首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic response of a semi‐infinite fluid‐filled borehole embedded in an elastic half‐space under a concentrated normal surface load is analysed in the long‐wavelength limit. The solution of the problem is obtained with integral transforms in the form of a double integral with respect to the slowness and frequency. The partial P‐ and SVwave responses are further transformed to path integrals along Cagniard paths in the complex slowness plane. Unlike the traditional Cagniard‐de Hoop technique based on the Laplace transform of time dependence, this paper is based on the Fourier transform. The tube‐wave response is presented as a causal integral over a slowness range. The resultant representation in the time‐domain is suitable for the numerical evaluation of the complete response in the fluid‐filled borehole, especially at large distances. Asymptotic analysis of seismic phases arising in the borehole is performed on the basis of the obtained solution. The complete asymptotic wavefield consists in P and SVwaves, the Rayleigh wave and the low‐frequency Stoneley (tube) wave. Pressure synthetics obtained by the use of the asymptotic formulas are shown to be in good agreement with straightforward calculations.  相似文献   

2.
井中磁源瞬变电磁响应特征研究   总被引:6,自引:1,他引:5       下载免费PDF全文
井中瞬变电磁波勘探是一个全空间地球物理场问题.采用Gaver-Stehfest逆拉氏变换方法,正演计算了瞬变信号激励下接收线圈上的电磁场响应.分析了包含井眼泥浆、套管、水泥环和地层的轴对称多层介质模型的电磁场响应特征,考察了各层介质参数对井中瞬变电磁响应的影响.不同电导率井眼泥浆的电磁场响应衰减曲线表明,井眼泥浆电导率...  相似文献   

3.
The dynamic response of a double infinite beam system connected by a viscoelastic foundation under the harmonic line load is studied. The double infinite beam system consists of two identical and parallel beams, and the two beams are infinite elastic homogeneous and isotropic. A viscoelastic layer connects the two beams continuously. To decouple the two coupled equations governing the response of the double infinite beam system, a variable substitution method is introduced. The frequency domain solutions of the decoupled equations are obtained by using Fourier transforms as well as Laplace transforms successively. The time domain solution in the generalized integral form are then obtained by employing the corresponding inverse transforms, i.e. Fourier transform and inverse Laplace transform. The solution is verified by numerical examples, and the effects of parameters on the response are also investigated.  相似文献   

4.
Based on Biot's wave equation, dynamic response of a circular tunnel with partially sealed liner in viscoelastic saturated soil is investigated. By introducing two scalar potential functions, the analytical solutions of stresses, displacements and pore pressure induced by axisymmetric gradually applied step load are derived in Laplace transform domain. Numerical results are obtained by inverting Laplace transform presented by Durbin and used to analyze the influences of partial permeable property of boundary and viscoelastic damping coefficient of soil on dynamic response of the tunnel. It is shown that the attenuation of radial displacement appeared with the increase of viscoelastic damping coefficient of soil, and relative rigidity of liner and soil, and the influence of partial sealing property of boundary on stresses, displacements and pore pressure is remarkable. The available solutions of permeable and impermeable boundary conditions are only two extreme cases of this paper.  相似文献   

5.
G-S变换的快速算法   总被引:18,自引:8,他引:10  
在电磁场瞬变响应的数值计算中 ,常采用G S变换法作逆拉氏变换 .它是纯实数运算 ,而且只需对较少的拉氏变换变量s值作计算 (通常对每一采样时间选用 1 2个s值 ) ,因而是一种计算速度较快的算法 .但是 ,要对大量采样时间作计算 ,其计算量仍太大 .本文基于拉氏变换的延迟定理 ,建立了一种新的G S变换算法 .数值检验结果表明 ,新算法可成级次地减少对大量采样时间作G S变换的计算量 ,显著提高电磁场瞬变响应的计算速度 .  相似文献   

6.
This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot’s poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.  相似文献   

7.
In this paper, time domain dynamic analysis of piles under impact loading is presented. For this purpose a hybrid boundary element technique is implemented. Linear beam column finite elements are used to model the piles and resulting governing equations are solved using an implicit integration scheme. The continuum is assumed to be elastic and an efficient step-by-step time integration scheme is implemented by using an approximate half space integral formulation. By enforcing displacement equilibrium conditions at each time step, a system of equations is generated which yields the solution. Results of this time domain formulation under linear material behavior are compared with Laplace domain results to validate the methods.  相似文献   

