that are routinely made at the observatory. All four species showed elevated and highly variable concentrations due to local human activities, principally in the township of Barrow, 7 km to the southwest, and at the DEW Line radar installation 1 km to the northwest. We distinguish between those periods of the record that are affected by local activities and those that are not, on the basis of the short-term (periods of up to 1 hour) variability of the continuous CO2 and CN records, with large short-term variabilities indicating local sources. We identified seven periods of time (events) with durations ranging from 13 to 37 hours when the BC, CO2, and CH4 concentrations changed smoothly over time, were highly correlated with each other, and were not influenced by local activities. These events had BC/CO2 ratios in the range (50–103)×10–6. These ratios are dimensionless since we convert the CO2 concentrations to units of ng m–3 of carbon. Such values of BC/CO2 are characteristic of the combustion effluent from large installations burning heavy fuel oil or coal, automobiles, and domestic-scale natural gas usage. We conclude that these events are indicative of air masses that have been polluted with combustion emissions in a distant location and then transported to the Arctic. In the absence of species-selective loss mechanisms, these air masses will maintain their combustion effluent signatures during the transport. The BC/CO2 ratios found for the local combustion activities are consistent with those expected from known combustion processes.  相似文献   

10.
11.
12.
Carbon dioxide (CO2) has been measured at Alert by grab flask sampling since 1975 as part of the World Meteorological Organization's Background Air Pollution Monitoring Program. Deviations of CO2 concentration from the mean annual cycle have previously been attributed to air masses arriving at Alert from the source regions of the industrialized parts of Europe and the Soviet Union. In situ measurements of ambient CO2 and methane (CH4) were made at Alert using an automated gas chromatograph, as part of the Arctic Haze Study during April 1986. The temporal behaviour of CO2 and CH4 during this period was found to be highly correlated with measurements of particulate sulphate and other atmospheric trace species of anthropogenic origin. Examination of calculated air mass back-trajectories provided further evidence that the observed short-term increases in CO2 and CH4 mixing ratios were due to long-range transport from anthropogenic source regions.  相似文献   

13.
Measurements of hydroperoxides (H2O2 and MHP) at ground level were made from 2012 to 2015 in Imizu City, Toyama Prefecture in central Japan. H2O2 and MHP concentrations ranged from 0.01 to 3.5 ppb and from below the level of detection (< 0.01 ppb) to 1.4 ppb, respectively. The concentrations of H2O2 and MHP were high in the summer and low in the winter. The H2O2 concentration was at its maximum in July and August, whereas the concentration of O3 in the daytime was highest in May and June. The ratio of [H2O2]/[SO2] presented clear seasonal variations. Many cases showed the condition of [H2O2] < [SO2], called oxidant limitation especially in the cold months. Hydroperoxide concentrations in the rainwater were also high in the summer. The concentrations of MHP were much lower than those of H2O2 in the rain water. High concentrations of H2O2 (> 2.5 ppb) were detected in the summer during the inflow of air pollution. The concentrations of H2O2 were significantly high in July and August of 2013. The H2O2 was well correlated with the O3 in July and August whereas there was no correlation between O3 and H2O2 in May and June. There was a negative correlation between NOX and H2O2.  相似文献   

14.
15.
16.
Empirical investigations have indicated that projections of future atmospheric carbon dioxide concentrations of a quality quite adequate for practical questions regarding the environmental threat of anthropogenic carbon dioxide emissions and its relationship to energy use policy could be made with the simple assumption that a constant fraction of these emissions would be retained by the atmosphere. By analysis of the structural behavior of equations describing the transfer of carbon and carbon dioxide between their several reservoirs we have been able to demonstrate that this characteristic can be explained to result from approximately linear behavior and exponentially growing carbon dioxide release rates, combined with fitting of carbon cycle model parameters to the last twenty years of observed atmospheric carbon dioxide growth. These conclusions are independent of the details of carbon cycle model structure for projections up to 100 years into the future as long as the growth in atmospheric carbon dioxide release rates is sufficiently high, of the order of 1.5% per annum or more, as referenced to p re-industrial (steady state) conditions. At low rates of growth, when the longer response times of the carbon cycling system become important, for most energy use projections the resultant CO2 induced climate changes are small and the uncertainties in predicted atmospheric carbon dioxide level are thus not important. A possible exception to this condition occurs for scenarios of future fossil fuel use rates designed to avoid atmospheric CO2 levels exceeding a chosen threshold. In this instance details of carbon cycle model structure could significantly affect conclusions that might be drawn concerning future energy use policies; however, it is possible that such a result stems from inappropriate specification of a criterion for an environmental threat, rather than from inherent inadequacy of current carbon cycle models. Recent carbon cycle model developments postulate transfer processes of carbon into the deep ocean, large carbon storage reservoir at rates much higher than in the models we have analysed. If the existence of such mechanisms is confirmed, and they are found to be sufficiently rapid and large, some of our conclusions regarding the use of the constant fractional retention assumption may have to be modified. Currently at the Gas Research Institute, 8600 West Bryn, Mawr Ave., Chicago, IL 60631, U.S.A.  相似文献   

