首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The Sarikavak Tephra from the central Galatean Volcanic Province (Turkey) represents the deposit of a complex multiple phase plinian eruption of Miocene age. The eruptive sequence is subdivided into the Lower-, Middle-, and Upper Sarikavak Tephra (LSKT, MSKT, USKT) which differ in type of deposits, lithology and eruptive mechanisms.The Lower Sarikavak Tephra is characterised by pumice fall deposits with minor interbedded fine-grained ash beds in the lower LSKT-A. Deposits are well stratified and enriched in lithic fragments up to >50 wt% in some layers. The upper LSKT-B is mainly reversely graded pumice fall with minor amounts of lithics. It represents the main plinian phase of the eruption. The LSKT-A and B units are separated from each other by a fine-grained ash fall deposit. The Middle Sarikavak Tephra is predominantly composed of cross-bedded ash-and-pumice surge deposits with minor pumice fall deposits in the lower MSKT-A and major pyroclastic flow deposits in the upper MSKT-B unit. The Upper Sarikavak Tephra shows subaerial laminated surge deposits in USKT-A and subaqueous tephra beds in USKT-B.Isopach maps of the LSKT pumice fall deposits as well as the fine ash at the LSKT-A/B boundary indicate NNE–SSW extending depositional fans with the source area in the western part of the Ovaçik caldera. The MSKT pyroclastic flow and surge deposits form a SW-extending main lobe related to paleotopography where the deposits are thickest.Internal bedding and lithic distribution of the LSKT-A result from intermittent activity due to significant vent wall instabilities. Reductions in eruption power from (partial) plugging of the vent produced fine ash deposits in near-vent locations and subsequent explosive expulsion of wall rock debris was responsible for the high lithic contents of the lapilli fall deposits. A period of vent closure promoted fine ash fall deposition at the end of LSKT-A. The subsequent main plinian phase of the LSKT-B evolved from stable vent conditions after some initial gravitational column collapses during the early ascent of the re-established eruption plume. The ash-and-pumice surges of the MSKT-A are interpreted as deposits from phreatomagmatic activity prior to the main pyroclastic flow formation of the MSKT-B.  相似文献   

2.
The 26.5 ka Oruanui eruption, from Taupo volcano in the central North Island of New Zealand, is the largest known ‘wet’ eruption, generating 430 km3 of fall deposits, 320 km3 of pyroclastic density–current (PDC) deposits (mostly ignimbrite) and 420 km3 of primary intracaldera material, equivalent to 530 km3 of magma. Erupted magma is >99% rhyolite and <1% relatively mafic compositions (52.3–63.3% SiO2). The latter vary in abundance at different stratigraphic levels from 0.1 to 4 wt%, defining three ‘spikes’ that are used to correlate fall and coeval PDC activity. The eruption is divided into 10 phases on the basis of nine mappable fall units and a tenth, poorly preserved but volumetrically dominant fall unit. Fall units 1–9 individually range from 0.8 to 85 km3 and unit 10, by subtraction, is 265 km3; all fall deposits are of wide (plinian) to extremely wide dispersal. Fall deposits show a wide range of depositional states, from dry to water saturated, reflecting varied pyroclast:water ratios. Multiple bedding and normal grading in the fall deposits show the first third of the eruption was very spasmodic; short-lived but intense bursts of activity were separated by time breaks from zero up to several weeks to months. PDC activity occurred throughout the eruption. Both dilute and concentrated currents are inferred to have been present from deposit characteristics, with the latter being volumetrically dominant (>90%). PDC deposits range from mm- to cm-thick ultra-thin veneers enclosed within fall material to >200 m-thick ignimbrite in proximal areas. The farthest travelled (90 km), most energetic PDCs (velocities >100 m s−1) occurred during phase 8, but the most voluminous PDC deposits were emplaced during phase 10. Grain size variations in the PDC deposits are complex, with changes seen vertically in thick, proximal accumulations being greater than those seen laterally from near-source to most-distal deposits. Modern Lake Taupo partly infills the caldera generated during this eruption; a 140 km2 structural collapse area is concealed beneath the lake, while the lake outline reflects coeval peripheral and volcano–tectonic collapse. Early eruption phases saw shifting vent positions; development of the caldera to its maximum extent (indicated by lithic lag breccias) occurred during phase 10. The Oruanui eruption shows many unusual features; its episodic nature, wide range of depositional conditions in fall deposits of very wide dispersal, and complex interplay of fall and PDC activity.  相似文献   

