首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We build a simple model of the optical/ultraviolet (UV) emission from irradiation of the outer disc by the inner disc and coronal emission in black hole binaries. We apply this to the broad-band Swift data from the outburst of the black hole binary XTE J1817−330 to confirm previous results that the optical/UV emission in the soft state is consistent with a reprocessing a constant fraction of the bolometric X-ray luminosity. However, this is very surprising as the disc temperature drops by more than a factor of 3 in the soft state, which should produce a marked change in the reprocessing efficiency. The easiest way to match the observed constant reprocessed fraction is for the disc skin to be highly ionized (as suggested 30 yr ago by van Paradijs), so that the bulk of the disc flux is reflected and only the hardest X-rays heat the disc. The constant reprocessed fraction also favours direct illumination of the disc over a scattering origin as the optical depth/solid angle of any scattering material (wind/corona) over the disc should decrease as the source luminosity declines. By contrast, the reprocessed fraction increases very significantly (by a factor of ∼6) as the source enters the hard state. This dramatic change is not evident from X-ray/UV flux correlations as it is masked by bandpass effects. However, it does not necessarily signal a change in emission, for example, the emergence of the jet dominating the optical/UV flux as the reflection albedo must change with the dramatic change in spectral shape.  相似文献   

2.
We report the results of a systematic timing analysis of RXTE observations of GRS 1915+105 when the source was in its variability class θ, characterized by alternating soft and hard states on a time-scale of a few hundred seconds. The aim was to examine the high-frequency part of the power spectrum in order to confirm the hectohertz quasi-periodic oscillations (QPO) previously reported from observations from mixed variability behaviours. During the hard intervals (corresponding to state C in the classification of Belloni et al.), we find a significant QPO at a frequency of ∼170 Hz, although much broader (Q∼2) than previously reported. No other significant peak is observed at frequencies >30 Hz. A time-resolved spectral analysis of selected observations shows that the hard intervals from class θ show a stronger and steeper  (Γ= 2.8–3.0)  power-law component than hard intervals from other classes. We discuss these results in the framework of hectohertz QPOs reported from GRS 1915+105 and other black hole binaries.  相似文献   

3.
We consider the shape of an accretion disc whose outer regions are misaligned with the spin axis of a central black hole and calculate the steady state form of the warped disc in the case where the viscosity and surface densities are power laws in the distance from the central black hole. We discuss the shape of the resulting disc in both the frame of the black hole and that of the outer disc. We note that some parts of the disc and also any companion star maybe shadowed from the central regions by the warp. We compute the torque on the black hole caused by the Lense–Thirring precession, and hence compute the alignment and precession time-scales. We generalize the case with viscosity and hence surface density independent of radius to more realistic density distributions for which the surface density is a decreasing function of radius. We find that the alignment time-scale does not change greatly but the precession time-scale is more sensitive. We also determine the effect on this time-scale if we truncate the disc. For a given truncation radius, the time-scales are less affected for more sharply falling density distributions.  相似文献   

4.
5.
6.
7.
In this paper we present a fully relativistic approach to modelling both the continuum emission and the reflected fluorescent iron line from a primary X-ray source near a Kerr black hole. The X-ray source is located above an accretion disc orbiting around the black hole. The source is assumed to be a static point source located on an arbitrary position above the disc, on or off the axis of rotation. We carry out Monte Carlo simulations in order to estimate the iron line spectrum as well as its equivalent width. Because of the gravitational lensing effect, an enhancement of the iron line is expected when the primary source is located close to the central black hole. We find that for a source located on the axis of rotation the enhancement is relatively modest. An observer at inclination 30° would measure an equivalent width of ∼300 eV in the extreme case of a maximally rotating black hole and a source located at height 1.5 gravitational radii from the centre. This corresponds to an equivalent width enhancement factor of about 2 compared with the classical value where no lensing effect comes into play. However, when allowing the source to be located off the axis of rotation, much stronger enhancement can be obtained. In the extreme case of a maximally rotating black hole and a source located just above the approaching side of the disc, an observer at inclination 30° could measure an equivalent width as high as ∼1.5 keV (i.e., ∼10 times the classical value). We also find that observers located at high inclination angles observe a stronger line than observers at low inclination angles.  相似文献   

