共查询到20条相似文献,搜索用时 15 毫秒
1.
从弧后盆地到前陆盆地——北祁连造山带奥陶纪—泥盆纪的沉积盆地与构造演化 总被引:4,自引:0,他引:4
北祁连加里东期造山带是在新元古代Rodinia联合大陆(Pangea-850)基础上裂解,经由寒武纪裂谷盆地、奥陶纪初期成熟洋盆、奥陶纪中晚期北祁连活动大陆边缘、志留纪—早、中泥盆世碰撞造山而形成的。奥陶纪中、晚期,北祁连、走廊地区中、上奥陶统发育洋壳-岛弧-弧后火山岩,形成典型的沟-弧-盆体系的沉积。志留纪—早、中泥盆世是北祁连-走廊沉积盆地的转换时期。除天祝、古浪、景泰及肃南等局部地区发育下志留统钙碱性系列火山岩以外,全区志留系均以碎屑岩沉积为主。志留系底部多见一套砾岩层。下—中志留统为典型复理石相的浊流沉积。上志留统变为滨浅海相磨拉石沉积。早、中泥盆世雪山群为典型的陆相粗碎屑磨拉石沉积。从空间分布上看,志留系—泥盆系在走廊—北祁连地区也有自北向南厚度加大、粒度变粗的特征,古流以由南向北、来自造山带的古流为特征。北祁连-河西走廊奥陶纪弧后盆地火山岩—志留系复理石-海相磨拉石—中、下泥盆统陆相磨拉石的充填序列以及空间分布特点,反映为典型的弧后盆地向前陆盆地转化的沉积序列。 相似文献
2.
川西前陆盆地中—新生代各构造层的残余厚度展布和沉积特征分析发现,四川克拉通周缘的前陆盆地在晚三叠世时期发育于龙门山山前,明显属于龙门山褶皱逆冲构造载荷所形成的前渊凹陷;侏罗纪早期的沉积地层呈面状分布,没有表现出显著的挠曲沉降,指示了一个构造相对平静的阶段;中侏罗世早期前渊凹陷迁移至龙门山北段和米仓山山前,前渊沉积从晚三叠世的北东向转换为近东西向,广泛的湖泊相沉积预示了前陆盆地的欠充填状态;中侏罗世中晚期,川西盆地沉降中心又迁移到大巴山山前,相应的挠曲变形又从近东西向转化为北西向,构成了大巴山的前渊凹陷;晚侏罗世—早白垩世时期,沉降中心再次回到米仓山山前,巨厚的前渊凹陷沉积指示了米仓山冲断带的主要活动时期;白垩纪末—古近纪的前渊凹陷则跃迁至雅安—名山地区。川西前陆盆地的同造山沉降中心以四川盆地中心为核心在西部和北部呈弧形迁移,沉积序列不断更替和叠加。中生界各构造层底界构造图显示现今的构造低部位位于川西北地区和川西南地区,在川西北地区均有东西走向的等值线分布,而川西南地区等值线走向则为北东-南西向。因此分析认为,晚侏罗世至早白垩世的构造变形可能控制了川西盆地现今的地层变形,形成了川西北地区的南北向构造挤压结构,而晚期的新生代构造变形则主要体现在川西盆地的西南部,形成北东-南西向的地层展布特征。 相似文献
3.
从弧后盆地到前陆盆地--北祁连造山带奥陶纪-泥盆纪的沉积盆地与构造演化 总被引:14,自引:1,他引:14
北祁连加里东期造山带是在新元古代Rodinia联合大陆(Pangea-850)基础上裂解,经由寒武纪裂谷盆地、奥陶纪初期成熟洋盆、奥陶纪中晚期北祁连活动大陆边缘、志留纪-早、中泥盆世碰撞造山而形成的.奥陶纪中、晚期,北祁连、走廊地区中、上奥陶统发育洋壳-岛弧-弧后火山岩,形成典型的沟-弧-盆体系的沉积.志留纪-早、中泥盆世是北祁连-走廊沉积盆地的转换时期.除天祝、古浪、景泰及肃南等局部地区发育下志留统钙碱性系列火山岩以外,全区志留系均以碎屑岩沉积为主.志留系底部多见一套砾岩层.下-中志留统为典型复理石相的浊流沉积.上志留统变为滨浅海相磨拉石沉积.早、中泥盆世雪山群为典型的陆相粗碎屑磨拉石沉积.从空间分布上看,志留系-泥盆系在走廊-北祁连地区也有自北向南厚度加大、粒度变粗的特征,古流以由南向北、来自造山带的古流为特征.北祁连-河西走廊奥陶纪弧后盆地火山岩-志留系复理石-海相磨拉石-中、下泥盆统陆相磨拉石的充填序列以及空间分布特点,反映为典型的弧后盆地向前陆盆地转化的沉积序列. 相似文献
4.