3.
New data extend our understanding of the 1912 eruption, its backfilled vent complex at Novarupta, and magma-storage systems beneath adjacent stratovolcanoes. Initial Plinian rhyolite fallout is confined to a narrow downwind sector, and its maximum thickness may occur as far as 13 km from source. In contrast, the partly contemporaneous rhyolite-rich ash flows underwent relatively low-energy emplacement, their generation evidently being decoupled from the high column. Flow veneers 1–13 m thick on near-vent ridge crests exhibit a general rhyolite-to-andesite sequence like that of the much thicker valley-confined ignimbrite into which they merge downslope. Lithics in both the initial Plinian and the ignimbrite are predominantly fragments of the Jurassic Naknek Formation, which extends from the surface to a depth of ca. 1500 m. Absence of lithics from the underlying sedimentary section limits to < 1.5 km the fragmentation level and the structural depth of the vent, which is thought to be funnel-shaped, flaring shallowly to a surface diameter of 2 km. Overlying the ignimbrite are layers of Plinian dacite fallout, > 100 m thick near source and 10 m thick 3 km away, which dip back into an inner vent <0.5 km wide, nested inside the earlier vent funnel of the ignimbrite. The dacite fallout is poor in Naknek lithics but contains abundant fragments of vitrophyre, most of which was vent-filling, densely welded tuff reejected during later phases of the 3-day eruption. Adjacent to the inner vent, a 225-m-high asymmetrical accumulation of coarse near-vent ejecta is stratigraphically continuous with the regional dacite fallout. Distensional faulting of its crest may reflect spreading related to compaction and welding. Nearby andesite-dacite stratovolcanoes, i.e., Martin, Mageik, Trident, and Katmai, display at least 12 vents that define a linear volcanic front trending N65°E. The 1912 vent and adjacent dacite domes are disposed parallel to the front and ca. 4 km behind it. Mount Griggs, 10 km behind the front, is more potassic than other centers, taps isotopically more depleted source materials, and reflects a wholly independent magmatic plumbing system. Geochemical differences among the stratovolcanoes, characteristically small eruptive volumes ( < 0.1 to 0.4 km3), and the dominance of andesite and low-SiO2 dacite suggest complex crustal reservoirs, not large integrated magma chambers. Linear fractures just outside the 1912 vent strike nearly normal to the volcanic front and may reflect dike transport of magma previously stored beneath Trident 3–5 km away. Caldera collapse at Mount Katmai may have taken place in response to hydraulic transfer of Katmai magma toward Novarupta via reservoir components beneath Trident. The voluminous 1912 eruption (12–15 km3 DRE) was also unusual in producing high-silica rhyolite (6–9 km3 DRE), a composition rare in this arc and on volcanic fronts in general. Isotopic data indicate that rhyolite genesis involved little assimilation of sedimentary rocks, pre-Tertiary plutonic rocks, or hydrothermally altered rocks of any age. Trace-element data suggest nonetheless that the rhyolite contains a nontrivial crustal contribution, most likely partial melts of Late Cenozoic arc-intrusive rocks. Because the three compositions (77%, 66–64.5%, and 61.5–58.5% SiO2) that intermingled in 1912 vented both concurrently and repeatedly (after eruptive pauses hours in duration), the compositional gaps between them must have been intrinsic to the reservoir, not merely effects of withdrawal dynamics.  相似文献   

4.
Pyroclastic flow emplacement is strongly influenced by eruption column height. A surface along which kinetic energy is zero theoretically connects the loci of eruption column collapse with all coeval ignimbrite termini. This surface is reconstructed as a two-dimensional energy line for the 1912 Katmai pyroclastic flow in the Valley of Ten Thousand Smokes from mapped flow termini and the runup of the ignimbrite onto obstructions and through passes. Extrapolation of the energy line to the vicinity of the source vent at Novarupta suggests the eruption column which generated the ignimbrite eruption was approximately 425 m high. The 1912 pyroclastic flow travelled about 25 km downvalley. Empirical velocity data calculated from runup elevations and surveyed centrifugal superelevations indicate initial velocities near Novarupta were greater than 79–88 m s–1. The flow progressively decelerated and was travelling only 2–8 m s–1 when it crossed a moraine 16 km downvalley. The constant slope of the energy line away from Novarupta suggests the flow was systematically slowed by internal and basal friction. Using a simple physical model to calculate flow velocities and a constant kinetic friction coefficient (Heim coefficient) of 0.04 derived from the reconstructed energy line, the flow is estimated to have decelerated at an average rate of –0.16 m s–2 and to have taken approximately 9.5 minutes to travel 25 km down the Valley of Ten Thousand Smokes. The shear strength of the flowing ignimbrite at the moraine was approximately 0.5 kPa, and its Bingham viscosity when it crossed the moraine was 3.5 × 103 P. If the flow was Newtonian, its viscosity was 4.2 × 103 P. Reynolds and Froude numbers at the moraine were only 41–62 and 0.84–1.04, respectively, indicating laminar, subcritical flow.  相似文献   

