首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The MIT 2D climate model is used to make probabilistic projections for changes in global mean surface temperature and for thermosteric sea level rise under a variety of forcing scenarios. The uncertainties in climate sensitivity and rate of heat uptake by the deep ocean are quantified by using the probability distributions derived from observed twentieth century temperature changes. The impact on climate change projections of using the smallest and largest estimates of twentieth century deep ocean warming is explored. The impact is large in the case of global mean thermosteric sea level rise. In the MIT reference (“business as usual”) scenario the median rise by 2100 is 27 and 43 cm in the respective cases. The impact on increases in global mean surface air temperature is more modest, 4.9 and 3.9 C in the two respective cases, because of the correlation between climate sensitivity and ocean heat uptake required by twentieth century surface and upper air temperature changes. The results are also compared with the projections made by the IPCC AR4’s multi-model ensemble for several of the SRES scenarios. The multi-model projections are more consistent with the MIT projections based on the largest estimate of ocean warming. However, the range for the rate of heat uptake by the ocean suggested by the lowest estimate of ocean warming is more consistent with the range suggested by the twentieth century changes in surface and upper air temperatures, combined with the expert prior for climate sensitivity.  相似文献   

2.
A large component of present-day sea-level rise is due to the melt of glaciers other than the ice sheets. Recent projections of their contribution to global sea-level rise for the twenty-first century range between 70 and 180 mm, but bear significant uncertainty due to poor glacier inventory and lack of hypsometric data. Here, we aim to update the projections and improve quantification of their uncertainties by using a recently released global inventory containing outlines of almost every glacier in the world. We model volume change for each glacier in response to transient spatially-differentiated temperature and precipitation projections from 14 global climate models with two emission scenarios (RCP4.5 and RCP8.5) prepared for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The multi-model mean suggests sea-level rise of 155 ± 41 mm (RCP4.5) and 216 ± 44 mm (RCP8.5) over the period 2006–2100, reducing the current global glacier volume by 29 or 41 %. The largest contributors to projected global volume loss are the glaciers in the Canadian and Russian Arctic, Alaska, and glaciers peripheral to the Antarctic and Greenland ice sheets. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 80 % of their volume by 2100. However, large uncertainties in the projections remain due to the choice of global climate model and emission scenario. With a series of sensitivity tests we quantify additional uncertainties due to the calibration of our model with sparsely observed glacier mass changes. This gives an upper bound for the uncertainty range of ±84 mm sea-level rise by 2100 for each projection.  相似文献   

3.
Probabilistic climate change projections using neural networks   总被引:5,自引:0,他引:5  
Anticipated future warming of the climate system increases the need for accurate climate projections. A central problem are the large uncertainties associated with these model projections, and that uncertainty estimates are often based on expert judgment rather than objective quantitative methods. Further, important climate model parameters are still given as poorly constrained ranges that are partly inconsistent with the observed warming during the industrial period. Here we present a neural network based climate model substitute that increases the efficiency of large climate model ensembles by at least an order of magnitude. Using the observed surface warming over the industrial period and estimates of global ocean heat uptake as constraints for the ensemble, this method estimates ranges for climate sensitivity and radiative forcing that are consistent with observations. In particular, negative values for the uncertain indirect aerosol forcing exceeding –1.2 Wm–2 can be excluded with high confidence. A parameterization to account for the uncertainty in the future carbon cycle is introduced, derived separately from a carbon cycle model. This allows us to quantify the effect of the feedback between oceanic and terrestrial carbon uptake and global warming on global temperature projections. Finally, probability density functions for the surface warming until year 2100 for two illustrative emission scenarios are calculated, taking into account uncertainties in the carbon cycle, radiative forcing, climate sensitivity, model parameters and the observed temperature records. We find that warming exceeds the surface warming range projected by IPCC for almost half of the ensemble members. Projection uncertainties are only consistent with IPCC if a model-derived upper limit of about 5 K is assumed for climate sensitivity.  相似文献   

