首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The real-time multi-model ensemble (MME)-based extended range (up to 3 weeks) forecast of monsoon rainfall over India during the 2012 monsoon season is analyzed using the outputs of European Centre for Medium Range Weather Forecasts (ECMWF) monthly forecast coupled model, National Centre for Environmental Prediction (NCEP) Climate Forecast System version 2 coupled model and Japan Meteorological Agency (JMA)’ ensemble prediction system. Although the individual models show useful skill in predicting the extended range forecast of monsoon, the MME forecast is found to be superior compared to these. For the country as a whole, the correlation coefficient (CC) between the observed and MME forecast rainfall departure is found to be statistically significant (99 % level) at least for 2 weeks (up to 18 days). Over the four homogeneous regions of India, the CC is found to be significant (above 95 % level) up to 2 weeks except in case of northeast India, which shows significant CC for week 1 (days 5–11) only. On the meteorological subdivision level (India is divided into 36 meteorological subdivisions) the mean percentage of correct forecast is found to be much higher than the climatology forecast. Considering the complex problem of forecasting of monsoon in the extended range timescales, the MME-based predictions for 2–3 weeks provide skillful results and useful guidance for application in agriculture and other sectors in India.  相似文献   

2.
The present study assesses the forecast skill of the Madden–Julian Oscillation (MJO) observed during the period of DYNAMO (Dynamics of the MJO)/CINDY (Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011) field campaign in the GFS (NCEP Global Forecast System), CFSv2 (NCEP Climate Forecast System version 2) and UH (University of Hawaii) models, and revealed their strength and weakness in forecasting initiation and propagation of the MJO. Overall, the models forecast better the successive MJO which follows the preceding event than that with no preceding event (primary MJO). The common modeling problems include too slow eastward propagation, the Maritime Continent barrier and weak intensity. The forecasting skills of MJO major modes reach 13, 25 and 28 days, respectively, in the GFS atmosphere-only model, the CFSv2 and UH coupled models. An equal-weighted multi-model ensemble with the CFSv2 and UH models reaches 36 days. Air–sea coupling plays an important role for initiation and propagation of the MJO and largely accounts for the skill difference between the GFS and CFSv2. A series of forecasting experiments by forcing UH model with persistent, forecasted and observed daily SST further demonstrate that: (1) air–sea coupling extends MJO skill by about 1 week; (2) atmosphere-only forecasts driven by forecasted daily SST have a similar skill as the coupled forecasts, which suggests that if the high-resolution GFS is forced with CFSv2 forecasted daily SST, its forecast skill can be much higher than its current level as forced with persistent SST; (3) atmosphere-only forecasts driven by observed daily SST reaches beyond 40 days. It is also found that the MJO–TC (Tropical Cyclone) interactions have been much better represented in the UH and CFSv2 models than that in the GFS model. Both the CFSv2 and UH coupled models reasonably well capture the development of westerly wind bursts associated with November 2011 MJO and the cyclogenesis of TC05A in the Indian Ocean with a lead time of 2 weeks. However, the high-resolution GFS atmosphere-only model fails to reproduce the November MJO and the genesis of TC05A at 2 weeks’ lead. This result highlights the necessity to get MJO right in order to ensure skillful extended-range TC forecasting.  相似文献   

