首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Based on data for 102 OB3 stars with known proper motions and radial velocities, we have tested the distances derived by Megier et al. from interstellar Ca II spectral lines. The internal reconciliation of the distance scales using the first derivative of the angular velocity of Galactic rotation Ω′0 and the external reconciliation with Humphreys’s distance scale for OB associations refined by Mel’nik and Dambis show that the initial distances should be reduced by ≈20%. Given this correction, the heliocentric distances of these stars lie within the range 0.6–2.6 kpc. A kinematic analysis of these stars at a fixed Galactocentric distance of the Sun, R 0 = 8 kpc, has allowed the following parameters to be determined: (1) the solar peculiar velocity components (u , v , ω ) = (8.9, 10.3, 6.8) ± (0.6, 1.0, 0.4) km s−1; (2) the Galactic rotation parameters Ω0 = −31.5 ± 0.9 km s−1 kpc−1, Ω′0 = +4.49 ± 0.12 km s−1 kpc−2, Ω″0 = −1.05 ± 0.38 km s−1 kpc−3 (the corresponding Oort constants are A = 17.9 ± 0.5 km s−1 kpc−1, B = −13.6 ± 1.0 km s−1 kpc−1 and the circular rotation velocity of the solar neighborhood is |V 0| = 252 ± 14 km s−1); (3) the spiral density wave parameters, namely: the perturbation amplitudes for the radial and azimuthal velocity components, respectively, f R = −12.5±1.1 km s−1 and f ϑ = 2.0 ± 1.6 km s−1; the pitch angle for the two-armed spiral pattern i = −5.3° ± 0.3°, with the wavelength of the spiral density wave at the solar distance being λ = 2.3 ± 0.2 kpc; the Sun’s phase in the spiral wave x = −91° ± 4°.  相似文献   

2.
The distribution of radial (U) and rotational (V) velocities of red clump giants was studied as a function of their heights above the galactic plane. The stars of this type were selected from the compiled catalogue of stellar proper motions and infrared photometry at the north galactic pole with the use of the diagram “color-reduced proper motion.” According to the data on 1800 red clump giants located at heights from 1 to 3 kpc (mostly thick disk stars), mean kinematic parameters of the thick disk were determined: U 0 = −18 ± 2 km/s, V 0 = −56 ± 1 km/s, σ U = 72 ± 2 km/s, and σ V = 58 ± 1 km/s. The velocity of asymmetric drift V 0 and velocity variances σ U , σ V are shown to depend on heights above the galactic plane.  相似文献   

3.
We analyze the three-dimensional kinematics of about 82 000 Tycho-2 stars belonging to the red giant clump (RGC). First, based on all of the currently available data, we have determined new, most probable components of the residual rotation vector of the optical realization of the ICRS/HIPPARCOS system relative to an inertial frame of reference, (ω x , ω y , ω z ) = (−0.11, 0.24, −0.52) ± (0.14, 0.10, 0.16) mas yr−1. The stellar proper motions in the form μα cos δ have then be corrected by applying the correction ω z = −0.52 mas yr−1. We show that, apart from their involvement in the general Galactic rotation described by the Oort constants A = 15.82 ± 0.21 km s−1 kpc−1 and B = −10.87 ± 0.15 km s−1 kpc−1, the RGC stars have kinematic peculiarities in the Galactic yz plane related to the kinematics of the warped stellar-gaseous Galactic disk. We show that the parameters of the linear Ogorodnikov-Milne model that describe the kinematics of RGC stars in the zx plane do not differ significantly from zero. The situation in the yz plane is different. For example, the component of the solid-body rotation vector of the local solar neighborhood around the Galactic x axis is M 32 = −2.6 ± 0.2 km s−1 kpc−1. Two parameters of the deformation tensor in this plane, namely M 23+ = 1.0 ± 0.2 km s−1 kpc−1 and M 33M 22 = −1.3 ± 0.4 km s−1 kpc−1, also differ significantly from zero. On the whole, the kinematics of the warped stellar-gaseous Galactic disk in the local solar neighborhood can be described as a rotation around the Galactic x axis (close to the line of nodes of this structure) with an angular velocity −3.1 ± 0.5 km s−1 kpc−1 ≤ ΩW ≤ −4.4 ± 0.5 km s−1 kpc−1.  相似文献   

4.
Based on currently available observations of 28 maser sources in 25 star-forming regions with measured trigonometric parallaxes, proper motions, and radial velocities, we have constructed the rotation curve of the Galaxy. Taking different distances to the Galactic center R 0, we have estimated the peculiar velocity of the Sun, the angular velocity of Galactic rotation, and its three derivatives. For R 0 = 8 kpc, we have found the circular velocity of the Sun to be V 0 = 243 ± 16 km s−1, which corresponds to a revolution period of 202 ± 10 Myr. We have obtained the Oort constants A = 16.9 ± 1.2 km s−1 kpc−1 and B = −13.5 ± 1.4 km s−1 kpc−1. Our simulation of the influence of a spiral density wave has shown that the peculiar velocity of the Sun with respect to the local standard of rest and the component (V )LSR depend significantly on the Sun’s phase in the spiral wave.  相似文献   