5.
A reconnaissance survey of Hg° was designed to model the 1912 Novarupta vent structure and delineate zones of near-surface high heat flow. Statistical analysis of 294 regolith samples collected at 127 sites from fossil/active fumaroles and relatively unaltered ash-flow tuff and air-fall ejecta indicates two Hg° sample populations; one associated with fumarole deposits and the other corresponding to the relatively unaltered regolith. Measured Hg° concentrations range from 12 to 6913 ppb. Sample threshold (upper limit of background Hg° concentrations; fumarole deposits: 351 ppb, unaltered regolith: 110 ppb) and contrast (sample value/threshold) determinations enable differentiation between relict and actively accumulating Hg° contents.All significant Hg° anomalies (contrast values > 1.5) occur within Novarupta Basin. High-magnitude, active Hg2 enrichment was found on the Turtle, a dome-like feature northeast of the Novarupta extrusive dome. The Hg° data, coupled with available geologic and geophysical evidence, suggest a shallow intrusion beneath the Turtle. Results from two Novarupta Basin sample traverses do not support the presence of a near-surface magma feeder dike connecting the proposed intrusion beneath the Turtle with the Novarupta dome. Based on the Hg° data, the preferred vent model is one generated by collapse of supporting walls after the major eruptive phase into a cored-out explosive vent. Collapse of vent walls is initiated along a series of deep-extending faults which subsequently serve as migration pathways for Hg° to the surface. The overall vent morphology is funnel-like with subsidence concentrated in the narrow funnel center. Results of this study show that Hg° surveys can further constrain the morphology of the 1912 vent and aid in delineating zones of near-surface high heat flow in this region.  相似文献   

6.
Most tephra fallout models rely on the advection–diffusion equation to forecast sedimentation and hence volcanic hazards. Here, we test the application of the advection–diffusion equation to tephra sedimentation using data collected on the proximal (350 to ~1,200?m from the vent) to medial (greater than ~1,200?m from the vent) tephra blanket of a basaltic cinder cone, Cerro Negro volcano, located in Nicaragua. Our understanding of tephra depositional processes at this volcano is significantly improved by combination of sample pit data in the medial zone and high-resolution ground-penetrating radar (GPR) data collected in the near vent and proximal zones. If the advection–diffusion equation applies, then the thickness of individual tephra deposits should have Gaussian crosswind profiles and exponential decay with distance away from the vent. At Cerro Negro, steady trade winds coupled with brief eruptions of relatively low energy (VEI 2–3) create relatively simple deposits. GPR data were collected along three crosswind profiles at distances of 700–1,600?m from the vent; sample pits were used to estimate thickness of the 1992 tephra deposit up to 13?km from the vent. Horizons identified in proximal GPR profiles exhibit Gaussian distributions with a high degree of statistical confidence, with diffusion coefficients of ~500?m2?s?1 estimated for the deposits, confirming that the advection–diffusion equation is capable of modeling sedimentation in the proximal zone. The thinning trend downwind of the vent decreases exponentially from the cone base (350?m) to ~1,200?m from the vent. Beyond this distance, deposit overthickening occurs, identified in both GPR and sample pit datasets. The combined data reveal three depositional regimes: (1) a near-vent region on the cone itself, where fallout remobilizes in granular flows upon deposition; (2) a proximal zone in which particles fall from a height of less than ~2?km; and (3) a medial zone, in which particles fall from ~4 to 7?km and the deposit is thicker than expected based on thinning trends observed in the proximal zone of the deposit. This overthickening of the tephra blanket, defining the transition from proximal to medial depositional facies, is indicative of transition from sedimentation dominated by fallout from plume margins to that dominated by fallout from the buoyant eruption cloud—a feature of deposits previously identified in larger-volume eruptions. We interpret this change to represent a change in diffusion law, occurring at total particle fall times (the fall time threshold of numerical models) of ~400?s. Thus, the detailed GPR profiles and pit data collected at Cerro Negro help to validate current numerical models of tephra sedimentation.  相似文献   