3.
Atmospheric dynamical mechanisms have been prevalently used to explain the characteristics of the summer monsoon intraseasonal oscillation (MISO), which dictates the wet and dry spells of the monsoon rainfall. Recent studies show that ocean–atmosphere coupling has a vital role in simulating the observed amplitude and relationship between precipitation and sea surface temperature (SST) at the intraseasonal scale. However it is not clear whether this role is simply ‘passive’ response to the atmospheric forcing alone, or ‘active’ in modulating the northward propagation of MISO, and also whether the extent to which it modulates is considerably noteworthy. Using coupled NCEP–Climate Forecast System (CFSv2) model and its atmospheric component the Global Forecast System (GFS), we investigate the relative role of the atmospheric dynamics and the ocean–atmosphere coupling in the initiation, maintenance, and northward propagation of MISO. Three numerical simulations are performed including (1) CFSv2 coupled with high frequency interactive SST, the GFS forced with both (2) observed monthly SST (interpolated to daily) and (3) daily SST obtained from the CFSv2 simulations. Both CFSv2 and GFS simulate MISO of slightly higher period (~60 days) than observations (~45 days) and have reasonable seasonal rainfall over India. While MISO simulated by CFSv2 has realistic northward propagation, both the GFS model experiments show standing mode of MISO over India with no northward propagation of convection from the equator. The improvement in northward propagation in CFSv2, therefore, may not be due to improvement of the model physics in the atmospheric component alone. Our analysis indicates that even with the presence of conducive vertical wind shear, the absence of meridional humidity gradient and moistening of the atmosphere column north of convection hinders the northward movement of convection in GFS. This moistening mechanism works only in the presence of an ‘active’ ocean. In CFSv2, the lead-lag relationship between the atmospheric fluxes, SST and convection are maintained, while such lead-lag is unrealistic in the uncoupled simulations. This leads to the conclusion that high frequent and interactive ocean–atmosphere coupling is a necessary and crucial condition for reproducing the realistic northward propagation of MISO in this particular model.  相似文献   

4.
Daily output from the hindcasts by the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) is analyzed to understand the skill of forecasting atmospheric variability on quasi-biweekly (QBW) time scale. Eight dominant quasi-biweekly oscillation (QBWO) modes identified by the extended empirical orthogonal function analysis are focused. In the CFSv2, QBW variability exhibits a significant weakening tendency with lead time for all seasons. For most QBWO modes, the variance drops to only 50 % of the initial value at lead time of 11–15 days. QBW variability has better prediction skill in the winter hemisphere than in the summer hemisphere. Skillful forecast can reach about 10–15 days for most modes but those in the winter hemisphere have better forecast skills. Among the eight QBWO modes, the North Pacific mode and the South Pacific (SP) mode have the highest forecast skills while the Asia–Pacific mode and the Central American mode have the lowest skills. For the Asia–Pacific and Central American modes, the forecasted QBWO phase shows an obvious eastward shift with increase in lead time compared to observations, indicating a smaller propagating speed. However, the predicted feature for the SP mode is more realistic. Air–sea coupling on the QBW time scale is perhaps responsible for the different prediction skills for different QBWO modes. In addition, most QBWO modes have better forecasting skills in El Niño years than in La Niña years. Different dynamical mechanisms for various QBWO modes may be partially responsible for the differences in prediction skill among different QBWO modes.  相似文献   

5.
This study evaluates the prediction skill of stratospheric temperature anomalies by the Climate Forecast System version 2 (CFSv2) reforecasts for the 12-year period from January 1, 1999 to December 2010. The goal is to explore if the CFSv2 forecasts for the stratosphere would remain skillful beyond the inherent tropospheric predictability time scale of at most 2 weeks. The anomaly correlation between observations and forecasts for temperature field at 50 hPa (T50) in winter seasons remains above 0.3 over the polar stratosphere out to a lead time of 28 days whereas its counterpart in the troposphere at 500 hPa drops more quickly and falls below the 0.3 level after 12 days. We further show that the CFSv2 has a high prediction skill in the stratosphere both in an absolute sense and in terms of gain over persistence except in the equatorial region where the skill would mainly come from persistence of the quasi-biennial oscillation signal. We present evidence showing that the CFSv2 forecasts can capture both timing and amplitude of wave activities in the extratropical stratosphere at a lead time longer than 30 days. Based on the mass circulation theory, we conjecture that as long as the westward tilting of planetary waves in the stratosphere and their overall amplitude can be captured, the CFSv2 forecasts is still very skillful in predicting zonal mean anomalies even though it cannot predict the exact locations of planetary waves and their spatial scales. This explains why the CFSv2 has a high skill for the first EOF mode of T50, the intraseasonal variability of the annular mode while its skill degrades rapidly for higher EOF modes associated with stationary waves. This also explains why the CFSv2’s skill closely follows the seasonality and its interannual variability of the meridional mass circulation and stratosphere polar vortex. In particular, the CFSv2 is capable of predicting mid-winter polar stratosphere warming events in the Northern Hemisphere and the timing of the final polar stratosphere warming in spring in both hemispheres 3–4 weeks in advance.  相似文献   

