首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A revised typology of Australian tropical rivers was applied to the complete channel network (named and major rivers) shown on 1:250 000 topographic maps for three large drainage basins in northern Australia (Daly River, NT; Fitzroy River, WA; Flinders River, Qld). Reach mapping and classification were conducted using the revised typology. The 12 major river types proposed were: (1) bedrock rivers; (2) bedrock‐confined and ‐constrained rivers; (3) low sinuosity (straight) rivers; (4) meandering rivers; (5) wandering rivers; (6) anabranching rivers; (7) chains of ponds; (8) gullies; (9) floodouts; (10) lakes, swamps, billabongs and wetlands; (11) non‐channelized valley floors; and (12) estuarine rivers. The 12 major river types were developed based on river reach mapping for more than 264 000 km2 of tropical Australian catchments. At scales larger than 1:250 000, subdivision of each major river type is recommended. In the Daly and Fitzroy catchments, confined and constrained rivers dominate, whereas in the Flinders and Fitzroy catchments, anabranching rivers dominate. The dominant river types need benchmarking with adequate numbers of control reaches so that channel changes induced by human and natural impacts can be measured by reference to the stability of these controls. Wandering rivers, floodouts and non‐channelized valley floors were rare for the 1:250 000 channel network in northern Australia but need inclusion in national parks.  相似文献   

2.
While studies on gravel mantled and mixed alluvial bedrock rivers have increased in recent decades, few field studies have focused on spatial distributions of bedrock and alluvial reaches and differences between reach types. The objective of this work is to identify the spatial distribution of alluvial and bedrock reaches in the Upper Guadalupe River. We compare reach length, channel and floodplain width, sinuosity, bar length and spacing, bar surface grain size, and slope in alluvial and bedrock reaches to identify whether major differences exist between channel reach types. We find that local disturbances, interaction of the channel and valley sides, variation in lithology, and regional structural control contribute to the distribution of bedrock reaches in the largely alluvial channel. Alluvial and bedrock channel reaches in the Upper Guadalupe River are similar, particularly with respect to the distribution of gravel bars, surface grain size distributions of bars, and channel slope and width. Our observations suggest that the fluvial system has adjusted to changes in base level associated with the Balcones Escarpment Fault Zone by phased incision into alluvial sediment and the underlying bedrock, essentially shifting from a fully alluvial river to a mixed alluvial bedrock river.  相似文献   

3.
The Rio Negro has responded significantly in the Late Pleistocene and Holocene to lagged environmental changes largely associated with activity during the last glacial in the Amazon basin. On the basis of geological structure, the Rio Negro can be divided into six distinct reaches that each reflects very marked differential processes and geomorphological styles. No deposits of the Upper Pleniglacial were recognized in the field. The oldest recognizable Late Pleistocene alluvial unit is the Upper Terrace of Middle Pleniglacial age (ca. 65–25 ka) (reach I), tentatively correlated with the oldest terrace identified on the left bank of reach III. At that time, the river was mainly an aggradational bed load system carrying abundant quartz sand, a product of more seasonal conditions in the upper catchment. The late glacial (14–10 ka) is represented by a lower finer-grained terrace along the upper basin (reach I), which was recognized in the Tiquié, Curicuriarí, and Vaupes rivers. At that time, the river carried abundant suspended load as a response to climatic changes associated with deglaciation.Since about 14 ka, the river has behaved as a progradational system, infilling in downstream series a sequence of structurally controlled sedimentary basins or ‘compartments,’ creating alluvial floodplains and associated anabranching channel systems. Reach II was the first to be filled, then reach III, both accumulating mainly sand. Fine deposits increase downstream in reach III and become predominant in some anabranch islands of the distal reach. The lowermost reaches of the Negro (V and VI) have been greatly affected by a rising base level and associated backwater effect from aggradation of the Amazon during late glacial and recent times. Reach V has acted almost entirely as a fine sediment trap. The remarkable Anavilhanas archipelago is the product of Holocene deposition in the upper part of this sedimentary basin; however, suspended sediment load declined about 1.5 ka, prior to the lower part of this basin becoming infilled.The progradational behavior of the Rio Negro, filling tectonic basins as successive sediment traps with sand in the upper basins and fines in the downstream ones, illustrates how a large river system responses to profound changes in Late Quaternary base level and sediment supply. The most stable equilibrium conditions have been achieved in the Holocene in reaches IIb and IIIa, where an anabranching channel and erosional–relictual island system relatively efficiently convey water and sediment downstream. Reaches IIIb and V never achieved equilibrium conditions during the Holocene, characterised as they are today with incomplete floodplains and open water.  相似文献   