Christophe Basile 《International Journal of Earth Sciences》2006,95(5):791-801
Five stages of faulting were observed in and around the Stephanian Decazeville basin, in the SW French Massif Central, at the southern edge of the Sillon houiller fault. The older stage ends during middle Stephanian time, and corresponds to a strike-slip regime with N–S shortening and E–W extension. Before the end of the middle Stephanian, three other stages were recorded: two strike-slip regimes with NW–SE, then E–W compression and NE–SW, then N–S extension; and finally a NNE–SSW extensional regime during the main subsidence of the basin from the end of the middle Stephanian to late Stephanian. Based on mining documents, a new interpretation of the N–S striking folds of the Decazeville basin is proposed. Folding may not be associated with E–W compression but with diapirism of coal seams along syn-sedimentary normal faults during the extensional phase. A last strike-slip regime with N–S compression and E–W extension may be related to Cainozoic Pyrenean orogeny. At a regional scale, it is suggested that from the end of the middle Stephanian to the late Stephanian, the main faults in the Decazeville basin may represent a horsetail splay structure at the southern termination of the Sillon houiller fault. 相似文献
5.
本文选取湘中盆地龙山穹窿体为研究对象,主要沿二条近正交剖面开展了详细的野外地质调查、构造解析工作。系统地对龙山穹窿体进行了地层产状、轴面劈理产状、逆冲断层及其擦痕线理进行了测量和统计。根据褶皱样式与轴面劈理的配套关系,并结合卷入叠加变形的地层,以及轴面劈理的错切关系综合分析,确定NE-SW向褶皱叠加在近WNW-ESE向(近EW向)褶皱之上,确定叠加干涉样式属于Ramsay分类中典型的穹盆叠加样式。在区域地质关系与演化对比基础上,确定龙山穹窿是加里东期和燕山期褶皱复合叠加变形的结果;依据剖面构造分析及前人研究成果,确定泥盆系与前泥盆系间的区域性角度不整合和南华系与基底间拆离断层为两套区域性潜在滑脱层,并认为滑脱层在龙山穹隆体形成和发育过程中具有控制作用。通过对二期古构造应力场的恢复,重建了区域构造演化,建立了龙山穹窿体由拆离断层及软弱层控制的褶皱叠加构造模型。龙山穹窿体的褶皱叠加过程在华南大陆,特别是雪峰山造山带构造演化中具有代表性,表明加里东运动和燕山运动的叠加和复合是雪峰山造山带的重要构造表现形式,这为深入研究雪峰山造山带结构与演化提供了依据。 相似文献
6.
库车前陆冲断带西部发育中国最好的地表盐构造,可作为盐构造研究的天然实验室。前人对本区盐构造的研究主要集中于地下,包括地下盐构造样式的识别、地下盐构造分段性研究及盐构造形成机制研究等,而对于地表盐构造的研究相对较少。文章在前人研究的基础上,通过详细的野外填图,并辅以地震解释、遥感解译等方法,对库车前陆冲断带西部却勒盐推覆体变形特征进行分析,认为却勒盐推覆体的发育受控于却勒逆冲断层,库姆格列木群盐岩随逆冲断层出露地表。盐推覆体在东西向上构造差异较大,具有明显的分段性,在推覆体的中、西部,推覆体上盘地层发育齐全,盐岩仅沿推覆体逆冲前缘出露地表,属于典型的露趾增生型盐席;而在推覆体东部的察尔汗盐席处,盐上地层被剥蚀,盐岩出露地表后在重力的驱动下向周缘流动,属于溢流增生型盐席。察尔汗盐席受地表径流和降水作用影响明显,发育大量溶洞和盐山构造,并以"脉动流"的形式向前增生。盐内能干层的变形特征是反映盐岩流动性强弱的指标,盐推覆体东部察尔汗盐席盐内能干层变形样式更复杂,盐岩的流变性更强。缺少厚层顶板的限制和受降水及地表径流的充分影响是察尔汗盐席盐岩流变性较强的原因。 相似文献
7.