6.
This study investigates the variation and prediction of the west China autumn rainfall (WCAR) and their associated atmospheric circulation features, focusing on the transitional stages of onset and demise of the WCAR. Output from the 45-day hindcast by the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) and several observational data sets are used. The onset of WCAR generally occurs at pentad 46 and decays at pentad 56, with heavy rainfall over the northwestern China and moderate rainfall over the south. Before that, southerly wind changes into southeasterly wind, accompanied by a westward expansion and intensification of the western Pacific subtropical high (WPSH), favoring rainfall over west China. On the other hand, during the decay of WCAR, a continental cold high develops and the WPSH weakens and shifts eastward, accompanied by a demise of southwest monsoon flow, leading to decay of rainfall over west China. The CFSv2 generally well captures the variation of WCAR owing to the high skill in capturing the associated atmospheric circulation, despite an overestimation of rainfall. This overestimation occurs at all time leads due to the overestimated low-level southerly wind. The CFSv2 can pinpoint the dates of onset and demise of WCAR at the leads up to 5 days and 40 days, respectively. The lower prediction skill for WCAR onset is due to the unrealistically predicted northerly wind anomaly over the lower branch of the Yangtze River and the underestimated movement of WPSH after lead time of 5 days.  相似文献   

7.
Daily output from the hindcasts by the NCEP Climate Forecast System version 2(CFSv2) is analyzed to understand CFSv2's skill in forecasting wintertime atmospheric blocking in the Northern Hemisphere.Prediction skills of sector blocking,sector-blocking episodes,and blocking onset/decay are assessed with a focus on the Euro-Atlantic sector(20°W-45°E) and the Pacific sector(160°E-135°W).Features of associated circulation and climate patterns are also examined.The CFSv2 well captures the observed features of longitudinal distribution of blocking activity,but underestimates blocking frequency and intensity and shows a decreasing trend in blocking frequency with increasing forecast lead time.Within 14-day lead time,the Euro-Atlantic sector blocking receives a higher skill than the Pacific sector blocking.Skillful forecast(taking the hit rate of 50%as a criterion) can be obtained up to 9 days in the Euro-Atlantic sector,which is slightly longer than that in the Pacific sector(7 days).The forecast skill of sector-blocking episodes is slightly lower than that of sector blocking in both sectors,and it is slightly higher in the Euro-Atlantic sector than in the Pacific sector.Compared to block onset,the skill for block decay is lower in the Euro-Atlantic sector,slightly higher in the Pacific sector during the early three days but lower after three days in lead time.In both the Euro-Atlantic and the Pacific sectors,a local dipole pattern in 500-hPa geopotential height associated with blocking is well presented in the CFSv2 prediction,but the wave-train like pattern that is far away from the blocking sector can only maintain in the forecast of relative short lead time.The CFSv2 well reproduces the observed characteristics of local temperature and precipitation anomalies associated with blocking.  相似文献   

8.
The predictable patterns and predictive skills of monsoon precipitation in the Northern Hemisphere summer (June–July–August) are examined using reforecasts (1983–2010) from the National Center for Environmental Prediction Climate Forecast System version 2 (CFSv2). The possible connections of these predictable patterns with global sea surface temperature (SST) are investigated. The empirical orthogonal function analysis with maximized signal-to-noise ratio is used to isolate the predictable patterns of the precipitation for three regional monsoons: the Asian and Indo-Pacific monsoon (AIPM), the Africa monsoon (AFM), and the North America monsoon (NAM). Overall, the CFSv2 well predicts the monsoon precipitation patterns associated with El Niño-South Oscillation (ENSO) due to its good prediction skill for ENSO. For AIPM, two identified predictable patterns are an equatorial dipole pattern characterized by opposite variations between the equatorial western Pacific and eastern Indian Ocean, and a tropical western Pacific pattern characterized by opposite variations over the tropical northwestern Pacific and the Philippines and over the regions to its west, north, and southeast. For NAM, the predictable patterns are a tropical eastern Pacific pattern with opposite variations in the tropical eastern Pacific and in Mexico, the Guyana Plateau and the equatorial Atlantic, and a Central American pattern with opposite variations in the eastern Pacific and the North Atlantic and in the Amazon Plains. The CFSv2 can predict these patterns at least 5 months in advance. However, compared with the good skill in predicting AIPM and NAM precipitation patterns, the CFSv2 exhibits little predictive skill for AFM precipitation, probably because the variability of the tropical Atlantic SST plays a more important than ENSO in the AFM precipitation variation and the prediction skill is lower for the tropical Atlantic SST than the tropical Pacific SST.  相似文献   