4.
Joanna Korpak   《Geomorphology》2007,92(3-4):166
The purpose of this paper is to explain the influence of river training on channel changes in mountain rivers. Also considered are the causes of failure of different training schemes. The research was conducted on the regulated Mszanka and Porębianka Rivers, belonging to the Raba River drainage basin in the Polish Flysh Carpathian Mountains. Channel mapping carried out in 2004 drew attention to the contemporary morphology of the channels and the development of their dynamic typology. General changes in channel morphometry and land cover were identified by comparing cartographic sources from various years. Archive material from Cracow's Regional Water Management Authority (RZGW) was used to analyse the detailed channel changes caused by each regulation structure. The material consisted of technical designs of individual training works, as well as plans, longitudinal profiles and cross-sections of trained channel reaches. A series of minimum annual water stages at the Mszana Dolna gauging station was used to determine the tendency of channel bed degradation over 53 years. During the first half of the 20th century, the middle and lower courses of the Mszanka and Porębianka Rivers had braided patterns. The slopes, mostly covered with crops, were an important source of sediment delivery to the river channels. Today, both channels are single-threaded, narrow and sinuous. Downcutting is the leading process transforming the channels. They cut down to bedrock along about 60% of their lengths. The main type of channel is an erosion channel, which occurs also in the middle and lower courses of the rivers. The channel sediment deficit is an important cause for river incision. Sediment supply to the channels was reduced after a replacement of crops on the slopes by meadows or forests. Gravel mining has also caused channel downcutting. The rapid channel changes began after 1959, as systematic training was introduced. Channel regulation seems therefore to be a major factor determining channel adjustment. Debris dams and groynes were built before 1980 and these caused the greatest change of channel pattern, increase of channel gradient and magnitude of river incision. After that date the measures mostly involved drop structures. From then on, the rate of downcutting decreased considerably, but has not ceased. The rivers continued to incise until bedrock was exposed or training structures were destroyed. After that, a tendency to lateral migration and local braiding were observed in the deepened channel. The channels displayed a tendency to return to their morphology and dynamic from before the training. The results demonstrate that river training distorts the equilibrium of channel systems. A channel becomes divided into artificial reaches, which later follow different evolutionary patterns. Most training schemes on mountain channels are ineffective in the long term, as river managers seem to consider a channel at a reach scale only. Individual channel reaches, however, are not independent but rather form a system that must be managed at the entire channel scale.  相似文献   