7.
Contrary to general belief, not all large igneous provinces (LIPs) are characterised by rocks of basaltic composition. Silicic-dominated LIPs, such as the Whitsunday Volcanic Province of NE Australia, are being increasingly recognised in the rock record. These silicic LIPs are consistent in being: (1) volumetrically dominated by ignimbrite; (2) active over prolonged periods (40–50 m.y.), based on available age data; and (3) spatially and temporally associated with plate break-up. This silicic-dominated LIP, related to the break-up of eastern continental Gondwana, is also significant for being the source of >1.4×106 km3 of coeval volcanogenic sediment preserved in adjacent sedimentary basins of eastern Australia.The Whitsunday Volcanic Province is volumetrically dominated by medium- to high-grade, dacitic to rhyolitic lithic ignimbrites. Individual ignimbrite units are commonly between 10 and 100 m thick, and the ignimbrite-dominated sequences exceed 1 km in thickness. Coarse lithic lag breccias containing clasts up to 6 m diameter are associated with the ignimbrites in proximal sections. Pyroclastic surge and fallout deposits, subordinate basaltic to rhyolitic lavas, phreatomagmatic deposits, and locally significant thicknesses of coarse-grained volcanogenic conglomerate and sandstone are interbedded with the ignimbrites. The volcanic sequences are intruded by gabbro/dolerite to rhyolite dykes (up to 50 m in width), sills and comagmatic granite. Dyke orientations are primarily from NW to NNE.The volcanic sequences are characterised by the interstratification of proximal/near-vent lithofacies such as rhyolite domes and lavas, and basaltic agglomerate, with medial to distal facies of ignimbrite. The burial of these near-vent lithofacies by ignimbrites, coupled with the paucity of mass wastage products such as debris-flow deposits indicates a low-relief depositional environment. Furthermore, the volcanic succession records a temporal change in: (1) eruptive styles; (2) the nature of source vents; and (3) erupted compositions. An early explosive dacitic pyroclastic phase was succeeded by a later mixed pyroclastic-effusive phase producing an essentially bimodal suite of lavas and rhyolitic ignimbrite. From the nature and distribution of volcanic lithofacies, the volcanic sequences are interpreted to record the evolution of a multiple vent, low-relief volcanic region, dominated by several large caldera centres.  相似文献   

8.
The Rio Caliente ignimbrite is a multi-flow unit orcompound ignimbrite formed during a major late Quaternary explosive rhyolitic eruption of La Primavera volcano, Mexico. The eruption sequence of the ignimbrite is complex and it occurs between lower and upper plinian air-fall deposits. It is, therefore, anintraplinian ignimbrite. Air-fall layers, pyroclastic surge, mudflow and fluviatile reworked pumice deposits also occur interbedded between ignimbrite flow units. A chaotic near-vent facies of the ignimbrite includes co-ignimbrite lag breccias segregated from proximal pumice flows. The facies locates a central vent but one which could not have been associated with a well defined edifice. Many of the lithics in the exposed lag breccias and near-vent facies of the ignimbrite appear to be fragments of welded Rio Caliente ignimbrite, and indicate considerable vent widening, or migration, during the eruption. Nearer vent the ignimbrite is thickest and composed of the largest number of flow units. Here it is welded and is a simple cooling unit. Evidence suggests that it was only the larger thicker pumice flows that escaped to the outer parts of the sheet. Detailed analysis of four flow units indicates that the pumice flows were generally poorly expanded, less mobile flows which would be produced by collapse of low eruption columns. The analogy of a compound ignimbrite with a compound lava flow is, therefore, good — a compound lava flow forms instead of a simple one when the volumetric discharge rate (or intensity) is low, and in explosive eruptions this predicts lower eruption column heights. A corollary is that the ignimbrite has a high aspect ratio. The complex eruption sequence shows the reinstatement of plinian activity several times during the eruption after column collapse occurred. This, together with erosional breaks and evidence that solidified fragments of already welded ignimbrite were re-ejected, all suggest the eruption lasted a relatively significant time period. Nearly 90 km3 of tephra were erupted. The associated plinian pumice fall is one of the largest known having a volume of 50 km3 and the ignimbrite, plus a co-ignimbrite ash-fall, have a volume of nearly 40 km3. Published welding models applied to the reejected welded blocks indicate an eruption duration of 15-20d, and a maximum average magma-discharge rate of 1.4 × 104 m3/s for the ignimbrite. This is low intensity when compared with available data from other ignimbrite-forming eruptions, and concurs with all the geological evidence presented. The total eruption duration was perhaps 15-31d, which is consistent with other estimates of the duration of large magnitude explosive silicic eruptions.  相似文献   

9.
Proximal deposits of the 3.3 Ma Grants Ridge Tuff, part of a 5-km3 topaz rhyolite sequence, are composed of basal pyroclastic flow, surge, and fallout deposits, a thick central ignimbrite, and upper surge and fallout deposits. Large lithic blocks (≤2 m) of underlying sedimentary and granitic bedrock that are present in lower pyroclastic flow and fallout deposits indicate that the eruptive sequence began with explosive, conduit-excavating eruptions. The massive, nonwelded central ignimbrite displays evidence for postemplacement deformation. The upper pyroclastic surge deposits are dominated by fine ash, some beds containing accretionary lapilli, soft-sediment deformation features, and mud-coated lithic lapilli, indicating an explosive, hydromagmatic component to these later eruptions. The upper fall and surge deposits are overlain by fluvially reworked volcaniclastic deposits that truncate the primary section with a relatively planar surface. The proximal, upper pyroclastic surge and Plinian fall deposits are preserved only in small grabens (5–8 m deep and wide), where they subsided into the ignimbrite and were protected from reworking. The pyroclastic surge and fall deposits within the grabens are offset by numerous small normal faults. The offset on some faults decreases upward through the section, indicating that the faulting process may have been syn-eruptive. Several graben-bounding faults extend downward into the ignimbrite, but the uppermost, fluvially reworked tephra layers are not cut by these faults. The faulting mechanism may have been related to settling and compaction of the 60 m thick, valley-filling ignimbrite along the axis of the paleovalley. Draping surge contacts against the graben faults and brittle and soft-style disruption of the upper pyroclastic surge beds indicate that subsidence was ongoing during the emplacement of the upper eruptive sequence. Seismicity accompanying the late-stage hydromagmatic explosions may have contributed to the abrupt settling and compaction of the ignimbrite.  相似文献   