4.
To reveal the steric sea level change in 20th century historical climate simulations and future climate change projections under the IPCC’s Representative Concentration Pathway 8.5 (RCP8.5) scenario, the results of two versions of LASG/IAP’s Flexible Global Ocean-Atmosphere-Land System model (FGOALS) are analyzed. Both models reasonably reproduce the mean dynamic sea level features, with a spatial pattern correlation coefficient of 0.97 with the observation. Characteristics of steric sea level changes in the 20th century historical climate simulations and RCP8.5 scenario projections are investigated. The results show that, in the 20th century, negative trends covered most parts of the global ocean. Under the RCP8.5 scenario, global-averaged steric sea level exhibits a pronounced rising trend throughout the 21st century and the general rising trend appears in most parts of the global ocean. The magnitude of the changes in the 21st century is much larger than that in the 20th century. By the year 2100, the global-averaged steric sea level anomaly is 18 cm and 10 cm relative to the year 1850 in the second spectral version of FGOALS (FGOALS-s2) and the second grid-point version of FGOALS (FGOALS-g2), respectively. The separate contribution of the thermosteric and halosteric components from various ocean layers is further evaluated. In the 20th century, the steric sea level changes in FGOALS-s2 (FGOALS-g2) are largely attributed to the thermosteric (halosteric) component relative to the pre-industrial control run. In contrast, in the 21st century, the thermosteric component, mainly from the upper 1000 m, dominates the steric sea level change in both models under the RCP8.5 scenario. In addition, the steric sea level change in the marginal sea of China is attributed to the thermosteric component.  相似文献   

5.
Future physical and chemical changes to the ocean are likely to significantly affect the distribution and productivity of many marine species. Tuna are of particular importance in the tropical Pacific, as they contribute significantly to the livelihoods, food and economic security of island states. Changes in water properties and circulation will impact on tuna larval dispersal, preferred habitat distributions and the trophic systems that support tuna populations throughout the region. Using recent observations and ocean projections from the CMIP3 and preliminary results from CMIP5 climate models, we document the projected changes to ocean temperature, salinity, stratification and circulation most relevant to distributions of tuna. Under a business-as-usual emission scenario, projections indicate a surface intensified warming in the upper 400 m and a large expansion of the western Pacific Warm Pool, with most surface waters of the central and western equatorial Pacific reaching temperatures warmer than 29 °C by 2100. These changes are likely to alter the preferred habitat of tuna, based on present-day thermal tolerances, and in turn the distribution of spawning and foraging grounds. Large-scale shoaling of the mixed layer and increases in stratification are expected to impact nutrient provision to the biologically active layer, with flow-on trophic effects on the micronekton. Several oceanic currents are projected to change, including a strengthened upper equatorial undercurrent, which could modify the supply of bioavailable iron to the eastern Pacific.  相似文献   

6.
Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (Simulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrlS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0-16 (0-27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7-22 (7-33) cm with 2~basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2~basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs.  相似文献   

7.
This paper describes a Bayesian methodology for prediction of multivariate probability distribution functions (PDFs) for transient regional climate change. The approach is based upon PDFs for the equilibrium response to doubled carbon dioxide, derived from a comprehensive sampling of uncertainties in modelling of surface and atmospheric processes, and constrained by multiannual mean observations of recent climate. These PDFs are sampled and scaled by global mean temperature predicted by a Simple Climate Model (SCM), in order to emulate corresponding transient responses. The sampled projections are then reweighted, based upon the likelihood that they correctly replicate observed historical changes in surface temperature, and combined to provide PDFs for 20 year averages of regional temperature and precipitation changes to the end of the twenty-first century, for the A1B emissions scenario. The PDFs also account for modelling uncertainties associated with aerosol forcing, ocean heat uptake and the terrestrial carbon cycle, sampled using SCM configurations calibrated to the response of perturbed physics ensembles generated using the Hadley Centre climate model HadCM3, and other international climate model simulations. Weighting the projections using observational metrics of recent mean climate is found to be as effective at constraining the future transient response as metrics based on historical trends. The spread in global temperature response due to modelling uncertainty in the carbon cycle feedbacks is determined to be about 65–80 % of the spread arising from uncertainties in modelling atmospheric, oceanic and aerosol processes of the climate system. Early twenty-first century aerosol forcing is found to be extremely unlikely to be less than ?1.7 W m?2. Our technique provides a rigorous and formal method of combining several lines of evidence used in the previous IPCC expert assessment of the Transient Climate Response. The 10th, 50th and 90th percentiles of our observationally constrained PDF for the Transient Climate Response are 1.6, 2.0 and 2.4 °C respectively, compared with the 10–90 % range of 1.0–3.0 °C assessed by the IPCC.  相似文献   