8.
In most previous studies on the dynamic response of a long cylindrical cavity subjected to internal transient dynamic loads, the porous medium was usually assumed to be completely saturated by ground water. In practice, however, the full saturation condition does not always exist. In this paper the surrounding soil and the lining of the cavity are respectively treated as a nearly saturated porous medium and an elastic material, and the governing equations for the dynamic problem are derived. A set of exact solutions are obtained in the Laplace transform domain for three types of transient loads, i.e. suddenly applied constant load, gradually applied step load and triangular pulse load. By utilizing a reliable numerical method of inverse Laplace transforms, the time-domain solutions are then presented. The influence of the degree of saturation of the surrounding soil on the dynamic response of the lined cavity is examined for numerical examples.  相似文献   

9.
Summary An attempt is made to study the dynamic response of a thick, homogeneous isotropic elastic sphere under the action of uniformly distributed internal and external pressure distributions which vary sinusoidally with time. An exact solution of the problem is obtained with the aid of the Laplace transform method and the theory of residues. Some main properties of the radial vibration field are examined. The frequency equation for the free vibration is derived explicitly. Several limiting cases of interest are recovered.  相似文献   

10.
阶跃SH波作用下半圆形凹陷地形的瞬态反应—长期解   总被引:1,自引:0,他引:1  
本文利用Laplace变换和波函数展开方法讨论了在阶跃的SH位移波作用下半圆形凹陷地形的瞬态反应问题。经Laplace反演后,求出了阶跃SH波通过凹陷地形后散射位移场的长期解。最后给出了在不同时刻凹陷地形表面上各点的位移反应。  相似文献   

11.
基于平面应变简化假定的桩扭转振动理论精度研究   总被引:3,自引:1,他引:2  
利用拉普拉斯变换对考虑桩土耦合扭转振动条件下,桩顶受到任意激振扭矩作用的端承桩桩顶频域及时域响应进行解析求解,推导求得了桩顶位移、速度频域响应,桩顶复阻抗的解析表达式和半正弦脉冲激励作用下的桩顶时域响应半解析解;将本文所得理论解与基于平面应变假定的桩基扭转耦合振动的频域解和时域解进行了全面对比研究,具体比较范围涉及土层对桩的局部复阻抗、桩顶复频响应、速度导纳、桩顶复刚度和桩顶时域响应等方面,并得到若干重要结论。研究成果校核了平面应变假定在桩基扭转振动理论研究中的合理运用,为进一步了解桩土耦合振动的内在机理提供理论支持。  相似文献   

12.
ABSTRACT

A borehole partially penetrating a confined aquifer and pumped at a constant rate is modelled, taking account of water stored within the casing of the borehole. A solution for drawdown in the Laplace transform domain is obtained. The proportion of aquifer water in well discharge is numerically evaluated, tabulated as a function of time and compared with results for a fully penetrating well. Modification of the fully penetrating well theory, for application to partially penetrating wells, was found to give comparable results to the more complete analysis for a partially penetrating well both at early and late times. A previous estimate of the time of pumping before sampling (ts) to minimize casing storage effects, based on the fully penetrating well theory, was confirmed by the partially penetrating well analysis and in fact was shown to be a conservative estimate (or overestimate) of the pumping time required when sampling from a partially penetrating well.  相似文献   

13.
It can be very time consuming to use the conventional numerical methods, such as the finite element method, to solve convection–dispersion equations, especially for solutions of large-scale, long-term solute transport in porous media. In addition, the conventional methods are subject to artificial diffusion and oscillation when used to solve convection-dominant solute transport problems. In this paper, a hybrid method of Laplace transform and finite element method is developed to solve one- and two-dimensional convection–dispersion equations. The method is semi-analytical in time through Laplace transform. Then the transformed partial differential equations are solved numerically in the Laplace domain using the finite element method. Finally the nodal concentration values are obtained through a numerical inversion of the finite element solution, using a highly accurate inversion algorithm. The proposed method eliminates time steps in the computation and allows using relatively large grid sizes, which increases computation efficiency dramatically. Numerical results of several examples show that the hybrid method is of high efficiency and accuracy, and capable of eliminating numerical diffusion and oscillation effectively.  相似文献   