9.
This work evaluates the skill of retrospective predictions of the second version of the NCEP Climate Forecast System (CFSv2) for the North Atlantic sea surface temperature (SST) and investigates the influence of El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the prediction skill over this region. It is shown that the CFSv2 prediction skill with 0–8 month lead displays a “tripole”-like pattern with areas of higher skills in the high latitude and tropical North Atlantic, surrounding the area of lower skills in the mid-latitude western North Atlantic. This “tripole”-like prediction skill pattern is mainly due to the persistency of SST anomalies (SSTAs), which is related to the influence of ENSO and NAO over the North Atlantic. The influences of ENSO and NAO, and their seasonality, result in the prediction skill in the tropical North Atlantic the highest in spring and the lowest in summer. In CFSv2, the ENSO influence over the North Atlantic is overestimated but the impact of NAO over the North Atlantic is not well simulated. However, compared with CFSv1, the overall skills of CFSv2 are slightly higher over the whole North Atlantic, particularly in the high latitudes and the northwest North Atlantic. The model prediction skill beyond the persistency initially presents in the mid-latitudes of the North Atlantic and extends to the low latitudes with time. That might suggest that the model captures the associated air-sea interaction in the North Atlantic. The CFSv2 prediction is less skillful than that of SSTA persistency in the high latitudes, implying that over this region the persistency is even better than CFSv2 predictions. Also, both persistent and CFSv2 predictions have relatively low skills along the Gulf Stream.  相似文献   

10.
An ensemble prediction system (EPS) is devised for the extended range prediction (ERP) of monsoon intraseasonal oscillations (MISO) of Indian summer monsoon (ISM) using National Centers for Environmental Prediction Climate Forecast System model version 2 at T126 horizontal resolution. The EPS is formulated by generating 11 member ensembles through the perturbation of atmospheric initial conditions. The hindcast experiments were conducted at every 5-day interval for 45 days lead time starting from 16th May to 28th September during 2001–2012. The general simulation of ISM characteristics and the ERP skill of the proposed EPS at pentad mean scale are evaluated in the present study. Though the EPS underestimates both the mean and variability of ISM rainfall, it simulates the northward propagation of MISO reasonably well. It is found that the signal-to-noise ratio of the forecasted rainfall becomes unity by about 18 days. The potential predictability error of the forecasted rainfall saturates by about 25 days. Though useful deterministic forecasts could be generated up to 2nd pentad lead, significant correlations are found even up to 4th pentad lead. The skill in predicting large-scale MISO, which is assessed by comparing the predicted and observed MISO indices, is found to be ~17 days. It is noted that the prediction skill of actual rainfall is closely related to the prediction of large-scale MISO amplitude as well as the initial conditions related to the different phases of MISO. An analysis of categorical prediction skills reveals that break is more skillfully predicted, followed by active and then normal. The categorical probability skill scores suggest that useful probabilistic forecasts could be generated even up to 4th pentad lead.  相似文献   

11.
基于南海夏季风季节内振荡的降水延伸预报试验   总被引:3,自引:2,他引:1       下载免费PDF全文
利用代表南海夏季风季节内振荡特征的850 hPa纬向风EOF分解的前两个主成分,定义南海夏季风季节内振荡指数,并利用美国国家环境预测中心第2代气候预报系统 (NCEP Climate Forecast System Version 2, NCEP/CFSv2) 提供的1982—2009年逐日回算预报场计算了南海夏季风季节内振荡指数的预报值,用于我国南方地区持续性强降水的预报试验。试验结果表明:利用南海夏季风季节内振荡实时监测指数与模式直接预报降水量相结合的统计动力延伸预报方法,能够有效提高季节内降水分量的预报效果。同时,该方法能够避免末端数据损失,修正了对模式预报降水直接进行带通滤波而导致的负相关现象,并起到消除模式系统误差的作用。  相似文献   