8.
In addition to projected increases in global mean sea level over the 21st century, model simulations suggest there will also be changes in the regional distribution of sea level relative to the global mean. There is a considerable spread in the projected patterns of these changes by current models, as shown by the recent Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment (AR4). This spread has not reduced from that given by the Third Assessment models. Comparison with projections by ensembles of models based on a single structure supports an earlier suggestion that models of similar formulation give more similar patterns of sea level change. Analysing an AR4 ensemble of model projections under a business-as-usual scenario shows that steric changes (associated with subsurface ocean density changes) largely dominate the sea level pattern changes. The relative importance of subsurface temperature or salinity changes in contributing to this differs from region to region and, to an extent, from model-to-model. In general, thermosteric changes give the spatial variations in the Southern Ocean, halosteric changes dominate in the Arctic and strong compensation between thermosteric and halosteric changes characterises the Atlantic. The magnitude of sea level and component changes in the Atlantic appear to be linked to the amount of Atlantic meridional overturning circulation (MOC) weakening. When the MOC weakening is substantial, the Atlantic thermosteric patterns of change arise from a dominant role of ocean advective heat flux changes.  相似文献   

9.
A key question in studies of the potential for reducing uncertainty in climate change projections is how additional observations may be used to constrain models. We examine the case of ocean carbon cycle models. The reliability of ocean models in projecting oceanic CO2 uptake is fundamentally dependent on their skills in simulating ocean circulation and air–sea gas exchange. In this study we demonstrate how a model simulation of multiple tracers and utilization of a variety of observational data help us to obtain additional information about the parameterization of ocean circulation and air–sea gas exchange, relative to approaches that use only a single tracer. The benefit of using multiple tracers is based on the fact that individual tracer holds unique information with regard to ocean mixing, circulation, and air–sea gas exchange. In a previous modeling study, we have shown that the simulation of radiocarbon enables us to identify the importance of parameterizing sub-grid scale ocean mixing processes in terms of diffusive mixing along constant density surface (isopycnal mixing) and the inclusion of the effect of mesoscale eddies. In this study we show that the simulation of phosphate, a major macronutrient in the ocean, helps us to detect a weak isopycnal mixing in the upper ocean that does not show up in the radiocarbon simulation. We also show that the simulation of chlorofluorocarbons (CFCs) reveals excessive upwelling in the Southern Ocean, which is also not apparent in radiocarbon simulations. Furthermore, the updated ocean inventory data of man-made radiocarbon produced by nuclear tests (bomb 14C) enable us to recalibrate the rate of air–sea gas exchange. The progressive modifications made in the model based on the simulation of additional tracers and utilization of updated observational data overall improve the model’s ability to simulate ocean circulation and air–sea gas exchange, particularly in the Southern Ocean, and has great consequence for projected CO2 uptake. Simulated global ocean uptake of anthropogenic CO2 from pre-industrial time to the present day by both previous and updated models are within the range of observational-based estimates, but with substantial regional difference, especially in the Southern Ocean. By year 2100, the updated model estimated CO2 uptake are 531 and 133 PgC (1PgC?=?1015 gram carbon) for the global and Southern Ocean respectively, whereas the previous version model estimated values are 540 and 190 PgC.  相似文献   

10.
Future sea-level rise (SLR) in and around the Seto Inland Sea (SIS), Japan, is estimated in 2050 and 2100 using ensemble empirical mode decomposition (EEMD) and long-term sea-level records. Ensemble empirical mode decomposition, an adaptive data analysis method, can separate sea-level records into intrinsic mode functions (IMFs) from high to low frequencies and a residual. The residual is considered a non-linear trend in the sea-level records. The mean SLR trend at Tokuyama in the SIS from EEMD is 3.00?mm?y?1 from 1993 to 2010, which is slightly lower than the recent altimetry-based global rate of 3.3?±?0.4?mm?y?1 during the same period. Uncertainty in SLR is estimated by considering interdecadal variations in the sea levels. The resulting SLR in 2050 and 2100 for Tokuyama is 0.19?±?0.06?m and 0.56?±?0.18?m, respectively. The stations along the coast of the Pacific Ocean display a greater and more rapid SLR in 2100 compared with other stations in the SIS. The SLR is caused not only by mass and volume changes in the sea water but also by other factors, such as local subsidence, tectonic motion, and river discharge. The non-linear trend of SLR, which is the residual from EEMD, is interpreted as the sum of the local factors that contribute to the sea-level budget.  相似文献   