5.
Late Quaternary alluvial induration has greatly influenced contemporary channel morphology on the anabranching Gilbert River in the monsoon tropics of the Gulf of Carpentaria. The Gilbert, one of a number of rivers in this region, has contributed to an extensive system of coalescing low-gradient and partly indurated riverine plains. Extensive channel sands were deposited by enhanced flow conditions during marine oxygen isotope (OI) Stage 5. Subsequent flow declined, probably associated with increased aridity, however, enhanced runoff recurred again in OI Stages 4–3 (65–50 ka). Aridity then capped these plains with 4–7 m of mud. A widespread network of sandy distributary channels was incised into this muddy surface from sometime after the Last Glacial Maximum (LGM) to the mid Holocene during a fluvial episode more active than the present but less so than those of OI Stages 5 and 3. This network is still partly active but with channel avulsion and abandonment now occurring largely proximal to the main Gilbert flow path.A tropical climate and reactive catchment lithology have enhanced chemical weathering and lithification of alluvium along the river resulting in the formation of small rapids, waterfalls and inset gorges, features characteristic more of bedrock than alluvial systems. Thermoluminescence (TL) and comparative optically stimulated luminescence (OSL) ages of the sediments are presented along with U/Th ages of pedogenic calcrete and Fe/Mn oxyhydroxide/ oxide accumulations. They show that calcrete precipitated during the Late Quaternary at times similar to those that favoured ferricrete formation, possibly because of an alternating wet–dry climate. Intense chemical alteration of the alluvium leading to induration appears to have prevailed for much of the Late Quaternary but, probably due to exceptional dryness, not during the LGM. The result has been restricted channel migration and a reduced capacity for the channel to adjust and accommodate sudden changes in bedload. Consequent avulsions have caused local stream powers to increase by an order of magnitude, inducing knickpoint erosion, local incision and the sudden influx of additional bedload that has triggered further avulsions. The Gilbert River, while less energetic than its Pleistocene ancestors, is clearly an avulsive system, and emphasizes the importance in some tropical rivers of alluvial induration for reinforcing the banks, generating nickpoints, reworking sediment and thereby developing and maintaining an indurated and anabranching river style.  相似文献   

6.
Changes in channel morphology provide relevant insights into sediment transport and deposition in alluvial river systems. This study assessed three to four decades of morphological changes at seven locations along a 327-km reach of the Lower Mississippi River (LMR) to better understand channel adjustment processes of this large alluvial river. The assessment included analysis of three cross-sectional areas at each location during the period 1992–2013, as well as analysis of the changes in river stage and maximum surface slopes under four flow conditions over the last three to four decades . We found that the first 20–25 km LMR reach below its diversion to the Atchafalaya River and the reach from 80 to 140 km experienced significant riverbed aggradation, while the reach in between (i.e. from 20 to 80 km) experienced riverbed degradation. The lower 187-km reach (i.e. from 140 to 327 km) showed negligible sediment trapping. These findings may have relevant implications for management of river sediment diversions along the LMR and other large alluvial rivers in the world.  相似文献   

7.
The 270 km long section of the Upper Yellow River at the First Great Bend is comprised of single channel and multiple channel systems that alternate among anastomosing, anabranching, meandering and braided reaches. The sequence of downstream pattern changes is characterized as: anastomosing-anabranching, anabranching-meandering, meandering-braided and braided-meandering. Remote sensing images, DEM data and field investigations are used to assess ahd interpret controls on these reach transitions. Channel slope and bed sediment size are key determinants of transitions in channel planform. Anas- tomosing reaches have a relatively high bed slope (0.86‰) and coarser sediment bed material (d50 = 3.5 mm). In contrast, meandering reaches have a low slope (0.30‰) and fine sediment bed material (d50 = 0.036 mm). The transition from a meandering to braided pattern is characterized by an increase in channel width-depth ratio, indicating the important role of bank strength (i.e. cohesive versus non-cohesive versus channel boundaries). Interestingly, the braided-meandering and meandering-braided transitions are coincident with variable flow inputs from tributary rivers (Baihe and Heihe rivers respectively). Theoretical analysis of the meandering-braided transition highlights the key control of channel width-depth ratio as a determinant of channel planform.  相似文献   