12.
In this study, we examine the characteristics of the boreal summer monsoon intraseasonal oscillation (BSISO) using the second version of the Climate Forecast System (CFSv2) and revisit the role of air–sea coupling in BSISO simulations. In particular, simulations of the BSISO in two carefully designed model experiments are compared: a fully coupled run and an uncoupled atmospheric general circulation model (AGCM) run with prescribed sea surface temperatures (SSTs). In these experiments an identical AGCM is used, and the daily mean SSTs from the coupled run are prescribed as a boundary condition in the AGCM run. Comparisons indicate that air–sea coupling plays an important role in realistically simulating the BSISO in CFSv2. Compared with the AGCM run, the coupled run not only simulates the spatial distributions of intraseasonal rainfall variations better but also shows more realistic spectral peaks and northward and eastward propagation features of the BSISO over India and the western Pacific. This study indicates that including an air–sea feedback mechanism may have the potential to improve the realism of the mean flow and intraseasonal variability in the Indian and western Pacific monsoon region.  相似文献   

13.
We have evaluated the simulation of Indian summer monsoon and its intraseasonal oscillations in the National Centers for Environmental Prediction climate forecast system model version 2 (CFSv2). The dry bias over the Indian landmass in the mean monsoon rainfall is one of the major concerns. In spite of this dry bias, CFSv2 shows a reasonable northward propagation of convection at intraseasonal (30–60 day) time scale. In order to document and understand this dry bias over the Indian landmass in CFSv2 simulations, a two pronged investigation is carried out on the two major facets of Indian summer monsoon: one, the air–sea interactions and two, the large scale vertical heating structure in the model. Our analysis shows a possible bias in the co-evolution of convection and sea surface temperature in CFSv2 over the equatorial Indian Ocean. It is also found that the simulated large scale vertical heat source (Q1) and moisture sink (Q2) over the Indian region are biased relative to observational estimates. Finally, this study provides a possible explanation for the dry precipitation bias over the Indian landmass in the simulated mean monsoon on the basis of the biases associated with the simulated ocean–atmospheric processes and the vertical heating structure. This study also throws some light on the puzzle of CFSv2 exhibiting a reasonable northward propagation at the intraseasonal time scale (30–60 day) despite a drier monsoon over the Indian land mass.  相似文献   

14.
MJO prediction in the NCEP Climate Forecast System version 2   总被引:3,自引:0,他引:3  
The Madden–Julian Oscillation (MJO) is the primary mode of tropical intraseasonal climate variability and has significant modulation of global climate variations and attendant societal impacts. Advancing prediction of the MJO using state of the art observational data and modeling systems is thus a necessary goal for improving global intraseasonal climate prediction. MJO prediction is assessed in the NOAA Climate Forecast System version 2 (CFSv2) based on its hindcasts initialized daily for 1999–2010. The analysis focuses on MJO indices taken as the principal components of the two leading EOFs of combined 15°S–15°N average of 200-hPa zonal wind, 850-hPa zonal wind and outgoing longwave radiation at the top of the atmosphere. The CFSv2 has useful MJO prediction skill out to 20 days at which the bivariate anomaly correlation coefficient (ACC) drops to 0.5 and root-mean-square error (RMSE) increases to the level of the prediction with climatology. The prediction skill also shows a seasonal variation with the lowest ACC during the boreal summer and highest ACC during boreal winter. The prediction skills are evaluated according to the target as well as initial phases. Within the lead time of 10 days the ACC is generally greater than 0.8 and RMSE is less than 1 for all initial and target phases. At longer lead time, the model shows lower skills for predicting enhanced convection over the Maritime Continent and from the eastern Pacific to western Indian Ocean. The prediction skills are relatively higher for target phases when enhanced convection is in the central Indian Ocean and the central Pacific. While the MJO prediction skills are improved in CFSv2 compared to its previous version, systematic errors still exist in the CFSv2 in the maintenance and propagation of the MJO including (1) the MJO amplitude in the CFSv2 drops dramatically at the beginning of the prediction and remains weaker than the observed during the target period and (2) the propagation in the CFSv2 is too slow. Reducing these errors will be necessary for further improvement of the MJO prediction.  相似文献   

