首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Numerical experiments reproduce the fundamental architecture of magma-poor rifted margins such as the Iberian or Alpine margins if the lithosphere has a weak mid-crustal channel on top of strong lower crust and a horizontal thermal weakness in the rift center. During model extension, the upper crust undergoes distributed collapse into the rift center where the thermally weakened portion of the model tears. Among the features reproduced by the modeling, we observe: (1) an array of tilted upper-crustal blocks resting directly on exhumed mantle at the distal margin, (2) consistently oceanward-dipping normal faults, (3) a mid-crustal high strain zone at the base of the crustal blocks (S-reflector), (4) new ocean floor up against a low angle normal fault at the tip of the continent, (5) shear zones consistent with continentward-dipping reflectors in the mantle lithosphere, (6) the mismatch frequently observed between stretching values inferred from surface extension and bulk crustal thinning at distal margins (upper plate paradox). Rifting in the experiment is symmetric at a lithospheric scale and the above features develop on both sides of the rift center. We discuss three controversial points in more detail: (1) weak versus strong lower crust, (2) the deformation pattern in the mantle, and (3) the significance of detachment faults during continental breakup. We argue that the transition from wide rifting towards narrow rifting with a pronounced polarity towards the rift center is associated with the advective growth of a thermal perturbation in the mantle lithosphere.  相似文献   

2.
A two-dimensional numerical modelling that simulate the kinematic and thermal response of the lithosphere to thinning was used for the quantitative reconstruction of the late Neogene to Recent times tectonic and stratigraphic evolution of the North Sicily continental margin (southern Tyrrhenian Sea). The numerical study of the evolution of the North Sicily margin builds on the crustal image and kinematic interpretation of the margin obtained by Pepe et al. [Tectonics 19 (2000) 241] on the basis of seismic data and gravity modelling. Tectonic modeling indicate that different segments of the margin were undergoing different vertical movements, which are mainly expression of the rifting and thinning of the lithosphere occurred during tectonic evolution of the southern Tyrrhenian Sea. A prediction of the pre-rift basement topography and the Moho along the margin converges to a value of 6.5 km for the depth of necking and a temperature-dependent EET (500° isotherm). The model fails to reproduce the morphology of the Solunto High confirming its non-extensional origin. A polyphase evolution is required to reproduce the observed syn- and post-rift stratigraphy. During the first rifting stage (between 9 and 5 Ma), crustal thinning factors reach maximum values of 1.27 in the Cefalù basin. A similar value is predicted for the subcrustal thinning around 60 km NNE of the profile margin. Crustal thinning factors increase during the second rifting stage (from 4 to 2 Ma) and reach values of 2 and up to 3.5 in the Cefalù basin and in the continent–oceanic transition zone, respectively. Similarly, subcrustal lithospheric thinning factors reach values up to 2.5 in the distal sector of the margin. An uplift of more than 100 m is predicted for the North Sicily shelf and surrounding onshore areas during the post-rift stage. The evolution of thermal structure with time is very sensitive to the partial thinning factors describing the evolution of the thinning itself during time. The lithosphere preserved part of its strength during extension. The effective elastic thickness (EET) along the margin through time is 24 km at the onset of rifting and reaches values less to 8 km during the second rifting stage in the northeastern end of the margin.  相似文献   

3.
The rotational behaviour of a rigid particle embedded in a linear viscous matrix undergoing cylindrical simple shear (Couette) flow was studied in 2D rock-analogue experiments. The influence of particle shape (elliptical vs. monoclinic), aspect ratio and the nature of the matrix/particle interface (lubricated vs. unlubricated) was investigated. Both matrix (PDMS) and lubricant (liquid soap) were linear viscous, with a viscosity ratio of ca. 104. Without lubricant, the rotational behaviour of all particles closely approximates the Jeffery theory. Lubricated monoclinic particles with the long diagonal initially parallel to the shear direction show back rotation and approach a stable position. Lubricated elliptical particles initially parallel to the shear direction also show back rotation but only transiently stabilize. Weak planar zones in the matrix adjacent to unlubricated elliptical particles do not induce backward rotation. In general for elliptical particles, rotation rate as a function of orientation depends on axial ratio and thickness of the lubricant mantle. For thick mantles (initially >10% of the volume of the particle), rotation rates are faster than Jeffery theory. For very thin mantles they are markedly slower compared with thick mantles, particularly when the long axis is nearly parallel to the shear direction. Rotation rates are never strictly zero, so true stabilization does not occur. However, for more elongate particles (axial RATIO=6) rotation rates are so slow that a very strong shape preferred orientation would develop in a lubricated elliptical particle population. In experiments, the volume of lubricant is constant and the thickness adjacent to the long side of the particle progressively decreases with increasing strain. In natural examples of porphyroclast systems, the weak mantle continually develops by recrystallization and/or cataclasis of the rigid clast core and a steady state between production and thinning could be attained, potentially leading to true stabilization for particles with a high axial ratio.  相似文献   