8.
Over the past two decades there has been a growing interest in the geomorphological mosaic along large floodplain rivers where channel dynamics are seen to drive habitat-patch creation and turnover and to contribute to high biological diversity. This has required a new perspective on fluvial geomorphology that focuses on biological scales of space and time. This study examines the spatial pattern of surface fine sediment accumulations along a reach of a large gravel-bed river, the Tagliamento River in NE Italy; an area with a moist Mediterranean climate and seasonal flow regime. The study investigates changes in sediment characteristics during the summer low-flow period between April and September. Focussing on five areas representing a gradient from open, bar-braided to wooded island-braided morphologies, the paper demonstrates the importance of riparian vegetation and aeolian–fluvial interactions.Significant contrasts in particle size distributions and organic content of freshly deposited sand and finer sediments were found between sampling areas, geomorphological settings, and sampling dates. In particular, wooded floodplain and established islands supported consistently finer sediment deposits than both open bar surfaces and the lee of pioneer islands, and in September significantly finer sediments were also found in deposits located in the lee of pioneer islands than on open bar surfaces. Overall, the September samples had a greater variability in particle size characteristics than those obtained from the same sites in April, with a general coarsening of the D5 (φ) (i.e., the coarse tail of the particle size distribution). Also in September, crusts of fine sediment (30 μm < D50 < 64 μm) had formed on the surface of some of the open bar and pioneer island deposits within the more open sampling areas along the study reach. These crusts possessed similar particle size characteristics to aeolian crusts found in more arid environments. They were significantly finer than April samples and September subcrust samples obtained from the same sites and had similar particle size characteristics to some samples taken from wooded floodplain, established island surfaces and the lee of pioneer islands that were not crusted.Local climatological and river level data confirm significant wind and rainfall events during a period of consistently low river levels between the April and September sampling periods. These support deflation, deposition and rain wash of finer sediment during the summer, with windblown sediments being deposited on bar surfaces and in the lee of pioneer islands where wood and young trees provide foci for accelerated sedimentation and island growth as well as on marginal floodplains and established islands. We conclude that along braided rivers in moist settings but with a distinct dry season, aeolian reworking of sediment deposits may have a more important role in driving habitat dynamics than previously considered.  相似文献   

9.
Leif M. Burge   《Geomorphology》2004,63(3-4):115-130
This study tests the assumption that the characteristics of channels within multiple channel rivers are different from those of single channel rivers. Some river restoration approaches propose radical transformation of river patterns, from multiple to single channels, based on the link between river patterns and their in-channel characteristics. Determining the links between river patterns and their in-channel characteristics is complicated by differences in geology, history, climate and discharge among rivers. Furthermore, multiple channel rivers are composed of a mosaic of channel types with a range of in-channel characteristics. This study minimizes these problems by analysing a single river containing neighbouring single and multiple channel patterns with little change in discharge downstream, and by analysing all channel types. The study addressed two objectives: to determine the hydraulic geometry, energy, and sediment mobility characteristics of neighbouring single and multiple channel river patterns, and to test for statistical differences in these characteristics between patterns. The Renous River shows a wandering pattern for 11.5 km, with multiple channels around semipermanent islands and abandoned channels in the flood plain. The river displays a single channel river pattern where channels are confined by their valley walls, upstream and downstream of wandering. The analysis was conducted at three scales. First, the confined single channel and wandering multiple channel patterns were compared (pattern scale). Second, the confined channel pattern was compared to single and multiple channel sections within the wandering pattern (section scale). Third, all channel types were compared (channel type scale). Multi response permutation procedure (MRPP) and analysis of variance (ANOVA) were used to analyze differences between channels. Difference tests found no simple discrimination between the single and multiple channel river patterns of the Renous River. Tests between the single confined and multiple wandering channel patterns found few differences in the in-channel variables. The tests did find differences between multiple channel sections within the wandering pattern and confined single channels; however, a greater number of differences were found between multiple channel and single channel sections within the wandering pattern, highlighting the variability within the wandering pattern. Two groups emerged when all channel types were tested for differences: perennial main-channels containing the thalweg, and ephemeral side-channels. Therefore, side-channels define the in-channel characteristics of wandering rivers because few differences were found among main-channels in either pattern. This analysis suggests that all channel types, not just main-channels, should be investigated to obtain a complete picture of a river pattern prior to any restoration efforts. Engineers must exercise caution when applying the link between river patterns and in-channel characteristics to river restoration efforts.  相似文献   