Antonio Funedda 《International Journal of Earth Sciences》2009,98(7):1625-1642
In the Variscan foreland of SW-Sardinia (Western Mediterranean sea), close to the leading edge of the nappe zone, nappe emplacement
caused folding and repetition of stratigraphic successions, km-scale offset of stratigraphic boundaries and an extensive brittle-ductile
shear zone. Thrusts assumed a significant role, accommodating a progressive change of shortening direction and forming complicated
thrust triangle zones. During thrust emplacement of the nappes, strong penetrative deformation affected rocks beneath the
basal thrust of the nappe stack and produced coeval structures with both foreland-directed and hinterland-directed (backthrusting)
shear sense. Cross-cutting and overprinting relationships clearly show that the shortening direction changed progressively
from N–S to E–W, producing in sequence: (1) E–W trending open folds contemporaneous with early nappe emplacement in the nearby
nappe zone; (2) recumbent, quasi-isoclinal folds with axial plane foliation and widespread, “top-towards-the-SW”, penetrative
shearing; (3) N–S trending folds with axial plane foliation, contemporaneous with late nappe emplacement; (4) backthrusts
and related asymmetrical folds developed during the final stages of shortening, postdating foreland-verging structures. Structures
at (3) and (4) occurred during the same tectonic transport “top-towards-the-E” of the nappe zone over the foreland. The several
generations of folds, thrusts, and foliations with different orientations developed, result in a complex finite structural
architecture, not completely explicable by the theoretical model proposed up to date. 相似文献
8.
J.D.A. Piper 《Tectonophysics》2009,463(1-4):185-207
The ~ 1100 Ma Sveconorwegian orogenic belt comprises allochthonous terranes juxtaposed by major fault zones and emplaced against, and onto, the south-western margin of the Fennoscandian Shield. To resolve the magnetic signature acquired during post-orogenic uplift and cooling and evaluate wider correlations with the contemporaneous Grenville belt of North America, this study reports a regional palaeomagnetic study on a range of rock types from sectors of the medium-high metamorphic grade Bamble terrane (48 sites and 390 cores) and the adjoining medium-low grade Telemark terrane (33 and 240 cores) juxtaposed by an orogen-parallel (Porsgrunn- Kristiansand) fault zone with major vertical displacement. Magnetite and ilmeno-hematites are magnetic carriers with the latter more significant in the higher metamorphic grades. Magnetic intensities are stronger in the higher-grade terrane presumably due to the growth of metamorphic ferromagnets, but are an order lower than values predicted for the lower continental crust and indicate that an additional mechanism is responsible for high magnetisations in deep crust. Anisotropy of magnetic susceptibility (AMS) largely reflects the NE–SW tectonic grain of the last stage of Sveconorwegian ductile deformation. The magnetisation record is filtered by excluding magnetisations possibly acquired during regional Mesozoic dyke emplacement, development of the Permo-Carboniferous Oslo Rift and Late Proterozoic magmatism. The remaining record is a dual polarity signature summarised by mean poles at 31.9°N, 50.9°E, (N = 191 components) in the Bamble terrane and at 34.2°N, 58.9°E (N = 151 components) in the Telemark terrane. However these means are non-Fisherian and embrace arcuate distributions of magnetic components acquired during protracted exhumation cooling of the orogen with the best-defined parts comprising clockwise trajectories correlating with each another but indicating that cooling in Telemark was more protracted; in each case directions of more shallow NW-direction tend to be derived from lower unblocking temperature components. The geochronological evidence indicates that regional temperatures had fallen to permit acquisition of magnetisation by ~ 950–900 Ma and the two swathes define the younger limb of a clockwise (Grenville-Sveconorwegian) APW loop embracing the approximate interval 940–850 Ma; the outward path of this loop (~ 1020–940 Ma) is probably at present recorded only in dyke swarms from the Finnish sector of the shield. Correlation of APW between Laurentia and Fennoscandia confirms that the two shields broke apart shortly after culmination of the Sveconorwegian orogeny when Fennoscandia rotated rapidly clockwise into a secondary configuration adjacent to the eastern margin of Laurentia; the Grenville and Sveconorwegian orogenic frontal zones formed in alignment were reoriented at a high angle to one another in a coupling that appears to have persisted during most of the remainder of Neoproterozoic times. 相似文献
9.