10.
The plinian eruptions of 1912 at Novarupta,Katmai National Park,Alaska   总被引:1,自引:0,他引:1  
The three-day eruption at Novarupta in 1912 consisted of three discrete episodes. Episode I began with plinian dispersal of rhyolitic fallout (Layer A) and contemporaneous emplacement of rhyolitic ignimbrites and associated proximal veneers. The plinian column was sustained throughout most of the interval of ash flow generation, in spite of progressive increases in the proportions of dacitic and andesitic ejecta at the expense of rhyolite. Accordingly, plinian Layer B, which fell in unbroken continuity with purely rhyolitic Layer A, is zoned from >99% to 15% rhyolite and accumulated synchronously with emplacement of the correspondingly zoned ash flow sequence in Mageik Creek and the Valley of Ten Thousand Smokes (VTTS). Only the andesiterichest flow units that cap the flow sequence lack a widespread fallout equivalent, indicating that ignimbrite emplacement barely outlasted the plinian phase. On near-vent ridges, the passing ash flows left proximal ignimbrite veneers that share the compositional zonation of their valley-filling equivalents but exhibit evidence for turbulent deposition and recurrent scour. Episode II began after a break of a few hours and was dominated by plinian dispersal of dacitic Layers C and D, punctuated by minor proximal intraplinian flows and surges. After another break, dacitic Layers F and G resulted from a third plinian episode (III); intercalated with these proximally are thin intraplinian ignimbrites and several andesite-rich fall/flow layers. Both CD and FG were ejected from an inner vent <400 m wide (nested within that of Episode I), into which the rhyolitic lava dome (Novarupta) was still later extruded. Two finer-grained ash layers settled from composite regional dust clouds: Layer E, which accumulated during the D-F hiatus, includes a contribution from small contemporaneous ash flows; and Layer H settled after the main eruption was over. Both are distinct layers in and near the VTTS, but distally they merge with CD and FG, respectively; they are largely dacitic but include rhyolitic shards that erupted during Episode I and were kept aloft by atmospheric turbulence. Published models yield column heights of 23–26 km for A, 22–25 km for CD, and 17–23 km for FG; and peak mass eruption rates of 0.7–1x108, 0.6–2x108, and 0.2–0.4x108 kg s-1, respectively. Fallout volumes, adjusted to reflect calculated redistribution of rhyolitic glass shards, are 8.8 km3, 4.8 km3, and 3.4 km3 for Episodes I, II, and III. Microprobe analyses of glass show that as much as 0.4 km3 of rhyolitic glass shards from eruptive Episode I fell with CDE and 1.1 km3 with FGH. Most of the rhyolitic ash in the dacitic fallout layers fell far downwind (SE of the vent); near the rhyolite-dominated ignimbrite, however, nearly all of Layers E and H are dacitic, showing that the downwind rhyolitic ash is of co-plinian rather than co-ignimbrite origin.  相似文献   

11.
The 1886 eruption of Tarawera, New Zealand, was unusual for a Plinian eruption because it involved entirely basaltic magma, originated in a 17-km-long fissure, and produced extremely overthickened proximal deposits with a complex geometry. This study focuses on an 8-km-long segment cutting across Mount Tarawera where over 50 point-source vents were active during the 5.5-h eruption. A detailed characterization of the proximal deposits is developed and used to interpret the range of styles and intensities of the vents, including changes with time. We identify the four vents that contributed most heavily to the Plinian fall and evaluate the extent to which current volcanic plume models are compatible with the depositional patterns at Tarawera. Three proximal units are mapped that have phreatomagmatic, magmatic, and phreatomagmatic characteristics, respectively. Within the magmatic proximal unit, beds of like character are grouped into packages and delineated on scaled cross sections. Package dispersal is quantified by measuring the linear thickness half-distance (t1/2) in the planes of the fissure walls. Most packages have localized dispersals (low t1/2), indicating that Strombolian-style activity dominated most vents. The more widely dispersed packages (high t1/2) reflect contributions from additional transport regimes that were more vigorous but still contributed considerable material to the proximal region. We conclude that the geometry of the observed proximal deposits requires three modes of fall transport: (1) fallout from the upper portions of the Plinian plumes produced principally by vents in four craters; (2) sedimentation from the margins of the lower portions of the Plinian plumes including the jets and possibly the lower convective regions; and (3) ejection by weak Strombolian-style explosions from vents that did not contribute significant volumes of particles to the high plume. We suggest that the curvature of the velocity profile across the jet region of each plume (1–4 km height) was important, and that the lower velocity at the margins allowed proximal deposition of a large volume of material with a wide grain-size range.  相似文献   