10.
Active tectonics in a basin plays an important role in controlling a fluvial system through the change in channel slope. The Baghmati, an anabranching, foothills-fed river system, draining the plains of north Bihar in eastern India has responded to ongoing tectonic deformation in the basin. The relatively flat alluvial plains are traversed by several active subsurface faults, which divide the area in four tectonic blocks. Each tectonic block is characterized by association of fluvial anomalies viz. compressed meanders, knick point in longitudinal profiles, channel incision, anomalous sinuosity variations, sudden change in river flow direction, river flow against the local gradient and distribution of overbank flooding, lakes, and waterlogged area. Such fluvial anomalies have been identified on the repetitive satellite images and maps and interpreted through DEM and field observations to understand the nature of vertical movements in the area. The sub-surface faults in the Baghmati plains cut across the river channel and also run parallel which have allowed us to observe the effects of longitudinal and lateral tilting manifested in avulsions and morphological changes.  相似文献   

11.
《Geomorphology》2007,83(1-2):152-182
This paper describes the application of a new instrument to continuously measure bedload transport, an impact sensor, to a 72 km2 test catchment in the Yorkshire Dales, northern England. Data from a network of impact sensors are linked to repeat surveys of channel morphological response, to get a better understanding of the conditions that lead to sediment generation and transfer. Results suggest certain areas of the catchment act as key sediment sources at the annual time scale, with material being quickly delivered to the lower parts of the catchment along the steep bedrock channel. Sediment transfer within the tributaries occurs in significantly smaller magnitudes than within the main channel; but it moves more frequently and at different times of the year, with transfer rates being strongly conditioned by larger-scale valley geomorphology. The lower 5.6 km reach sees a significant reduction in gradient and a widening of the valley. This permits significant accumulation within the channel, which has persisted for many years. This lower reach is very sensitive to changes in sediment supply and there is good agreement between changes in bedload transport data and the surveyed channel response. These observations have major implications for how river management projects should be developed in upland environments, especially those where large-scale geomorphological controls have a major impact upon the sediment transfer process. Evidence suggests that where river management restricts lateral movement of the channel and transfer of sediment into floodplain storage, changes in sediment supply can lead to areas of severe accumulation, acceleration of bank erosion and exacerbated flood risk.  相似文献   

12.
In an actively deforming orogen, maintenance of a topographic steady state requires that hillslope erosion, river incision, and rock uplift rates are balanced over timescales of 105–107 years. Over shorter times, <105 years, hillslope erosion and bedrock river incision rates fluctuate with changes in climate. On 104-year timescales, the Marsyandi River in the central Nepal Himalaya has oscillated between bedrock incision and valley alluviation in response to changes in monsoon intensity and sediment flux. Stratigraphy and 14C ages of fill terrace deposits reveal a major alluviation, coincident with a monsoonal maximum, ca. 50–35 ky BP. Cosmogenic 10Be and 26Al exposure ages define an alluviation and reincision event ca. 9–6 ky BP, also at a time of strong South Asian monsoons. The terrace deposits that line the Lesser Himalayan channel are largely composed of debris flows which originate in the Greater Himalayan rocks up to 40 km away. The terrace sequences contain many cubic kilometers of sediment, but probably represent only 2–8% of the sediments which flushed through the Marsyandi during the accumulation period. At 104-year timescales, maximum bedrock incision rates are 7 mm/year in the Greater Himalaya and 1.5 mm/year in the Lesser Himalayan Mahabarat Range. We propose a model in which river channel erosion is temporally out-of-phase with hillslope erosion. Increased monsoonal precipitation causes an increase in hillslope-derived sediment that overwhelms the transport capacity of the river. The resulting aggradation protects the bedrock channel from erosion, allowing the river gradient to steepen as rock uplift continues. When the alluvium is later removed and the bedrock channel re-exposed, bedrock incision rates probably accelerate beyond the long-term mean as the river gradient adjusts downward toward a more “equilibrium” profile. Efforts to document dynamic equilibrium in active orogens require quantification of rates over time intervals significantly exceeding the scale of these millennial fluctuations in rate.  相似文献   