Mélanie Louterbach Martin Roddaz Pierre‐Olivier Antoine Laurent Marivaux Sylvain Adnet Julien Bailleul Elton Dantas Roberto Ventura Santos Farid Chemale Jr Patrice Baby Caroline Sanchez Ysabel Calderon 《地学学报》2018,30(1):17-23
Biostratigraphic, sedimentological and provenance analyses suggest that a proto‐Andean Cordillera already existed in southern Peru by late Maastrichtian–late Palaeocene times. A 270‐m‐thick stratigraphic section shows changes in depositional environments from shallow marine (early Maastrichtian) to non‐marine (late Maastrichtian) then back to estuarine (late Palaeocene) conditions. An erosional surface separates lower Maastrichtian from upper Maastrichtian deposits. Above this surface, the late Maastrichtian unit exhibits moderately developed palaeosols and syn‐sedimentary normal faults. The sedimentary evolution is accompanied by a decrease in sedimentation rate and by changes in provenance. Shallow marine lower Maastrichtian deposits have a cratonic provenance as shown by their low εNd(0) values (?15 to ?16) and the presence of Precambrian inherited zircon grains. The upper Maastrichtian deposits have a mixed Andean and cratonic origin with εNd(0) values of ~12.6 and yield the first Cretaceous and Permo‐Triassic zircon grains. Estuarine to shallow marine upper Palaeocene deposits have an Andean dominant source as attested by higher εNd(0) values (?6 to ?10) and by the presence of Palaeozoic and Late Cretaceous zircon grains. The changes in depositional environments and sedimentation rates, as well as the shift in detrital provenance, are consistent with a late Maastrichtian–late Palaeocene period of Andean mountain building. In agreement with recently published studies, our data suggest that an Andean retroarc foreland basin was active by late Maastrichtian–late Palaeocene times. 相似文献
10.
Stefani Marco Minarelli Luca Fontana Alessandro Hajdas Irka 《International Journal of Earth Sciences》2018,107(7):2433-2447
International Journal of Earth Sciences - Our research is aimed at estimating the vertical deformation affecting late Quaternary units accumulated into the foreland basin of the Northern Apennines... 相似文献
11.
中生代早期造山作用使松潘-甘孜地区地壳厚度加厚到约50~60km,因而随即经历了大规模区域性地壳伸展和减薄作用,然而迄今为止,对伸展和减薄事件的形成和发育机制还缺少深入了解。通过对龙门山前陆逆冲带腹陆地区,特别是其中发育的变质核杂岩及伸展变质穹隆体的详细构造解析,发现震旦系—古生界中普遍发育各种形式的顺层韧性流变构造,如韧性剪切带、透入性顺层面理及矿物拉伸线理、糜棱岩化及绿片岩相—低角闪岩相变质作用,并在龙门山北、中和南段造成大规模和不同程度的地层构造缺失或减薄;韧性流变构造流变方向在龙门山北段指向南或SSE,中、南段则指向SE;对志留系茂县群变质作用温压条件进行估算,其温度变化范围为265~405℃,压力变化范围为0.31~0.48GPa,代表了中地壳韧性流壳层(middle crustal ductile channel flow)的形成条件;前人用39Ar/40Ar和SHRIMP锆石U-Pb等方法对这一套区域动力变质岩石变质年龄的时代限定为190~150Ma,与中生代早期造山后板内伸展减薄事件相匹配。因此表明造山作用加厚地壳在中地壳层次以大规模韧性流变变形和变质作用对地壳厚度进行了调整,相对于上地壳层次变形和变质作用而言,中地壳韧性流壳层是松潘-甘孜造山带伸展和减薄的主要原因。在区域上如果消除新生代松潘-甘孜高原加厚和相对上扬子地块逆时针旋转的影响,中生代韧性流壳层流变方向总体为SSE或向南,因此代表南秦岭造山作用后的板内演化阶段,并且是造成松潘-甘孜造山带伸展垮塌的主要原因。 相似文献
12.