11.
The recent hiatus in global temperature at the surface has been analysed by several studies, mainly using global climate models. The common accepted picture is that since the late 1990s, the increase in anthropogenic radiative forcings has been counterbalanced by other factors, e.g., a decrease in natural forcings, augmented ocean heat storage and negative phases of ocean–atmosphere-coupled oscillation patterns. Here, simple vector autoregressive models are used for forecasting the temperature hiatus in the period 2001–2014. This gives new insight into the problem of understanding the ocean contribution (in terms of heat uptake and atmosphere–ocean-coupled oscillations) to the appearance of this recent hiatus. In particular, considering data about the ocean heat content until a depth of 700 m and the Atlantic multidecadal oscillation is necessary for correctly forecasting the hiatus, so catching both trend and interannual variability. Our models also show that the ocean heat uptake is substantially driven by the natural component of the total radiative forcing at a decadal time scale, confining the importance of the anthropogenic influences to a longer range warming of the ocean.  相似文献   

12.
A multivariate analysis of the upper ocean thermal structure is used to examine the recent long-term changes and decadal variability in the upper ocean heat content as represented by model-based ocean reanalyses and a model-independent objective analysis. The three variables used are the mean temperature above the 14°C isotherm, its depth and a fixed depth mean temperature (250?m mean temperature). The mean temperature above the 14°C isotherm is a convenient, albeit simple, way to isolate thermodynamical changes by filtering out dynamical changes related to thermocline vertical displacements. The global upper ocean observations and reanalyses exhibit very similar warming trends (0.045°C per decade) over the period 1965–2005, superimposed with marked decadal variability in the 1970s and 1980s. The spatial patterns of the regression between indices (representative of anthropogenic changes and known modes of internal decadal variability), and the three variables associated with the ocean heat content are used as fingerprint to separate out the different contributions. The choice of variables provides information about the local heat absorption, vertical distribution and horizontal redistribution of heat, this latter being suggestive of changes in ocean circulation. The discrepancy between the objective analysis and the reanalyses, as well as the spread among the different reanalyses, are used as a simple estimate of ocean state uncertainties. Two robust findings result from this analysis: (1) the signature of anthropogenic changes is qualitatively different from those of the internal decadal variability associated to the Pacific Interdecadal Oscillation and the Atlantic Meridional Oscillation, and (2) the anthropogenic changes in ocean heat content do not only consist of local heat absorption, but are likely related with changes in the ocean circulation, with a clear shallowing of the tropical thermocline in the Pacific and Indian oceans.  相似文献   

13.
Atmosphere–ocean interactions are known to dominate seasonal to decadal sea level variability in the southeastern North Sea. In this study an atmospheric proxy for the observed sea level variability in the German Bight is introduced. Monthly mean sea level (MSL) time series from 13 tide gauges located in the German Bight and one virtual station record are evaluated in comparison to sea level pressure fields over the North Atlantic and Europe. A quasi-linear relationship between MSL in the German Bight and sea level pressure over Scandinavia and the Iberian Peninsula is found. This relationship is used (1) to evaluate the atmospheric contribution to MSL variability in hindcast experiments over the period from 1871–2008 with data from the twentieth century reanalysis v2 (20CRv2), (2) to isolate the high frequency meteorological variability of MSL from longer-term changes, (3) to derive ensemble projections of the atmospheric contribution to MSL until 2100 with eight different coupled global atmosphere–ocean models (AOGCM’s) under the A1B emission scenario and (4) two additional projections for one AOGCM (ECHAM5/MPI-OM) under the B1 and A2 emission scenarios. The hindcast produces a reasonable good reconstruction explaining approximately 80 % of the observed MSL variability over the period from 1871 to 2008. Observational features such as the divergent seasonal trend development in the second half of the twentieth century, i.e. larger trends from January to March compared to the rest of the year, and regional variations along the German North Sea coastline in trends and variability are well described. For the period from 1961 to 1990 the Kolmogorov-Smirnow test is used to evaluate the ability of the eight AOGCMs to reproduce the observed statistical properties of MSL variations. All models are able to reproduce the statistical distribution of atmospheric MSL. For the target year 2100 the models point to a slight increase in the atmospheric component of MSL with generally larger changes during winter months (October–March). Largest MSL changes in the order of ~5–6 cm are found for the high emission scenario A2, whereas the moderate B1 and intermediate A1B scenarios lead to moderate changes in the order of ~3 cm. All models point to an increasing atmospheric contribution to MSL in the German Bight, but the uncertainties are considerable, i.e. model and scenario uncertainties are in the same order of magnitude.  相似文献   