13.
The Cachí Reservoir on the Reventazón River, Costa Rica, is flushed on an almost yearly basis. A field investigation of the 1996 flushing was carried out in order to elucidate from where in the reservoir the material originates, where and to what extent the released sediments will deposit along the river from the dam to the sea, and finally how this can be explained. A reservoir survey was conducted by means of echo-sounding along certain cross-sections before and after the flushing. The material was found to both deposit in between flushings and to be eroded during flushing, mainly in the uppermost and lowermost parts of the old river channel. In the downstream reaches, the pulse of suspended sediment pertaining to the flushing was found to be clearly distinguishable by means of grain-size distribution, even in the lower parts. Surveys were conducted at eight sites along the river downstream from the dam both before and after the flushing such that the volumes of deposited or eroded material were found. By use of the dry bulk density, the results could be calculated in tonnes, thus facilitating comparison to the samplings of the hydrological stations along the river. A major factor in explaining the amounts and distribution of deposits was shown to be the phase lag between water discharge and suspended-sediment con-centration peaks. The influence of this phase lag on the deposition and erosion processes is illustrated by a schematic figure. A more detailed sediment budget is presented for the reach between the hydrological stations c . 10 and 30 km downstream from the dam. It was found that approximately 250 000 tonnes were deposited within the reach. Of these, 82% were channel-bed deposits while 18% were deposited on the river banks.  相似文献   

14.
Rivers flowing from glacier-clad Quaternary volcanoes in southwestern British Columbia have high sediment loads and anabranching and braided planforms. Their floodplains aggrade in response to recurrent large landslides on the volcanoes and to advance of glaciers during periods of climate cooling. In this paper, we document channel instability and aggradation during the last 200 years in lower Cheakamus River valley. Cheakamus River derives much of its flow and nearly all of its sediment from the Mount Garibaldi massif, which includes a number of volcanic centres dominated by Mount Garibaldi volcano. Stratigraphic analysis and radiocarbon and dendrochronological dating of recent floodplain sediments at North Vancouver Outdoor School in Cheakamus Valley show that Cheakamus River aggraded its floodplain about 1–2 m and buried a valley-floor forest in the early or mid 1800s. The aggradation was probably caused by a large (ca. 15–25×106 m3) landslide from the flank of Mount Garibaldi, 15 km north of our study site, in 1855 or 1856. Examination of historical aerial photographs dating back to 1947 indicates that channel instability triggered by this event persisted until the river was dyked in the late 1950s. Our observations are consistent with data from many other mountain areas that suggest rivers with large, but highly variable sediment loads may rapidly aggrade their floodplains following a large spike in sediment supply. Channel instability may persist for decades to centuries after the triggering event.  相似文献   

15.
Fluvial process and morphology of the Brahmaputra River in Assam, India   总被引:1,自引:0,他引:1  
The Brahmaputra River finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh. The slope of the river decreases suddenly in front of the Himalayas and results in the deposition of sediment and a braided channel pattern. It flows through Assam, India, along a valley comprising its own Recent alluvium. In Assam the basin receives 300 cm mean annual rainfall, 66–85% of which occurs in the monsoon period from June through September. Mean annual discharge at Pandu for 1955–1990 is 16,682.24 m3 s 1. Average monthly discharge is highest in July (19%) and lowest in February (2%). Most hydrographs exhibit multiple flood peaks occurring at different times from June to September. The mean annual suspended sediment load is 402 million tons and average monthly sediment discharge is highest in June (19.05%) and lowest in January (1.02%). The bed load at Pandu was found to be 5–15% of the total load of the river. Three kinds of major geomorphic units are found in the basin. The river bed of the Brahmaputra shows four topographic levels, with increasing height and vegetation. The single first order primary channels of this braided river split into two or more smaller second order channels separated by bars and islands. The second order channels are of three kinds. The maximum length and width of the bars in the area under study are 18.43 km and 6.17 km, respectively. The Brahmaputra channel is characterised by mid-channel bars, side bars, tributary mouth bars and unit bars. The geometry of meandering tributary rivers shows that the relationship between meander wavelength and bend radius is most linear. The Brahmaputra had been undergoing overall aggradation by about 16 cm during 1971 to 1979. The channel of the Brahmaputra River has been migrating because of channel widening and avulsion. The meandering tributaries change because of neck cut-off and progressive shifting at the meander bends. The braiding index of the Brahmaputra has been increasing from 6.11 in 1912–1928 to 8.33 in 1996. During the twentieth century, the total amount of bank area lost from erosion was 868 km2. Maximum rate of shift of the north bank to south resulting in erosion was 227.5 m/year and maximum rate of shift of the south bank to north resulting in accretion was 331.56 m/year. Shear failure of upper bank and liquefaction of clayey-silt materials are two main causes of bank erosion.  相似文献   