北山古生代火山岩尤其是石炭纪-二叠纪火山岩的形成环境及成因备受学者关注且长期以来存在争议。本文收集了近年来发表的关于北山石炭纪-二叠纪火山岩研究的地球化学数据,岩石地球化学特征显示北山石炭纪玄武岩主要为安山玄武岩,属拉斑系列,二叠纪火山岩主要为安山玄武岩和亚碱性玄武岩,落入拉斑系列及过渡区;石炭纪玄武岩和二叠纪玄武岩均具有LREE富集的球粒陨石标准化稀土元素配分模式,轻重稀土元素分馏程度均较低。在微量元素蛛网图上,石炭纪-二叠纪遭受地壳混染的玄武岩呈现出明显的Nb-Ta亏损和微弱的Ti亏损特征,而未遭受地壳混染作用的绝大多数石炭纪-二叠纪玄武岩主要呈现出与OIB相似的"隆起"状不相容元素标准化配分模式。岩石成因分析认为,石炭纪-二叠纪玄武质岩浆可能主要来源于地幔柱,部分石炭纪-二叠纪玄武岩在形成演化过程中遭受了明显的大陆地壳混染作用,导致其出现十分相似于岛弧或活动大陆边缘的地球化学特征。结合区域构造演化分析及构造环境判别,认为石炭纪-二叠纪玄武岩均形成于大陆板内环境。 相似文献
13.
Yanghua Wang G.A. Houseman G. Lin F. Guo Y.-J. Wang W.-M. Fan X. Chang 《Tectonophysics》2005,405(1-4):47-63
Horizontal extension of a previously thickened crust could be the principal mechanism that caused the development of widespread extensional basins throughout the North China block (Hua-Bei region) during the Mesozoic. We develop here a regional tectonic model for the evolution of the lithosphere in the North China block, based on thin sheet models of lithospheric deformation, with numerical solutions obtained using the finite element method. The tectonic evolution of this region is defined conceptually by two stages in our simplified tectonic model: the first stage is dominated by N–S shortening, and the second by E–W extension. We associate the N–S shortening with the Triassic continental collision between the North and South China blocks, assuming that the Tan-Lu Fault system defines the eastern boundary of the North China block. The late Mesozoic E–W extension that created the Mesozoic basin systems requires a change in the regional stress state that could have been triggered by either or both of the following factors: First, gravitational instability of the lithosphere triggered by crustal convergence might have removed the lower layers of the thickened mantle lithosphere and thus caused a rapid increase in the local gravitational potential energy of the lithosphere. Secondly, a change to the constraining stress on the eastern boundary of the North China block, that might have been caused by roll-back of the subducting Pacific slab, could have reduced the E–W horizontal stress enough to activate extension. Our simulations show that widespread thickening of the North China block by as much as 50% can be explained by the collision with South China in the Triassic and Jurassic. If convergence then ceases, E–W extension can occur in the model if the eastern boundary of the region can move outwards. We find that such extension may occur, restoring crustal thickness of order 30 km within a period of 50 Myr or less, if the depth-averaged constitutive relation of the lithosphere is Newtonian, and if the Argand number (the ratio of buoyancy-derived stress to viscous stress) is greater than about 4. Widespread convective thinning of the lithosphere is not required in order to drive the extension with these parameters. If, however, the lithospheric viscosity is non-Newtonian (with strain-rate proportional to the third power of stress) the extensional phase would not occur in a geologically plausible time unless the Argand number were significantly increased by a lithospheric thinning event that was triggered by crustal thickening ratios as low as 1.5. 相似文献
14.
Delamination occurs mainly in the lithospheric mantle,involving interaction with the asthenosphere,the process of which is hard to observe directly.our research on granitoids in the western kunlun orogenic belt,China,indicates that high conternts of the heat-producing elements Th and U may furnish lithospheric delamination with new evidence,At the same time,we have established the Th-SiO and U-SiO2 diagrams to discriminate delamination. 相似文献
15.