12.
The Pu'u 'O'o-Kupaianaha eruption (1983-present) is the longest lived rift eruption of either Kilauea or neighboring Mauna Loa in recorded history. The initial fissure opening in January 1983 was followed by three years of episodic fire fountaining at the Pu'u 'O'o vent on Kilauea's east rift zone 19km from the summit (episodes 4–47). These spectacular events gave way in July 1986 to five and a half years of nearcontinuous, low-level effusion from the Kupaianaha vent, 3km to the cast (episode 48). A 49th episode began in November 1991 with the opening of a new fissure between Pu'u 'O'o and Kupaianaha. this three week long outburst heralded an era of more erratic eruptive behavior characterized by the shut down of Kupaianaha in February 1992 and subsequent intermittent eruption from vents on the west flank of Pu'u 'O'o (episodes 50 and 51). The events occurring over this period are due to progressive shrinkage of the rift-zone reservoir beneath the eruption site, and had limited impact on eruption temperatures and lava composition.  相似文献   

13.
The deposition temperature of the pyroclastic density current (PDC) deposits emplaced during the AD 472 Pollena eruption (Somma-Vesuvius, Italy) has been investigated using the thermal analysis of the magnetic remanence carried by lithic clasts embedded within the deposits. A total of 310 lithic clasts were collected from all the PDC units in the Pollena stratigraphic succession, at different distances from the inferred vent and at different stratigraphic levels. The temperature reached by each individual clast during residence in the PDC was estimated through stepwise thermal demagnetization, with the values from all clasts collected at each site being used to infer the deposition temperature (T dep). Although the sedimentological features of these PDC deposits show some variation, the deposition temperature typically falls in the range 300 to 320°C, with a maximum range of 260 to 360°C. The fairly uniform temperature observed in both the dune bedded and massive deposits points to homogeneity in attainment of T dep for the different deposits and suggests similarity in the depositional regime of the different PDCs and/or in heat transfer to lithic fragments. Similarity in depositional regime was also favoured by the limited control exerted by topography on the distribution of these PDCs, with the northern wall of the Somma caldera that did not act as a morphological barrier. As a result the currents were capable of moving away from the vent, without topographic disturbances and, thus, significant variations in the cooling regime. Because the Pollena eruption is considered similar to the maximum expected event at Somma-Vesuvius, the characteristics of its deposits best simulate the likely maximum hazard for the Vesuvius region. In this regard, Pollena produced hot, dilute PDCs which were able to travel up to 12 km from the vent maintaining high temperatures across this distance.  相似文献   

14.
The 1886 Plinian eruption of Tarawera, New Zealand, is a unique basaltic fissure-fed eruption with exceptionally well preserved fall deposits to within 200 meters of the source vents. These proximal deposits form a series of spatter/cinder half-cones along the northeastern 8-km-long segment of the 1886 fissure. Here we examine these deposits using grain size and clast componentry techniques. We contrast the products of the phreatomagmatic (phases I and III) and Plinian (Phase II) stages of the eruption and examine deposit variability as a function of contrasting eruptive intensity within the climactic phase (II) of the eruption. The opening phreatomagmatic phase I of the eruption involved gas-rich magma interacting with water and fragmenting at least 300 meters below the surface. The deposits of the climactic phase that followed have relatively uniform grain size but marked contrasts in the relative abundance of juvenile and wall rock (lithic) clasts. Deposits linked to vents associated with the high Plinian plume are more uniform than those characterized by a weaker cone-forming eruption style. During the third, and closing, phase of the eruption, magma withdrawal accompanied the onset of decoupling of the exsolved gas phase, leading to fragmentation at increasingly greater depths and significant wall rock collapse into the erupting vents. Variability in eruptive style during phase II along the fissure appears to be a function of shallow seated controls, in particular the variable extent of incorporation of lithic wall rock into the erupting jet, as a consequence of vent wall collapse. Widely dispersed beds centralized around Plinian sources along the fissure have very low lithic content; cone-forming beds at other craters that contain very high lithic contents. This incorporation led to a significant reduction of the velocity and stability of the jet at these latter steep-walled craters, and induced episodicity in the form of vent-clearing explosions. The result is a large reduction of the physical and thermal ability of these vents to contribute to a stable high eruptive plume. Instead large volumes of ejecta were sedimented prematurely from shallow heights at rates an order of magnitude greater than for historical Strombolian, Hawaiian and subPlinian eruptions. This study illustrates that sustained powerful Plinian eruptions can be accompanied by heterogeneities and instabilities of the eruptive jet. At Tarawera, the record of complex proximal transport and deposition processes in the eruptive jet cannot be inferred from the eruption products at distances greater than 400 m from the eruptive fissure. We suggest that study of ultraproximal deposits, as seen at Mt Tarawera, provides the only opportunity to document the complex, dynamic behavior of the jet region of Plinian eruptions.  相似文献   