8.
We investigate the properties of fluorescent iron lines that arise as a result of the illumination of a black hole accretion disc by an X-ray source located above the disc's surface. We study in detail the light-bending model of the variability of the lines, extending previous work on the subject. We indicate that the bending of photon trajectories to the equatorial plane (a distinct property of the Kerr metric) is the most feasible effect underlying the reduced variability of the lines observed in several objects. A model involving an X-ray source with a varying radial distance, located within a few central gravitational radii around a rapidly rotating black hole, close to the disc's surface, may explain both the elongated red wing of the line profile and the complex variability pattern observed in MCG–6-30-15 by XMM–Newton . We also point out that illumination by radiation that returns to the disc (following the previous reflection) contributes significantly to the formation of the line profile in some cases. As a result of this effect, the line profile always has a pronounced blue peak (which is not observed in the deep minimum state in MCG–6-30-15), unless the reflecting material is absent within the innermost 2–3 gravitational radii.  相似文献   

9.
10.
Discoseismic c modes in accretion discs have been invoked to explain low-frequency variabilities observed in black hole X-ray binaries. These modes are trapped in the innermost region of the disc and have frequencies much lower than the rotation frequency at the disc inner radius. We show that because the trapped waves can tunnel through the evanescent barrier to the corotational wave zone, the c modes are damped due to wave absorption at the corotation resonance. We calculate the corotational damping rates of various c modes using the Wentzel-Kramers-Brillouin (WKB) approximation. The damping rate varies widely depending on the mode frequency, the black hole spin parameter and the disc sound speed, and is generally much less than 10 per cent of the mode frequency. A sufficiently strong excitation mechanism is needed to overcome this corotational damping and make the mode observable.  相似文献   

11.
12.
13.
14.
15.
The key aspect of the very successful truncated disc model for the low/hard X-ray spectral state in black hole binaries is that the geometrically thin disc recedes from the last stable orbit at the transition to this state. This has recently been challenged by direct observations of the low/hard state disc from CCD data. We reanalyse the Swift and RXTE campaign covering the 2006 outburst of XTE J1817−330, and show that these data actually strongly support the truncated disc model as the transition spectra unambiguously show that the disc begins to recede as the source leaves the disc-dominated soft state. The disc radius inferred for the proper low/hard state is less clear-cut, but we show that the effect of irradiation from the energetically dominant hot plasma leads to an underestimate of the disc radius by a factor of 2–3 in this state. This may also produce the soft excess reported in some hard-state spectra. The inferred radius becomes still larger when the potential difference in stress at the inner boundary, increased colour temperature correction from incomplete thermalization of the irradiation, and loss of observable disc photons from Comptonization in the hot plasma is taken into account. We conclude that the inner disc radius in XTE J1817−330 in the low/hard spectral state is at least six to eight times that seen in the disc-dominated high/soft state, and that recession of the inner disc is the trigger for the soft-hard-state transition, as predicted by the truncated disc models.  相似文献   

16.
Using a Monte Carlo method, we derive spectra arising from Comptonization taking place close to a Kerr black hole. We consider a model consisting of a hot thermal corona Comptonizing seed photons emitted by a cold accretion disc. We find that general relativistic effects are crucial for the emerging spectra in models, which involve significant contribution of radiation produced in the black hole ergosphere. As a result of this contribution, spectra of hard X-ray emission produced in the vicinity of a rapidly rotating black hole strongly depend on the inclination of the line of sight, with larger inclinations corresponding to harder spectra. Remarkably, such anisotropy could be responsible for properties of the X-ray spectra of Seyfert galaxies, which appear to be intrinsically harder in type 2 objects than in type 1, as reported recently.  相似文献   

17.
Ultraluminous X-ray sources (ULXs) with   L x > 1039 erg s−1  have been discovered in great numbers in external galaxies with ROSAT , Chandra and XMM-Newton . The central question regarding this important class of sources is whether they represent an extension in the luminosity function of binary X-ray sources containing neutron stars and stellar-mass black holes (BHs), or a new class of objects, e.g. systems containing intermediate-mass BHs  (100–1000 M)  . We have carried out a theoretical study to test whether a large fraction of the ULXs, especially those in galaxies with recent star formation activity, can be explained with binary systems containing stellar-mass BHs. To this end, we have applied a unique set of binary evolution models for BH X-ray binaries, coupled to a binary population synthesis code, to model the ULXs observed in external galaxies. We find that for donor stars with initial masses  ≳10 M  the mass transfer driven by the normal nuclear evolution of the donor star is sufficient to potentially power most ULXs. This is the case during core hydrogen burning and, to an even more pronounced degree, while the donor star ascends the giant branch, although the latter phases last only ∼5 per cent of the main-sequence phase. We show that with only a modest violation of the Eddington limit, e.g. a factor of ∼10, both the numbers and properties of the majority of the ULXs can be reproduced. One of our conclusions is that if stellar-mass BH binaries account for a significant fraction of ULXs in star-forming galaxies, then the rate of formation of such systems is  ∼3 × 10−7 yr−1  normalized to a core-collapse supernova rate of 0.01 yr−1.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号