4.
In the Alpine-Mediterranean region, the continental redbeds and shallow-marine siliciclastics related to the early depositional phases of the Late Permian-Mesozoic continental rifting are referred to as the most common representative of the “Verrucano tectofacies”. The Verrucano-type successions exposed in southern Tuscany are diachronous, spanning from Triassic to earliest Jurassic in age, and accumulated within the Tuscan domain, a paleogeographic region of continental crust that due to the opening of the Piedmont–Ligurian ocean formed part of the Adria passive-margin. They belong to the metamorphic Verrucano Group and the non-metamorphic Pseudoverrucano fm. Viewed overall, these Verrucano-type successions appear to manifest five episodes or pulses of an ongoing continental rifting. With the exception of the first episode that developed entirely within a terrestrial setting, each one is represented by basal Verrucano-type continental siliciclastics overlain by compositionally mixed marine deposits, which resulted from four diachronous, post-Middle Triassic transgressions. This suite of tectonic pulses produced the progressive westward widening (backstepping) of the Tuscan domain in the rifting south-Tuscany area.  相似文献   

5.
We present the results of a thrust fault reactivation study that has been carried out using analogue (sandbox) and numerical modelling techniques. The basement of the Pannonian basin is built up of Cretaceous nappe piles. Reactivation of these compressional structures and connected weakness zones is one of the prime agents governing Miocene formation and Quaternary deformation of the basin system. However, reactivation on thrust fault planes (average dip of ca. 30°) in normal or transtensional stress regimes is a problematic process in terms of rock mechanics. The aim of the investigation was to analyse how the different stress regimes (extension or strike-slip), and the geometrical as well as the mechanical parameters (dip and strike of the faults, frictional coefficients) effect the reactivation potential of pre-existing faults.

Results of analogue modelling predict that thrust fault reactivation under pure extension is possible for fault dip angle larger than 45° with normal friction value (sand on sand) of the fault plane. By making the fault plane weaker, reactivation is possible down to 35° dip angle. These values are confirmed by the results of numerical modelling. Reactivation in transtensional manner can occur in a broad range of fault dip angle (from 35° to 20°) and strike angle (from 30° to 5° with respect to the direction of compression) when keeping the maximum horizontal stress magnitude approximately three times bigger than the vertical or the minimum horizontal stress values.

Our research focussed on two selected study areas in the Pannonian basin system: the Danube basin and the Derecske trough in its western and eastern part, respectively. Their Miocene tectonic evolution and their fault reactivation pattern show considerable differences. The dominance of pure extension in the Danube basin vs. strike-slip faulting (transtension) in the Derecske trough is interpreted as a consequence of their different geodynamic position in the evolving Pannonian basin system. In addition, orientation of the pre-existing thrust fault systems with respect to the Early to Middle Miocene paleostress fields had a major influence on reactivation kinematics.

As part of the collapsing east Alpine orogen, the area of the Danube basin was characterised by elevated topography and increased crustal thickness during the onset of rifting in the Pannonian basin. Consequently, an excess of gravitational potential energy resulted in extension (σv > σH) during Early Miocene basin formation. By the time topography and related crustal thickness variation relaxed (Middle Miocene), the stress field had rotated and the minimum horizontal stress axes (σh) became perpendicular to the main strike of the thrusts. The high topography and the rotation of σh could induce nearly pure extension (dip-slip faulting) along the pre-existing low-angle thrusts. On the contrary, the Derecske trough was situated near the Carpathian subduction belt, with lower crustal thickness and no pronounced topography. This resulted in much lower σv value than in the Danube basin. Moreover, the proximity of the retreating subduction slab provided low values of σh and the oblique orientation of the paleostress fields with respect to the master faults of the trough. This led to the dominance of strike-slip faulting in combination with extension and basin subsidence (transtension).  相似文献   