14.
The fundamental solution for a periodic point force in the interior of a three-dimensional, homogeneous, isotropic, elastic half-space is derived. The method of synthesis and superposition is employed to obtain the solution in the Laplace transform as well as the frequency domain. These correspond to the dynamic equivalent of Mindlin's static half-space point force solutions. It is reduced, for certain limiting conditions, to the dynamic equivalent of Boussinesq's and Cerruti's problems of a normal and tangential periodic point force respectively, on the boundary of a half-space. Also, static solutions of Mindlin, Boussinesq and Cerruti are recovered for small frequency parameters. Finally, results are presented and compared with other available solutions.  相似文献   

15.
Transient flexural vibrations of an elastic column supported by an elastic half-space are investigated analytically under the condition that an arbitrarily shaped free-field lateral acceleration is given as an input. Applying the Timoshenko theory to the column and making use of Laplace transformations with respect to time and numerical inverse Laplace transformations, the time histories of the column free end acceleration are presented. Numerical results obtained from the Timoshenko theory are compared with those of a previous paper1 (applying the Bernoulli-Euler theory to the column), and the effects of column slenderness and foundation stiffness on the transient flexural vibrations of the column are clarified.  相似文献   

16.
With the aid of the analytical layer-element method, a comprehensive analytical derivation of the response of transversely isotropic multilayered half-space subjected to time-harmonic excitations is presented in a cylindrical coordinate system. Starting with the governing equations of motion and the constitutive equations of transversely isotropic elastic body, and based on the Fourier expansion, Hankel and Laplace integral transform, analytical layer-elements for a finite layer and a half-space are derived. Considering the continuity conditions on adjacent layers׳ interfaces and the boundary conditions, the global stiffness matrix equations for multilayered half-space are assembled and solved. Finally, some numerical examples are given to make a comparison with the existing solution and to demonstrate the influence of parameters on the dynamic response of the medium.  相似文献   

17.
Two new approaches are presented for the accurate computation of the potential due to line elements that satisfy the modified Helmholtz equation with complex parameters. The first approach is based on fundamental solutions in elliptical coordinates and results in products of Mathieu functions. The second approach is based on the integration of modified Bessel functions. Both approaches allow evaluation of the potential at any distance from the element. The computational approaches are applied to model transient flow with the Laplace transform analytic element method. The Laplace domain solution is computed using a combination of point elements and the presented line elements. The time domain solution is obtained through a numerical inversion. Two applications are presented to transient flow fields, which could not be modeled with the Laplace transform analytic element method prior to this work. The first application concerns transient single-aquifer flow to wells near impermeable walls modeled with line-doublets. The second application concerns transient two-aquifer flow to a well near a stream modeled with line-sinks.  相似文献   

18.
In order to perform time history earthquake response analyses with consideration to both the dynamic soil–structure interaction and the non‐linear behaviour of the structure, it is important to transform the soil impedance in the frequency domain to the impulse response in the time domain. In this paper, a new transform method with high practicality is proposed. First, the formulation of the proposed transform method is described. Next, the validity of the method is examined using an example problem whose impulse response is analytically obtained. Then, the impedance of the rigid foundation on 2‐layered soil is transformed to the time domain, and the characteristics of the impulse response are investigated. Finally, time history earthquake response analyses of a structure on the soil using the obtained impulse response are carried out. The validity and the efficiency of the proposed method are confirmed through these investigations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A closed-form transient solution to blasting loading is presented. The blasting loading is modelled as a finite sheet dilatational source, rather than a finite line, so that the dimensions of the explosives are taken into account in two directions, i.e. one in the horizontal direction and the other in the vertical direction. The solution is obtained by using Laplace transform, with respect to the time, and Fourier transform with respect to the coordinates. Inverse Laplace transform is implemented analytically. The final solution is expressed in double integral form. The solution can be used to determine groundmotion in studying blasting impacts on underground or aboveground structures.  相似文献   

20.
Porosity is a basic parameter for evaluating reservoir,and NMR logging is an effective method to obtain the porosity. However,we have often found that there exist significant differences between NMR po-rosities and formation core porosities in the complex reservoir. In this paper,we list the factors which affect the NMR porosity response in the complex reservoir,such as longitudinal relaxation time (T1),transverse relaxation time (T2),hydrogen index (HI) and borehole environment. We show how these factors affect the NMR porosity response and suggest methods to correct them. This should improve the accuracy of NMR logging porosity in complex reservoirs for the terrestrial formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号