15.
During the past 22 ka of activity at Somma–Vesuvius, catastrophic pyroclastic density currents (PDCs) have been generated repeatedly. Examples are those that destroyed the towns of Pompeii and Ercolano in AD 79, as well as Torre del Greco and several circum-Vesuvian villages in AD 1631. Using new field data and data available from the literature, we delineate the area impacted by PDCs at Somma–Vesuvius to improve the related hazard assessment. We mainly focus on the dispersal, thickness, and extent of the PDC deposits generated during seven plinian and sub-plinian eruptions, namely, the Pomici di Base, Greenish Pumice, Pomici di Mercato, Pomici di Avellino, Pompeii Pumice, AD 472 Pollena, and AD 1631 eruptions. We present maps of the total thickness of the PDC deposits for each eruption. Five out of seven eruptions dispersed PDCs radially, sometimes showing a preferred direction controlled by the position of the vent and the paleotopography. Only the PDCs from AD 1631 eruption were influenced by the presence of the Mt Somma caldera wall which stopped their advance in a northerly direction. Most PDC deposits are located downslope of the pronounced break-in slope that marks the base of the Somma–Vesuvius cone. PDCs from the Pomici di Avellino and Pompeii Pumice eruptions have the most dispersed deposits (extending more than 20 km from the inferred vent). These deposits are relatively thin, normally graded, and stratified. In contrast, thick, massive, lithic-rich deposits are only dispersed within 7 to 8 km of the vent. Isopach maps and the deposit features reveal that PDC dispersal was strongly controlled by the intensity of the eruption (in terms of magma discharge rate), the position of the vent area with respect to the Mt Somma caldera wall, and the pre-existing topography. Facies characteristics of the PDC deposits appear to correlate with dispersal; the stratified facies are consistently dispersed more widely than the massive facies.  相似文献   

16.
The Zaragoza ignimbrite and two enclosing rhyodacite pumice fall layers were emplaced during the 15 km3 (DRE), ∼0.1 Ma Zaragoza eruption from Los Humeros volcanic centre, 180 km east of Mexico City. The ignimbrite comprises several massive flow-units, the largest of which locally exceeds 20 m in thickness and is regionally traceable. It comprises massive lapilli-ash with vertical elutriation pipes, and has a fine-grained inverse-graded base and a pumice concentration zone at the top. It also exhibits an unusual gradational ‘double’ vertical compositional zonation that is widely traceable. A basal rhyodacitic (67.6–69 wt% SiO2) zone grades up via a mixed zone into a central andesitic (58–62 wt% SiO2) zone, which, in turn, grades up into an upper rhyodacitic (67.6–69 wt% SiO2) zone. Zoning is also defined by vertical variations in lithic clast populations. We infer that pyroclastic fountaining fed initially rhyodacite pumice clasts to a sustained granular fluid-based pyroclastic density current. The composition of the pumice clasts supplied to the current then gradually changed, first to andesite and then back to rhyodacite. Inverse grading at the base of the massive layer may reflect initial waxing flow competence. The pumice concentration at the top of the massive layer is entirely rhyodacitic and was probably deposited during waning stages of the current, when the supply of andesitic pumice clasts had ceased. The return to rhyodacitic composition may have been the result of eruption-conduit modification during collapse of Los Potreros caldera, marked in the ignimbrite by a widespread influx of hydrothermally altered lithic blocks, and/or a decrease in draw-up depth from a compositionally stratified magma chamber as the eruptive mass flux waned. The massive layer of ignimbrite thins locally to less than 2 m, yet it still shows the double zonation. Correlation of the zoning suggests that the thin massive layer is stratigraphically condensed, and aggraded relatively slowly during the same time interval as did the much thicker (≤50 m) massive layer.Editorial responsibility: J McPhie  相似文献   