北山造山带位于中亚造山带南缘,区内广泛发育古亚洲洋-陆演化的岩浆记录,是研究北山造山带构造-岩浆-成矿作用及其动力学背景的重要窗口。红柳河槽-跃进山地区是北山造山带中北部的重要组成部分,区内与成矿有关花岗岩的形成时代、成因及构造背景尚不明确,由此制约了对北山造山带内成岩成矿动力学背景的探讨。本次在系统、详细的野外地质调查、岩石(相)学观察的基础上,结合岩浆岩地球化学、锆石U-Pb年代学和Lu-Hf同位素等证据,深入剖析了北山造山带内红柳河槽-跃进山地区的花岗岩形成时代、类型、源区和动力学背景,取得了以下认识:(1)通过锆石LA-ICP-MS U-Pb定年测得与成矿有关的狼娃山二长花岗岩、红柳河槽正长花岗岩、跃进山北正长花岗岩、跃进山二长花岗岩形成时代分别为327.1±2.4Ma、326.7±2.4Ma、321.3±2.4Ma和309.7±2.2Ma,表明红柳河槽-跃进山地区铜、钨、钼、铅、锌等元素成矿与石炭纪(327.1~309.7Ma)岩浆活动有关;(2)通过花岗岩地球化学研究表明,红柳河槽-跃进山地区的花岗岩均属于钙碱性-高钾钙碱性、准铝质-弱过铝质系列,强烈富集LREE、LILE,亏损HREE、HSFE,具有典型弧岩浆的地球化学特征,花岗岩成因类型均为I型;(3)本次获得狼娃山二长花岗岩和红柳河槽正长花岗岩的εHf(t)值分别为5.90~9.92(平均值7.93)和5.87~10.28(平均值8.11),t DM2分别为0.703~0.959Ga和0.93~1.03Ga,且具有较低的Nb/Ta比值(5.1~14.2,平均值8.5),与典型新生下地壳来源岩浆(8.3)相似,表明岩浆物质可能源于新生下地壳岩石部分熔融;(4)根据锆石Ti温度计查明北山造山带红柳河槽-跃进山地区狼娃山二长花岗岩、红柳河槽正长花岗岩、跃进山北正长花岗岩、跃进山二长花岗岩的平均结晶温度分别为765℃、765℃、816.4℃、771.5℃,锆石Ce^(Ⅳ)/Ce^(Ⅲ)平均值分别为85.27、108.4、103.6、135.7,表明从石炭纪早期到晚期,岩浆的氧逸度呈逐渐升高的趋势。根据以上研究,结合前人研究成果,初步建立了北山造山带构造-岩浆演化模型如下:石炭纪北山造山带北部红石山洋向南侧公婆泉-明水-旱山复合构造单元(弧)之下发生俯冲,诱发新生下地壳部分熔融形成的壳源岩浆;其侵入到地壳浅部,并最终形成红柳河槽-跃进山花岗岩体。 相似文献
16.
《Chemical Geology》2007,236(1-2):42-64
Carboniferous volcanic rocks in the Alataw area, Northern Tianshan Range (Xinjiang), consist of early Carboniferous (ca. 320 Ma) adakites and Nb-enriched arc basalts and basaltic andesites (NEBs), and late Carboniferous (ca. 306–310 Ma) mainly high-K calc-alkaline andesites, dacites and rhyolites. The adakites are calc-alkaline, and characterized by high Na2O/K2O (1.52–3.32) ratios, negligible to positive Eu anomalies, strong depletion of heavy rare earth elements (e.g., Yb = 0.74–1.47 ppm) and Y (6.7–14.9 ppm), positive Sr and Ba but negative Nb and Ti anomalies, and relatively constant εNd(T) values (+ 3.4–+ 6.6) and (87Sr/86Sr)i ratios (0.7035–0.7042). Some andesitic and dacitic adakite samples exhibit high MgO contents similar to magnesian andesites. The NEBs are sodium-rich (Na2O/K2O = 2.03–8.06), and differ from the vast majority of arc basalts in their higher Nb, Zr, TiO2 and P2O5 contents and Nb/Th, Nb/La and Nb/U ratios, and minor negative to positive anomalies in Ba, Nb, Sr, Zr and Ti. They have the highest εNd(T) values (+ 6.4–+ 11.6) but varying (87Sr/86Sr)i ratios (0.7007–0.7063). The high-K calc-alkaline suite is similar to typical ‘normal’ arc volcanic rocks in terms of moderately fractionated rare earth abundance and distinctly negative Eu, Nb, Sr and Ti anomalies. They have εNd(T) values (+ 1.2–+ 6.4) and (87Sr/86Sr)i ratios (0.7018–0.7059). Geochemically, they are similar to coeval I-type granitoids in the Alataw area. Given the presence of early Carboniferous ophiolites in the Northern Tianshan Range, and the isotopically inappropriate compositions of Proterozoic metamorphic basement in the Alataw area, we argue that the Alataw adakites were most probably related to the melting of young subducted crust of the Northern Tianshan Ocean. The NEBs likely originated from mantle wedge peridotites metasomatized by adakites and minor slab-derived fluids. The later high-K calc alkaline suite was generated by AFC processes that acted on melts derived from a mantle wedge metasomatized by hydrous fluids. The larger range