14.
工业革命以来,大气中温室气体不断增加,驱动了全球变暖。IPCC第五次评估报告(AR5)指出,人类排放的温室气体导致的地球系统能量增加中90%以上都被海洋吸收,使得海洋增暖,海洋热含量增加。IPCC最新发布的《气候变化中的海洋和冰冻圈特别报告》(SROCC)发现:自1970年以来,几乎确定海洋上层2000 m在持续增暖。1993—2017年间的增暖速率至少为1969—1993年的2倍,体现出显著的变暖增强趋势。此外,在20世纪90年代以后,2000 m以下的深海也已观测到了变暖信号,尤其是在南大洋(30°S以南)。在1970—2017年间,南大洋上层2000 m储存了全球海洋约35%~43%的热量,在2005—2017年期间增加到45%~62%。基于耦合气候模型预估,几乎可确定海洋将在21世纪持续增暖,2018—2100年间海洋热含量上升幅度可能是1970—2017年间的5~7倍(RCP8.5情景)或2~4倍(RCP2.6情景)。变暖导致的热膨胀效应贡献了1993年以来全球海平面上升的约43%。  相似文献   

15.
Here we present two new metrics used for comparing climate impacts of emissions of different climate forcers: the Global Sea level rise Potential (GSP) and the Integrated Global Sea level rise Potential (IGSP). The GSP represents the Sea Level Rise (SLR) at a given time horizon due to an emission pulse of a forcer; the IGSP is similar but represents the time integrated SLR up to a given point in time. The GSP and IGSP are presented relative to the SLR caused by a comparable emission pulse of carbon dioxide. The metrics are assessed using an Upwelling-Diffusion Energy Balance Model (UDEBM). We focus primarily on the thermosteric part of SLR, denoted GSPth. All of the examined climate forcers – even black carbon, a very Short-Lived Climate Forcer (SLCF) – have considerable influence on the thermosteric SLR on the century time scale. For a given time horizon and forcer, GSPth lies in between the corresponding metric values obtained using Global Warming Potential (GWP) and Global Temperature change Potential (GTP), whereas IGSPth ends up in the opposite end to GTP in the spectrum of compared metrics. GSPth and IGSPth are more sensitive for SLCFs than for the long-lived Greenhouse Gases (GHGs) to changes in the parameterization of the model (under the time horizons considered here). We also use a Semi-Empirical (SE) model to estimate the full SLR, and corresponding GSPSE and IGSPSE, as alternatives to the thermosteric approach. For SLCFs, GSPSE is greater than GSPth for all time horizons considered, while the opposite holds for long-lived GHGs such as SF6.  相似文献   

16.
Estimates of twenty-first century sea-level changes for Norway   总被引:1,自引:0,他引:1  
In this work we establish a framework for estimating future regional sea-level changes for Norway. Following recently published works, we consider how different physical processes drive non-uniform sea-level changes by accounting for spatial variations in (1) ocean density and circulation (2) ice and ocean mass changes and associated gravitational effects on sea level and (3) vertical land motion arising from past surface loading change and associated gravitational effects on sea level. An important component of past and present sea-level change in Norway is glacial isostatic adjustment. Central to our study, therefore, is a reassessment of vertical land motion using a far larger set of new observations from a permanent GNSS network. Our twenty-first century sea-level estimates are split into two parts. Firstly, we show regional projections largely based on findings from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) and dependent on the emission scenarios A2, A1B and B1. These indicate that twenty-first century relative sea-level changes in Norway will vary between ?0.2 to 0.3 m (1-sigma ± 0.13 m). Secondly, we explore a high-end scenario, in which a global atmospheric temperature rise of up to 6 °C and emerging collapse for some areas of the Antarctic ice sheets are assumed. Using this approach twenty-first century relative sea-level changes in Norway are found to vary between 0.25 and 0.85 m (min/max ± 0.45 m). We attach no likelihood to any of our projections owing to the lack of understanding of some of the processes that cause sea-level change.  相似文献   

17.
We investigate the sensitivity of the transient climate change to a tidal mixing scheme. The scheme parameterizes diapycnal diffusivity depending on the location of energy dissipation over rough topography, whereas the standard configuration uses horizontally constant diffusivity. We perform ensemble climate change experiments with two setups of MPIOM/ECHAM5, one setup with the tidal mixing scheme and the second setup with the standard configuration. Analysis of the responses of the transient climate change to CO2 increase reveals that the implementation of tidal mixing leads to a significant reduction of the transient surface warming by 9 %. The weaker surface warming in the tidal run is localized particularly over the Weddell Sea, likely caused by a stronger ocean heat uptake in the Southern Ocean. The analysis of the ocean heat budget reveals that the ocean heat uptake in both experiments is caused by changes in convection and advection. In the upper ocean, heat uptake is caused by reduced convection and enhancement of the Deacon Cell, which appears also in isopycnal coordinates. In the deeper ocean, heat uptake is caused by reduction of convective cooling associated with the circulation polewards of 65°S. Tidal mixing leads to stronger heat uptake in the Southern Ocean by causing stronger changes in advection, namely a stronger increase in the Deacon Cell and a stronger reduction in advective cooling by the circulation polewards of 65°S. Counter-intuitively, the relation between tidal mixing and greater heat storage in the deep ocean is an indirect one, through the influence of tidal mixing on the circulation.  相似文献   