15.
利用NCEP的气候预报系统第二版(CFSv2)提供的逐日降水模式资料,采用集合预报方法开展区域性夏季降水预报,使用出入梅日期均方根误差(RMSE)、准确率(ACCU),梅雨期长度均方根误差(RMSE)及梅雨雨强距平符号一致率(Pc)等3种方法评估模式资料对湖北省梅雨特征量的预报能力。结果表明:入梅预报提前13 d的ACCU可达0.5以上、RMSE小于3 d,出梅预报提前14 d的ACCU可达0.5以上、RMSE小于3 d,梅雨期长度预报提前14天的RMSE小于5 d,梅雨雨强预报提前14 d的Pc可达0.5以上。梅雨特征量总体预报时效为14 d左右,CFSv2模式资料对区域性夏季降水在梅雨延伸期时段表现出一定的预报技巧。  相似文献   

16.
Lagged ensembles from the operational Climate Forecast System version 2 (CFSv2) seasonal hindcast dataset are used to assess skill in forecasting interannual variability of the December–February Arctic Oscillation (AO). We find that a small but statistically significant portion of the interannual variance (>20 %) of the wintertime AO can be predicted at leads up to 2 months using lagged ensemble averages. As far as we are aware, this is the first study to demonstrate that an operational model has discernible skill in predicting AO variability on seasonal timescales. We find that the CFS forecast skill is slightly higher when a weighted ensemble is used that rewards forecast runs with the most accurate representations of October Eurasian snow cover extent (SCE), hinting that a stratospheric pathway linking October Eurasian SCE with the AO may be responsible for the model skill. However, further analysis reveals that the CFS is unable to capture many important aspects of this stratospheric mechanism. Model deficiencies identified include: (1) the CFS significantly underestimates the observed variance in October Eurasian SCE, (2) the CFS fails to translate surface pressure anomalies associated with SCE anomalies into vertically propagating waves, and (3) stratospheric AO patterns in the CFS fail to propagate downward through the tropopause to the surface. Thus, alternate boundary forcings are likely contributing to model skill. Improving model deficiencies identified in this study may lead to even more skillful predictions of wintertime AO variability in future versions of the CFS.  相似文献   

17.
During the summer monsoon (1 June to 30 September) 2007, real-time district level rainfall forecasts in short-range time scale were generated for Indian region applying multimodel ensemble technique. The pre-assigned grid point weights on the basis of correlation coefficients (CC) between the observed values and forecast values are determined for each constituent model at the resolution of 0.5° × 0.5° utilizing two seasons datasets (1 June to 30 September, 2005 and 2006), and the multimodel ensemble forecasts (day 1 and day 2 forecasts) are generated at the same resolution on a real-time basis. The ensemble forecast fields are then used to prepare forecasts for each district taking the average value of all grid points falling in a particular district. In this paper we examined the performance skill of the multimodel ensemble-based real-time district level short-range forecast of rainfall. It has clearly emerged from the results that the multimodel ensemble technique reported in this study is superior to each ensemble member. District wise performance of the ensemble rainfall forecast reveals that the technique, in general, is capable of providing reasonably good forecast skill over most districts of the country, particularly over the districts where the monsoon systems are dominant. Though the procedure shows appreciable skill to predict occurrence or non-occurrence of rainfall at the district level, it always underestimates rainfall amount, particularly in heavy rainfall events. Possible reasons of this failure may be due to model bias and poor data assimilation procedure.  相似文献   