17.
Palaeomagnetic data from lithic clasts collected at 46 sites within layers 1 and 2 of the 1.8-ka Taupo ignimbrite, New Zealand, have been used to determine the palaeotemperatures and thermal structure of the deposit on its emplacement. Equilibrium temperatures from sites less than 30–40 km from vent are 150–300 °C, whereas at greater distances site equilibrium temperatures increase up to 400–500 °C. This variation is seen in both layer 1 and 2 deposits, with values for layer 1 being somewhat cooler, and with its increase in temperature occurring at a greater distance from vent. A temperature maximum at ~50 km from vent coincides with a zone of pink thermal-oxidation colouration of pumices previously inferred to reflect higher emplacement temperatures. Additional palaeomagnetic data collected by us and others from pumice clasts show comparable temperature variations, but these temperature estimates are shown here to be due to a chemical remanence and unreliable for accurate temperature estimates. Cooler temperatures in proximal parts of the ignimbrite are consistent with admixture of >20% cold lithic clasts at source and interaction with the pre-eruption Lake Taupo. The similar, but offset, increases in equilibrium temperatures for medial and distal layers 1 and 2 are consistent with both layers being deposited from the same flow. However, any proximal deposits left by the later, hotter material must have been subsequently eroded, or be so thin that our collection failed to sample them. Radial asymmetries in equilibrium temperatures as well as other physical parameters suggest that the deposit emplacement temperature is primarily determined at source, rather than by interaction with air during transport. These data support previous interpretations that a concentrated basal flow played a dominant role in emplacement and deposition of the Taupo ignimbrite.Editorial responsibility: T. Druitt  相似文献   

18.
The 22 km3 (DRE) 1.8 ka Taupo eruption ejected chemically uniform rhyolite in a wide range of eruptive styles and intensities. The 7 eruptive units include the ‘type examples’ of phreatoplinian (units 3 and 4) and ultraplinian fall (unit 5) deposits, and low-aspect-ratio ignimbrite (unit 6). Contrasts in bulk vesicularity, vesicle (and microlite) number densities and the size distributions of bubbles (and crystals) in the Taupo ejecta can be linked to the influence of shallow conduit processes on volatile exsolution and gas escape, before and during eruption, rather than changes in pre-eruptive chemistry. Existing work has modeled the individual phases of this complex eruption but not fully explained the abrupt shifts in style/intensity that occur between phases. We link these rapid transitions to changes in vent position, which permitted contrasts in storage, conduit geometry, and magma ascent history.  相似文献   

19.
Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 μm vesicle diameter and cumulative number densities ranging from 107–109 cm–3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h.  相似文献   

20.
 In contrast to most twentieth-century eruptions of Kelud volcano (eastern Java), the 10 February 1990 plinian eruption was not accompanied by lake-outburst lahars. However, at least 33 post-eruption lahars occurred between 15 February and 28 March 1990. They swept down 11 drainage systems and travelled as far as 24 km at an estimated mean peak velocity in the range of 4–11 m s–1. The deposits (volume ≥30 000 000 m3) were approximately 7 m thick 2 km from vent, and 3 m thick 10 km from vent, on the volcaniclastic apron surrounding the volcano. Subtle but significant sedimentological differences in the deposits relate to four flow types: (a) Early, massive deposits are coarse, poorly sorted, slightly cohesive, and commonly inversely graded. They are inferred to record hot lahars that incorporated pumice and scoria from pyroclastic-flow deposits, probably by rapid remobilization of hot proximal pyroclastic flow deposits by rainfall runoff. Sedimentary features, such as clasts subparallel to bedding and thick, reversely to ungraded beds, suggest that these flows were laminar. (b) Abundant, very poorly sorted deposits include non-cohesive, clast-supported, inversely graded beds and ungraded, finer-grained, and cohesive matrix-supported beds. These beds display layering and vertical segregation/density stratification, suggesting unsteady properties of pulsing debris flows. They are interpreted as deposited from segments of flow waves at a middle distance downstream that incorporated pre-eruption sediments. Sedimentological evidence suggests unsteady flow properties during progressive aggradation. (c) Fine-grained, poorly sorted and ungraded deposits are interpreted as recording late hyperconcentrated streamflows that formed in the waning stage of an overflow and transformed downcurrent into streamflows. (d) Ungraded, crudely stratified deposits were emplaced by flows transitional between hyperconcentrated flows and streamflows that traveled farther downvalley (as far as 27 km from the vent). At Kelud, the transformation of flow and behavior occurs within only 10 km of the source, at the apex of the alluvial fans. The rapid change of flow behavior is attributed to the low fines content and to the unsteady flow regime, which may be due to: (a) the rapid deposition of bedload, owing to the break in channel gradient close to the vent and to changes in channel cross-section and roughness; and (b) the very low silt+clay content in the non-cohesive deposits. These deposits mix with water to produce streamflows. Received: 27 June 1997 / Accepted: 5 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号