18.
Recently published work estimates that global sea level rise (SLR) approaching or exceeding 1 m by 2100 is plausible, thus significantly updating projections by the Fourth Assessment of the Intergovernmental Panel on Climate Change. Furthermore, global greenhouse gas (GHG) emissions over the 21st century will not only influence SLR in the next ??90 years, but will also commit Earth to several meters of additional SLR over subsequent centuries. In this context of worsening prospects for substantial SLR, we apply a new geospatial dataset to calculate low-elevation areas in coastal cities of the conterminous U.S.A. potentially impacted by SLR in this and following centuries. In total, 20 municipalities with populations greater than 300,000 and 160 municipalities with populations between 50,000 and 300,000 have land area with elevations at or below 6 m and connectivity to the sea, as based on the 1 arc-second National Elevation Dataset. On average, approximately 9% of the area in these coastal municipalities lies at or below 1 m. This figure rises to 36% when considering area at or below 6 m. Areal percentages of municipalities with elevations at or below 1?C6 m are greater than the national average along the Gulf and southern Atlantic coasts. In contrast to the national and international dimensions of and associated efforts to curb GHG emissions, our comparison of low-elevation areas in coastal cities of the conterminous U.S.A. clearly shows that SLR will potentially have very local, and disproportionate, impacts.  相似文献   

19.
Wide ranging climate changes are expected in the Arctic by the end of the 21st century, but projections of the size of these changes vary widely across current global climate models. This variation represents a large source of uncertainty in our understanding of the evolution of Arctic climate. Here we systematically quantify and assess the model uncertainty in Arctic climate changes in two CO2 doubling experiments: a multimodel ensemble (CMIP3) and an ensemble constructed using a single model (HadCM3) with multiple parameter perturbations (THC-QUMP). These two ensembles allow us to assess the contribution that both structural and parameter variations across models make to the total uncertainty and to begin to attribute sources of uncertainty in projected changes. We find that parameter uncertainty is an major source of uncertainty in certain aspects of Arctic climate. But also that uncertainties in the mean climate state in the 20th century, most notably in the northward Atlantic ocean heat transport and Arctic sea ice volume, are a significant source of uncertainty for projections of future Arctic change. We suggest that better observational constraints on these quantities will lead to significant improvements in the precision of projections of future Arctic climate change.  相似文献   

20.
Using a coupled climate?Ccarbon cycle model, fossil fuel carbon dioxide (CO2) emissions are derived through a reverse approach of prescribing atmospheric CO2 concentrations according to observations and future projections, respectively. In the second half of the twentieth century, the implied fossil fuel emissions, and also the carbon uptake by land and ocean, are within the range of observational estimates. Larger discrepancies exist in the earlier period (1860?C1960), with small fossil fuel emissions and uncertain emissions from anthropogenic land cover change. In the IPCC SRES A1B scenario, the simulated fossil fuel emissions more than double until 2050 (17 GtC/year) and then decrease to 12 GtC/year by 2100. In addition to A1B, an aggressive mitigation scenario was employed, developed within the European ENSEMBLES project, that peaks at 530 ppm CO2(equiv) around 2050 and then decreases to approach 450 ppm during the twenty-second century. Consistent with the prescribed pathway of atmospheric CO2 in E1, the implied fossil fuel emissions increase from currently 8 GtC/year to about 10 by 2015 and decrease thereafter. In the 2050s (2090s) the emissions decrease to 3.4 (0.5) GtC/year, respectively. As in previous studies, our model simulates a positive climate?Ccarbon cycle feedback which tends to reduce the implied emissions by roughly 1 GtC/year per degree global warming. Further, our results suggest that the 450 ppm stabilization scenario may not be sufficient to fulfill the European Union climate policy goal of limiting the global temperature increase to a maximum of 2°C compared to pre-industrial levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号