17.
Increasing reliance on natural gas (methane) to meet global energy demands holds implications for atmospheric CO2 concentrations. Analysis of these implications is presented, based on a logistic substitution model viewing energy technologies like biological species invading an econiche and substituting in case of superiority for existing species. This model suggests gas will become the dominant energy source and remain so for 50 years, peaking near 70 percent of world supply. Two scenarios of energy demand are explored, one holding per capita consumption at current levels, the second raising the global average in the year 2100 to the current U.S. level. In the first (efficiency) scenario concentrations peak about 450 ppm, while in the second (long wave) they near 600 ppm. Although projected CO2 concentrations in a methane economy are low in relation to other scenarios, the projections confirm that global climate warming is likely to be a major planetary concern throughout the twenty-first century. A second finding is that data on past growth of world per capita energy consumption group neatly into two pulses consistent with longwave theories in economics.  相似文献   

18.
19.
20.
Summary Four years of measurements (1980–83) of carbon dioxide at the northern coast site, Shibukawa, are presented. The data reveal well defined diurnal and seasonal variations. The amplitude of the daily carbon dioxide variation is about 30 ppm during the colder season (January–March; November–December), and about 60 ppm during the warmer season (April–October). The seasonal variation of daily minimum concentration of carbon dioxide has a maximum in the middle of summer (July–September) and a minimum in the winter months. This variation does not correspond to that expected from vegetation activity. The summer peak in carbon dioxide concentration seems to be inherent features at the coast site, Shibukawa; it is probably due to less activity of the vertical mixing under stable stratification of the air layer prevailing throughout the day. The year-to-year comparison of minimums in the winter months reveals an average annual increase of the carbon dioxide content of 6 ppm/year, which is much greater than 1.5 ppm/year observed in the troposphere over Japan [1]. This indicates that the carbon dioxide concentration and its variations at Shibukawa station represent the local scale values rather than the large scale one. The horizontal distribution of carbon dioxide concentration, measured over sea surface near Shibukawa station, also suggests the existence of many patches of high concentration of carbon dioxide due to the local point sources related to the human activity such as ships and industries distributed at the coast site.
Variationen des atmosphärischen CO2 bei Shibukawa im Küstengebiet des Inlandsees Seto in Japan
Zusammenfassung Es werden Ergebnisse über Tages- und Jahresgänge von vierjährigen Messungen (1980–83) des CO2 bei Shibukawa an der nördlichen Küste des Sees vorgelegt. Die Amplitude des Tagesganges beträgt in der kalten Jahreszeit ungefähr 30 ppm und in der warmen Jahreszeit ungefähr 60 ppm. Im Jahresgang des täglichen Minimums des CO2 fällt das Maximum auf den Sommer und das Minimum auf Wintermonate. Dies entspricht nicht der aus der Aktvität der Vegetation zu erwartenden Variation. Das Sommermaximum scheint eine Besonderheit der Lage von Shibukawa an der Küste zu sein und ist wahrscheinlich auf die zu geringe vertikale Durchmischung bei der tagsüber dort vorherrschenden stabilen Schichtung zurückzuführen. Der Vergleich der Minima der Wintermonate von Jahr zu Jahr läßt eine Zunahme um 6 ppm pro Jahr erkennen, die bedeutend größer ist als die Zunahme um 1,5 ppm pro Jahr in der Troposphäre über Japan [ 1 ]. Dies weist darauf hin, daß die CO2-Konzentration und ihre Variationen in Shibukawa eher lokale als großräumige Werte darstellen.Die über der Seeoberfläche in der Nähe von Shibukawa gemessene Verteilung der CO2-Konzentrationen zeigt viele Stellen mit hoher CO2-Konzentration, die auf lokale Punktquellen menschlicher Aktivität wie auf Schiffe und auf an der Küste verteilte Industrien hinweisen.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号