18.
The performance of a dynamical seasonal forecast system is evaluated for the prediction of summer monsoon rainfall over the Indian region during June to September (JJAS). The evaluation is based on the National Centre for Environmental Prediction’s (NCEP) climate forecast system (CFS) initialized during March, April and May and integrated for a period of 9 months with a 15 ensemble members for 25 years period from 1981 to 2005. The CFS’s hindcast climatology during JJAS of March (lag-3), April (lag-2) and May (lag-1) initial conditions show mostly an identical pattern of rainfall similar to that of verification climatology with the rainfall maxima (one over the west-coast of India and the other over the head Bay of Bengal region) well simulated. The pattern correlation between verification and forecast climatology over the global tropics and Indian monsoon region (IMR) bounded by 50°E–110°E and 10°S–35°N shows significant correlation coefficient (CCs). The skill of simulation of broad scale monsoon circulation index (Webster and Yang; WY index) is quite good in the CFS with highly significant CC between the observed and predicted by the CFS from the March, April and May forecasts. High skill in forecasting El Nino event is also noted for the CFS March, April and May initial conditions, whereas, the skill of the simulation of Indian Ocean Dipole is poor and is basically due to the poor skill of prediction of sea surface temperature (SST) anomalies over the eastern equatorial Indian Ocean. Over the IMR the skill of monsoon rainfall forecast during JJAS as measured by the spatial Anomaly CC between forecast rainfall anomaly and the observed rainfall anomaly during 1991, 1994, 1997 and 1998 is high (almost of the order of 0.6), whereas, during the year 1982, 1984, 1985, 1987 and 1989 the ACC is only around 0.3. By using lower and upper tropospheric forecast winds during JJAS over the regions of significant CCs as predictors for the All India Summer Monsoon Rainfall (AISMR; only the land stations of India during JJAS), the predicted mean AISMR with March, April and May initial conditions is found to be well correlated with actual AISMR and is found to provide skillful prediction. Thus, the calibrated CFS forecast could be used as a better tool for the real time prediction of AISMR.  相似文献   

19.
Forecasting summer monsoon rainfall with precision becomes crucial for the farmers to plan for harvesting in a country like India where the national economy is mostly based on regional agriculture. The forecast of monsoon rainfall based on artificial neural network is a well-researched problem. In the present study, the meta-heuristic ant colony optimization (ACO) technique is implemented to forecast the amount of summer monsoon rainfall for the next day over Kolkata (22.6°N, 88.4°E), India. The ACO technique belongs to swarm intelligence and simulates the decision-making processes of ant colony similar to other adaptive learning techniques. ACO technique takes inspiration from the foraging behaviour of some ant species. The ants deposit pheromone on the ground in order to mark a favourable path that should be followed by other members of the colony. A range of rainfall amount replicating the pheromone concentration is evaluated during the summer monsoon season. The maximum amount of rainfall during summer monsoon season (June—September) is observed to be within the range of 7.5–35 mm during the period from 1998 to 2007, which is in the range 4 category set by the India Meteorological Department (IMD). The result reveals that the accuracy in forecasting the amount of rainfall for the next day during the summer monsoon season using ACO technique is 95 % where as the forecast accuracy is 83 % with Markov chain model (MCM). The forecast through ACO and MCM are compared with other existing models and validated with IMD observations from 2008 to 2012.  相似文献   

20.
A new approach to ensemble forecasting of rainfall over India based on daily outputs of four operational numerical weather prediction (NWP) models in the medium-range timescale (up to 5 days) is proposed in this study. Four global models, namely ECMWF, JMA, GFS and UKMO available on real-time basis at India Meteorological Department, New Delhi, are used simultaneously with adequate weights to obtain a multi-model ensemble (MME) technique. In this technique, weights for each NWP model at each grid point are assigned on the basis of unbiased mean absolute error between the bias-corrected forecast and observed rainfall time series of 366 daily data of 3 consecutive southwest monsoon periods (JJAS) of 2008, 2009 and 2010. Apart from MME, a simple ensemble mean (ENSM) forecast is also generated and experimented. The prediction skill of MME is examined against observed and corresponding outputs of each constituent model during monsoon 2011. The inter-comparison reveals that MME is able to provide more realistic forecast of rainfall over Indian monsoon region by taking the strength of each constituent model. It has been further found that the weighted MME technique has higher skill in predicting daily rainfall compared to ENSM and individual member models. RMSE is found to be lowest in MME forecasts both in magnitude and area coverage. This indicates that fluctuations of day-to-day errors are relatively less in the MME forecast. The inter-comparison of domain-averaged skill scores for different rainfall thresholds further clearly demonstrates that the MME algorithm improves slightly above the ENSM and member models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号