16.
The geomorphology and dynamics of the Mfolozi River floodplain and estuary, located in the subtropical region of northern KwaZulu-Natal, South Africa, were considered with respect to existing models of avulsion and alluvial stratigraphy. The Mfolozi River floodplain may be divided into regions based on longitudinal slope and dominant geomorphic processes. Confinement of the Mfolozi River above the floodplain has led to the development of an alluvial fan at the floodplain head, characterized by a relatively high sedimentation rate and avulsion frequency, at a gradient of 0.10%. The lower floodplain is controlled by sea level, with an average gradient of 0.05%. Between the two lies an extremely flat region with an average gradient of 0.02%, which may be controlled by faulting of the underlying bedrock.Avulsion occurrences on the Mfolozi floodplain are linked to the two main zones of aggradation, the alluvial fan at the floodplain head, and toward the river mouth in the lower floodplain. On the alluvial fan, normal flow conditions result in scour from local steepening. During infrequent, large flood events, the channel becomes overwhelmed with sediment and stream flow, and avulses. The resulting avulsion is regional, and affects the location of the channel from the floodplain head to the river mouth. Deposits resulting from such avulsions contribute significantly to the total volume of sediment stored in the floodplain, and tend to persist for long periods after the avulsion. Contrastingly, on the lower floodplain, reaching of the avulsion threshold is not necessarily linked to large flood events, but rather to long-term aggradation on the channel that decreases the existing channels gradient while increasing its elevation above the surrounding floodplain. Resultant avulsions tend to be local and do not contribute significantly to the overall volume of floodplain alluvium.  相似文献   

17.
Sediment supplied by continental sources is commonly suspected to have exerted a strong influence on the development of canyons and other morphological features on the continental slopes, but rarely is the sediment supply known sufficiently quantitatively to test this link. Here, we outline an area where offshore morphology, in the western Ionian Sea, may be linked to estimated sediment fluxes produced by subaerial erosion in NE Sicily and SW Calabria. Shelves in this area are narrow (<1 km), and the bathymetry shows that rivers and adjacent submarine channels are almost directly connected with each other. Integrated topographic analyses were performed on a merged digital elevation model (DEM) of ASTER data for subaerial topography and multibeam sonar data for submarine bathymetry. Spatial variations in sediment fluxes from onshore erosion were assessed using a variety of methods, namely: long‐term sediment flux from Pleistocene uplift rates, decadal sediment flux from landslide occurrences and published long‐term exhumation rates from 10Be cosmogenic nuclide concentrations. Submarine channels associated with rivers delivering larger sediment fluxes have broad channels, high relief and smooth concave‐upward longitudinal profiles. Conversely, submarine channels that lie offshore small‐flux rivers have straight longitudinal profiles, low relief and steep gradients. Where river catchments supply a greater sediment flux offshore, shelves tend to be wider (ca. 400 m) and submarine channels have gentler gradients. In contrast, where catchments supply less sediment flux, shelves are narrow (250–300 m) and offshore channel gradients are steeper. The variation of submarine morphology with tectonic uplift rate was also studied, but we find that, unlike onshore terrains where tectonics is commonly an important factor influencing channel morphology, in the submarine landscapes, sediment flux appears to dominate here.  相似文献   