of isotopic compositions exhibited by both the NEB and high-K suite, relative to the adakites, suggests that the mantle wedge was heterogeneous prior to slab- or fluid-mediated metasomatism.Continental crustal growth of the Central Asian orogenic belt was dominated by contributions of the juvenile materials from the depleted mantle prior to 270 Ma and possibly afterwards. The results of this study suggest that other Carboniferous Nb-enriched basalts in the Tianshan Range were generated by subduction processes rather than by intraplate tectonics as previously proposed. 相似文献
17.
碰撞带前陆盆地的建立是大陆碰撞的直接标志和随后造山带构造变形的忠实记录。本文对欧亚板块与印度板块碰撞前后发育在拉萨地块上的冈底斯弧背前陆盆地,同碰撞产生的雅鲁藏布江周缘前陆盆地,以及碰撞后陆内变形产生的喜马拉雅前陆盆地的沉积地层演化以及碎屑锆石物源特征等进行了系统分析,结合前人及我们近些年的研究成果,认为冈底斯岛弧北侧发育一个典型的弧背前陆盆地系统而不是以前普遍接受的伸展盆地。除传统认为的喜马拉雅前陆盆地系统外,在碰撞造山带中还发育一个雅鲁藏布江前陆盆地系统,它是欧亚板块与印度板块碰撞以后,欧亚板块加载到印度被动大陆边缘产生的典型周缘前陆盆地。上述2个造山带前陆盆地系统的识别,大大提高了对新特提斯洋俯冲、碰撞过程的认识。造山带前陆盆地证据指示,新特提斯洋至少于140 Ma以前就已开始俯冲, 110 Ma俯冲速度开始提高,在65 Ma前后印度大陆与欧亚大陆发生碰撞,喜马拉雅山于40 Ma开始隆升,其剥蚀物质大量堆积在喜马拉雅前陆盆地中。 相似文献
18.
《Sedimentary Geology》2004,163(3-4):265-278
The late Neogene (6–0.5 Ma) fluvial succession of the Subathu sub-basin, a part of the Himalayan foreland basin, comprises a 2.4-km-thick pile of conglomerate, grey and buff sandstone, and mudstone, representing Middle and Upper Siwalik subgroup. This basin is filled mainly by major trunk and piedmont drainage, which are nearly perpendicular to each other. The clay-mineral assemblages of this sedimentary succession have illite (7–82%), smectite (0–90%), chlorite (2–23%) and kaolinite (1–13%). The grey sandstones have moderate to abundant smectite (23–90%), whereas the buff sandstones have abundant illite (66–79%) and low to absent smectite (0–14%). The mudstones that dominates the succession (>50%) have clay-mineral assemblages similar to grey and buff sandstones, or intermediate proportion. The temporal distribution of clay minerals in mudstones shows occasional intense zigzag pattern with either smectite (3–81%) or illite (15–82%) abundance.The smectite-rich grey sandstones and mudstones are deposited by trunk drainage, and the illite-rich buff sandstones and mudstones are deposited by piedmont drainage. The intense zigzag distribution pattern of clay minerals in mudstone indicates interfingering of floods from trunk and piedmont drainages. The interfingering was severe, ranging between 4.8 and 3.36 Ma and between 2.60 and 1.77 Ma, related to tectonic activity. The association of smectite (>36%) bearing mudstones and piedmont source-derived buff sandstone and conglomerate towards the upper part of the section (above 1.77 Ma) suggests either floodwater of trunk drainage over spill on the fringe of piedmont alluvial fan or derivation from smectite bearing Middle Siwalik rocks, exposed due to the activity of an intra-foreland thrust (IFT) in the piedmont zone. The occurrence of smectite and its variable proportion with time suggests its probable derivation not only from the sparsely exposed basic rock in the catchment area but also from siliceous and metamorphic rocks under favourable climatic conditions between 6 and 0.5 Ma. 相似文献
19.