6.
Development of magnetic fabric within a diapirically ascending columnar body was investigated using non-scaled analogue model made of plaster of Paris containing small amount of fine-grained homogeneously mixed magnetite. The apparatus for the modelling consists of a manual squeezer with calibrated spring and a Perspex container. Set of weak coloured layers at the bottom of the container was forced to intrude overlying fine-grained sand through a hole in a board attached to the squeezer. The development of AMS fabric is correlated with complex flow pattern indicated by coloured and originally horizontal plaster layers. Strongly constrictional and vertical fabric in the base and in the lower domain of the diapir resulting from convergent and upwards flows is overprinted by subhorizontal oblate fabrics due to vertical flattening and initial divergent flow in the apical parts. The measured AMS fabrics are compared with natural examples of magmatic stocks and dykes.  相似文献   

7.
Fluid flow patterns have been determined using oxygen isotope isopleths in the Val-d’Or orogenic gold district. 3D numerical modelling of fluid flow and oxygen isotope exchange in the vein field shows that the fluid flow patterns can be reproduced if the lower boundary of the model is permeable, which represents middle or lower crustal rocks that are infiltrated by a metamorphic fluid generated at deeper levels. This boundary condition implies that the major crustal faults so conspicuous in vein fields do not act as the only major channel for upward fluid flow. The upper model boundary is impermeable except along the trace of major crustal faults where fluids are allowed to drain out of the vein field. This upper impermeable boundary condition represents a low-permeability layer in the crust that separates the overpressured fluid from the overlying hydrostatic fluid pressure regime. We propose that the role of major crustal faults in overpressured vein fields, independent of tectonic setting, is to drain hydrothermal fluids out of the vein field along a breach across an impermeable layer higher in the crust and above the vein field. This breach is crucial to allow flow out of the vein field and accumulation of metals in the fractures, and this breach has major implications for exploration for mineral resources. We propose that tectonic events that cause episodic metamorphic dehydration create a short-lived pulse of metamorphic fluid to rise along zones of transient permeability. This results in a fluid wave that propagates upward carrying metals to the mineralized area. Earthquakes along crustal shear zones cause dilation near jogs that draw fluids and deposit metals in an interconnected network of subsidiary shear zones. Fluid flow is arrested by an impermeable barrier separating the hydrostatic and lithostatic fluid pressure regimes. Fluids flow through the evolving and interconnected network of shear zones and by advection through the rock matrix. Episodic breaches in the impermeable barrier along the crustal shear zones allow fluid flow out of the vein field.  相似文献   

8.
We used analogue modelling to investigate the factors controlling tail geometry in porphyroclast systems. Results show that: (1) σ inclusions can develop in both slipping and non-slipping modes, but δ-inclusions only form in the latter. (2) σ inclusions develop when the mantle production rate is constant and the mantle is transected by the separatrix. δ inclusions form when the mantle is initially outside the separatrix and later comes inside this line. (3) In the slipping mode, the wedge-shaped tail of σ-inclusions always has a straight external surface parallel to the shear plane, whereas in the non-slipping mode the external surface is curved inwards (external embayments). (4) Together with earlier theoretical results, σ- and δ inclusions always show stair-stepping of tails when embedded in a viscous matrix under homogeneous simple shear deformation. (5) Maximum stair-stepping occurs in the slipping mode and is at least equal to the inclusion diameter. If our models bear significant similarity to nature, then (i) the straight or curved character of σ-inclusions could mean that they had, respectively, a slipping or non-slipping interface with the surrounding recrystallized matrix, and (ii) δ-inclusions may result from shear deformation under retrogressive metamorphic conditions in thrust systems.  相似文献   

9.
本文以准噶尔盆地腹部侏罗系储集砂体分布特征为例,探讨构造变换带优质储层的形成机制与变形特征,开展构造转换带的构造-沉积-成岩作用等对物源、砂体、岩石物理等的控制作用的研究。盆地构造转换带控制主要物源与水系,进而控制沉积体系的发育特征;构造转换带与坡折带共同控制沉积相带展布;构造转换带、坡折及沉积层序格架联合控制砂体时空展布及其储层质量:在大的构造转换带、高坡降比的坡折等条件下,在低位域沉积期发育冲积扇、辫状河和曲流河沉积等,形成大规模的储集体,在高位域沉积期发育较大规模三角洲沉积等。对构造转换带的综合研究,可深化对坳陷盆地沉积体系发育规律认识,进而提高对油气储集体的预测精度,对陆相湖盆沉积学及其油气勘探开发具有重要指导和参考价值。  相似文献   