18.
1990年以来黄河第一湾齐哈玛河段砾质网状河的演变特征   总被引:1,自引:0,他引:1  
高超  王随继 《地理学报》2018,73(7):1352-1364
黄河第一湾的网状河型因其砾石质的河床质而与砂床质网状河明显不同,但是其具体的冲淤特性、河道与河间地的稳定性等是否与砂质网状河具有相似之处,尚待揭示。以齐哈玛乡主河道长约为12 km的砾石质网状河段为研究对象,利用1990年、2001年、2013年和2016年共4期Landsat遥感影像数据和2011年与2013年两期Google Earth高分辨率图像数据,结合野外采样观测分析其1990-2016年间的平面形态变化与沉积特征。结果表明:砾石质网状河整体具有很高的稳定性,众多分支河道与河间地无明显冲淤现象。网状带面积仅增加2.43%,陆地与水体面积比例接近1∶1;网状带部分小型河间湿地及河间岛屿呈现碎片化现象,导致河间湿地个数逐渐增加,最大增加率为62.16%。河道主流线长期左右迁移交替变化,且变化率相对稳定,受主流线迁移的影响,主河道内部河间岛屿形态变化较大,其河岸变化率为5 m/a。网状河众多支河道非常稳定,平均河宽变化率仅为1 m/a左右。河岸沉积物以细砂或粉砂为主,黏土含量较高,粒度分布曲线呈现多峰,这与砂质网状河流河岸以泥质沉积物为主略有不同,但河岸及河间湿地茂密的植被保护了众多分支河道免受侵蚀、维持了河道的稳定性,这也是砾石质网状河流体系具有高稳定性的重要原因。  相似文献   

19.
黄河中游流域地貌形态对流域产沙量的影响   总被引:13,自引:7,他引:13  
卢金发 《地理研究》2002,21(2):171-178
在黄河中游地区 ,选择了 5 0多个面积约 5 0 0~ 2 5 0 0平方公里的水文测站流域 ,分别代表 6种不同自然地理类型 ,在流域沟壑密度、沟间地坡度小于 15°面积百分比等地貌形态指标量计的基础上 ,进行了流域产沙量与地貌形态指标相关分析。结果表明 ,对于不同类型流域 ,流域产沙量随流域地貌的变化遵循不同的响应规律 ,而且视流域其它下垫面环境条件的均一程度 ,其相关程度和响应速率各不相同。受地面物质、植被、地貌发育阶段等流域其它下垫面环境条件的制约 ,除沟壑密度外 ,流域产沙量与流域地貌形态的关系都没有人们以前所预期的好。  相似文献   

20.
Near-future climate change will affect the discharge and base level of rivers and thus cause channel changes. The nature and pace of such changes can be simulated using morphodynamic models. As part of an investigation of how the changing hydrology of the St-Lawrence River, Quebec, Canada, will affect its tributaries we have made additions and modifications to a one-dimensional morphodynamic model developed for gravel-bed rivers (SEDROUT). The changes allow simulation of sand-bed rivers, variable discharge, downstream water level fluctuations, and flow and sediment routing in channels with islands. A revised formulation for calculating the grain size distributions of the surface and subsurface material is presented to allow for alternating sedimentation and erosion. We test the enhanced model using small-scale simulations and present-day conditions in four tributaries of the St-Lawrence River. The model is calibrated and validated for the tributaries and the capability to simulate river morphology over a 100-year period is tested. Good validation agreement on water level, cross-sectional mean velocity, and sediment transport rate is obtained for the four tributaries of the St-Lawrence River. With these modifications, modelling a very wide range of river morphodynamic problems is now possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号