Muhammed O. Usman Hideki Masago Wilfried Winkler Michael Strasser 《International Journal of Earth Sciences》2014,103(4):1141-1161
Coring during Integrated Ocean Drilling Program Expeditions 315, 316, and 333 recovered turbiditic sands from the forearc Kumano Basin (Site C0002), a Quaternary slope basin (Site C0018), and uplifted trench wedge (Site C0006) along the Kumano Transect of the Nankai Trough accretionary wedge offshore of southwest Japan. The compositions of the submarine turbiditic sands here are investigated in terms of bulk and heavy mineral modal compositions to identify their provenance and dispersal mechanisms, as they may reflect changes in regional tectonics during the past ca. 1.5 Myrs. The results show a marked change in the detrital signature and heavy mineral composition in the forearc and slope basin facies around 1 Ma. This sudden change is interpreted to reflect a major change in the sand provenance, rather than heavy mineral dissolution and/or diagenetic effects, in response to changing tectonics and sedimentation patterns. In the trench-slope basin, the sands older than 1 Ma were probably eroded from the exposed Cretaceous–Tertiary accretionary complex of the Shimanto Belt and transported via the former course of the Tenryu submarine canyon system, which today enters the Nankai Trough northeast of the study area. In contrast, the high abundance of volcanic lithics and volcanic heavy mineral suites of the sands younger than 1 Ma points to a strong volcanic component of sediment derived from the Izu-Honshu collision zones and probably funnelled to this site through the Suruga Canyon. However, sands in the forearc basin show persistent presence of blue sodic amphiboles across the 1 Ma boundary, indicating continuous flux of sediments from the Kumano/Kinokawa River. This implies that the sands in the older turbidites were transported by transverse flow down the slope. The slope basin facies then switched to reflect longitudinal flow around 1 Ma, when the turbiditic sand tapped a volcanic provenance in the Izu-Honshu collision zone, while the sediments transported transversely became confined in the Kumano Basin. Therefore, the change in the depositional systems around 1 Ma is a manifestation of the decoupling of the sediment routing pattern from transverse to long-distance axial flow in response to forearc high uplift along the megasplay fault. 相似文献
20.
Dr. P. D. Toens 《International Journal of Earth Sciences》1975,64(1):175-192
A characteristic feature of the Damara geosyncline in northern South West Africa is the gradual transgression from the relatively undeformed sediments of the miogeosynclinal facies to the metamorphosed eugeosynclinical facies. A crude mirror-image of the arc separating the two facies is present along the southern foreland of the Damara geosyncline and conforms quite clearly with the northern limit of the Kalahari craton. However, owing to the presence of major thrust-faulting which eliminates the transition-beds between the two facies a direct correlation is not possible. The pre-Damara rocks on the southern side of the Damara geosyncline have been divided into the Marienhof Formation and the Dordabis Group in central South West Africa, and the Kgwebe Group in Botswana. These rocks form the base on which the strata constituting the Damara geosyncline have been deposited, and have been subjected to metamorphism both before and during the Damara orogenesis. The term Southern Marginal Facies is proposed for the unmetamorphosed strata deposited unconformably on the pre-Damara rocks along the southern flanks of the Damara geosyncline. These unmetamorphosed strata are composed of the Klein Aub, Witvlei, Ghanzi and Tsumis Formations which are regarded as the equivalent of the Nosib Group. They are unconformably overlain by the Nama Group which is considered to be, at least in part, the equivalent of the Hakos and Khomas Formations. Copper mineralization associated with calcareous shale, limestone and argillite occurs within the Klein Aub, Witvlei and Lower Ghanzi Formations. The mineralized strata closely resemble that of the Zambian Copper-belt with which they may well be correlated. 相似文献