10.
The principle of lithostatic pressure is habitually used in metamorphic geology to calculate burial/exhumation depth from pressure given by geobarometry. However, pressure deviation from lithostatic, i.e. tectonic overpressure/underpressure due to deviatoric stress and deformation, is an intrinsic property of flow and fracture in all materials, including rocks under geological conditions. In order to investigate the influences of tectonic overpressure on metamorphic P–T paths, 2D numerical simulations of continental subduction/collision zones were conducted with variable brittle and ductile rheologies of the crust and mantle. The experiments suggest that several regions of significant tectonic overpressure and underpressure may develop inside the slab, in the subduction channel and within the overriding plate during continental collision. The main overpressure region that may influence the P–T paths of HP–UHP rocks is located in the bottom corner of the wedge‐like confined channel with the characteristic magnitude of pressure deviation on the order of 0.3 GPa and 10–20% from the lithostatic values. The degree of confinement of the subduction channel is the key factor controlling this magnitude. Our models also suggest that subducted crustal rocks, which may not necessarily be exhumed, can be classified into three different groups: (i) UHP‐rocks subjected to significant (≥0.3 GPa) overpressure at intermediate subduction depth (50–70 km, P = 1.5–2.5 GPa) then underpressured at depth ≥100 km (P 3 GPa); (ii) HP‐rocks subjected to ≥0.3 GPa overpressure at peak P–T conditions reached at 50–70 km depth in the bottom corner of the wedge‐like confined subduction channel (P = 1.5–2.5 GPa); (iii) lower‐pressure rocks formed at shallower depths (≤40 km depth, P 1 GPa), which are not subjected to significant overpressure and/or underpressure.  相似文献   

11.
石英是自然界中最主要的造岩矿物之一,也是地壳流变过程的主要变形矿物,其c轴组构特征与变形温度、剪切指向具有密切的关系,因而常被用来获取剪切指向、估计变形温度、计算运动学涡度等。但由于受到变形分解、先存构造、流体等因素的影响,同一岩石中常会得到多个不同的石英c轴组构结果。如果天然变形岩石同时受到多种因素的影响,其石英c轴组构会表现为何种特征?与岩石变形温度、剪切旋向是否仍具有很好的对应性?基于以上问题,本次工作以大别山东缘郯庐断裂带内经历了多期变形、富含流体活动的超糜棱岩为研究对象,在同一岩石薄片中选择不同区域,利用EBSD开展石英c轴组构分析。分析结果表明,选择的超糜棱岩的石英c轴组构点极密分布形态指示岩石变形发生于非共轴变形条件下;剪切指向方面,6个分析区域中区域1表现为左旋剪切指向特征,与薄片中优势剪切指向一致,而除区域4外的其他4个区域显示出与优势剪切指向相反的右旋剪切指向特征;变形温度方面,区域4以柱面滑移为主,显示了高温变形特征,而其余5个区域均以底面滑移为主,指示了低温变形环境。根据本次石英c轴组构特征分析结果,可以得出一些认识:岩石中石英表现为完全的GBM动态重结晶,所指示的温度明显高于大量沿糜棱面理分布的绿泥石所指示的绿片岩相环境,显示流体活动促进了岩石变形;而石英c轴组构指示的变形温度为绿片岩相环境,与绿泥石存在的现象一致,表明糜棱岩化过程中流体活动对石英c轴组构的影响并不明显。在发生过多期变形事件的岩石中,岩石中早期高温变形信息有可能保留下来并记录在石英c轴组构特征中,因而通过石英c轴组构分析有可能获得早期事件的信息;虽然石英c轴组构影响因素众多,但首先开展详细的显微镜下观察,然后有选择地对剪切指向清晰区域开展石英c轴组构分析,仍然能够得到与岩石中优势剪切指向一致的石英c轴组构结果。  相似文献   

12.
Abstract Rare layers of an aluminous, muscovite-rich rock from the Lewisian Complex at Stoer, North-West Scotland, display evidence which suggests that the rock has undergone local partial melting to form quartz-bearing veins and a corundum-bearing restite. The assemblages observed in these rocks match those predicted by modelling in the system KAlO2-NaAlO2-Al2O3-SiO2-H2O (KNASH) where certain bulk compositions melt peritectically to give corundum-bearing restites and quartz-normative melts. Study of the model system shows that the observed parageneses could have formed from a range of bulk compositions with a variety of possible values of a H2O which could have been internally or externally buffered. The KNASH petrogenetic grid, together with another in the system CaO-Na2O-FeO-Al2O3-SiO2-H2O (CNFASH), allows the P–T path of the rocks to be delineated and an estimate to be made of the conditions at the peak of metamorphism as > 11 kbar and 900-925°C. This estimate is in agreement with P–T estimates using thermobarometric methods on adjacent lithologies: The activity of H2O in the system throughout metamorphism is calculated to have been >0.3.  相似文献   

13.
In thrust belts, fold–fault terminations are common features of the structural architecture and can pose complicated problems to unravel, in particular when two or more terminations are in close proximity. Such terminations usually reflect pre-existing attributes. Amongst the many factors, lateral variations in the mechanical stratigraphy can control along-strike geometry and kinematics of fault-related folds.A displacement transfer zone was produced in a compressional sandbox model by means of two adjacent, mechanically different stratigraphic domains. The experiment allowed two discrete chains to develop in the different domains, so that a complex structural setting occurred in the connecting area. Periclinal folds, oblique thrust fronts and oblique ramps developed in the resulting transfer zone. The interaction between periclines in the transfer zone produced lateral culminations in the folded structures. The analysis of displacement across the structural domains revealed that a significant loss of slip along the faults occurred in the relay zone. In this area, imbricate faulting was partially replaced by layer-parallel shortening. A linear relationship appears to exist between the bed length of the thrust sheet and the related fault slip.  相似文献   

14.
Granulite facies pargasite orthogneiss is partially to completely reacted to garnet granulite either side of narrow (<20 mm) felsic dykes, in Fiordland, New Zealand, forming ~10–80 mm wide garnet reaction zones. The metamorphic reaction changed the abundance of minerals, and their shape and grain size distribution. The extent of reaction and annealing (temperature‐related coarsening and nucleation) is greatest close to the dykes, whereas further away the reaction is incomplete. As a consequence, grain size and the abundance of garnet decreases away from the felsic dykes over a few centimetres. The aspect ratios of clusters of S1 pyroxene and pargasite in the orthogneiss, which are variably reacted to post‐S1 garnet, decrease from high in the host, to near equidimensional close to the dyke. Post‐reaction deformation localized in the fine‐grained partially reacted areas. This produced a pattern of ‘paired’ shear zones located at the outer parts of the garnet reaction zone. Our study shows that grain size sensitive deformation occurs where the grain size is sufficiently reduced by metamorphic reaction. The weakening of the rock due to the change in grain size distribution outweighs the addition of nominally stronger garnet to the assemblage.  相似文献   

15.
The sedimentological and chronological analysis of the last deglacial reef sequences of Tahiti (French Polynesia), drilled during the Integrated Ocean Drilling Program Expedition 310, provide a high‐resolution data set allowing a well‐constrained forward modelling study. This study represents the first attempt to model in three dimensions the coral reef development of Tahiti during the last deglacial sea‐level rise (23 000 to 6000 cal yr bp ) using the software dionisos developed by IFP Energies nouvelles. It allows the testing of the reconstructed last deglacial sea‐level curve and the different environmental parameters (for example, wave energy and sediment fluxes) that could have influenced the reef development. These last deglacial reef sequences form two prominent ridges occurring seaward of the living barrier reef that consist of successive submerged reefs. These reefs have been prone to drowning because the window of maximum carbonate production rate is inhibited by high water turbidity (sediment supply from a nearby river), shallow depth of wave action and substrate availability. These factors, combined with rapid sea‐level rise, have driven the growth of retrograding reef pinnacles. Local factors (substratum nature, sediment supply and wave energy) were the main processes that induced the drowning of the inner ridge, whereas interplay of local and global factors (acceleration of the sea‐level rise) was responsible for the drowning of the outer ridge. This particular acceleration of sea‐level rise of 16 m between 14·6 ka and 14 ka bp corresponds to meltwater pulse 1A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号