5.
Combining Hipparcos proper motions and the radial velocity data, we have studied the Cepheid kinematics on the basis of the three-dimensional Ogorodnikov-Milne model. The results seem to show a slight contracting motion of the Galaxy in the solar neighbourhood, ∂ V θ / ∂θ / R = −2.60 ± 1.07 km s-1 kpc-1, which is along the solar circle. Under the hypothesis of a circular stream model, we have determined the galactic rotation V θ = −240.5 ± 10.2 km s-1 for the classical Cepheids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We investigate the relative motion of three stars, ADS 7446, 9346, and 9701, based on long-term observations with the Pulkovo 26-inch refractor. The relative motion of all three stars shows a perturbation that could be produced by the gravitational influence of an invisible companion. For ADS 7446, we have determined the orbit of the photocenter with a period of 7.9 yr; the mass of the companion is more than 0.4M . For ADS 9346, we have determined the radial velocities of the components: −14.60 km s−1 for A and −13.94 km s−1 for B. For ADS 9346 and 9701, we have determined the dynamical parallaxes, 24 and 20 mas, respectively, which are larger than those in the Hipparcos catalog by 5 mas, and calculated the orbits by the apparent motion parameter (AMP) method. The new orbit of ADS 9346 is: a = 5″.2, P = 2035 yr, and e = 0.46 at the system’s mass M = 2.5M . The new orbits of ADS 9701 are: (a = 2″.9, P = 829 yr, e = 0.54, M = 4.3M ) and (a = 3″.8, P = 1157 yr, e = 0.53, M = 5.0M ).  相似文献   

7.
The absolute proper motions of about 275 million stars from the Kharkov XPM catalog have been obtained by comparing their positions in the 2MASS and USNO-A2.0 catalogs with an epoch difference of about 45 yr for northern-hemisphere stars and about 17 yr for southern-hemisphere stars. The zero point of the system of absolute proper motions has been determined using 1.45 million galaxies. The equatorial components of the residual rotation vector of the ICRS/UCAC2 coordinate system relative to the system of extragalactic sources have been determined by comparing the XPM and UCAC2 stellar proper motions: ω x,y,z = (−0.06, 0.17, −0.84) ± (0.15, 0.14, 0.14) mas yr−1. These parameters have been calculated using about 1 million faintest UCAC2 stars with magnitudes R UCAC2 > 16 m and J > 14 m . 7, for which the color and magnitude equation effects are negligible.  相似文献   

8.
We present the results of our stellar photometry and spectroscopy for the new Local Group galaxy VV124 (UGC4879) obtainedwith the 6-m BTAtelescope. The presence of a fewbright supergiants in the galaxy indicates that the current star formation process is weak. The apparent distribution of stars with different ages in VV 124 does not differ from the analogous distributions of stars in irregular galaxies, but the ratio of the numbers of young and old stars indicates that VV 124 belongs to the rare Irr/Sph type of galaxies. The old stars (red giants) form the most extended structure, a thick disk with an exponential decrease in the star number density to the edge. Definitely, the young population unresolvable in images makes a great contribution to the background emission from the central galactic regions. The presence of young stars is also confirmed by the [OIII] emission line visible in the spectra that belongs to extensive diffuse galactic regions. The mean radial velocity of several components (two bright supergiants, the unresolvable stellar population, and the diffuse gas) is υ h = −70 ± 15 km s−1 and the velocity with which VV 124 falls into the Local Group is υ LG = −12 ± 15 km s−1. We confirm the distance to the galaxy (D = 1.1 ± 0.1 Mpc) and the metallicity of red giants ([Fe/H] = −1.37) found by Kopylov et al. (2008). VV 124 is located on the periphery of the Local Group approximately at the same distance from M31 and our Galaxy and is isolated from other galaxies. The galaxy LeoA nearest to it is 0.5 Mpc away.  相似文献   

9.
Based on two high-dispersion spectra of the close binary BW Boo, we have detected lines of the secondary component whose contribution to the combined spectrum does not exceed 2%. We have determined the rotation velocities of the components and spectroscopic orbital elements. Numerous lines of neutral and ionized iron have been used to determine the effective temperature and surface gravity for the primary component. The photometric light curves for this binary have been solved for the first time. Its primary component is an A2Vm star with a mass of 2 ± 0.1M and a radius of 1.9 ± 0.4R . Its rotation velocity is 2 km s−1, which is a factor of 18 lower than the pseudo-synchronous velocity for this component. The G6 secondary component, a T Tau star, has a rotation velocity of 17 km s−1, amass of 1.1M , and a radius of 1 R . The age of the binary has been estimated to be 107 yr.  相似文献   

10.
We present CCD BV and JHK s 2MASS photometric data for the open cluster NGC 1513. We observed 609 stars in the direction of the cluster up to a limiting magnitude of V∼19 mag. The star-count method showed that the centre of the cluster lies at α 2000=04 h 09 m 36 s , δ 2000=49°2843 and its angular size is r=10 arcmin. The optical and near-infrared two-colour diagrams revealed the colour excesses in the direction of the cluster as E(BV)=0.68±0.06, E(JH)=0.21±0.02 and E(JK s )=0.33±0.04 mag. These results are consistent with normal interstellar extinction values. Optical and near-infrared Zero Age Main-Sequences (ZAMS) provided an average distance modulus of (mM)0=10.80±0.13 mag, which can be translated into a distance of 1440±80 pc. Finally, using Padova isochrones we determined the metallicity and age of the cluster as Z=0.015±0.004 ([M/H]=−0.10±0.10 dex) and log (t/yr)=8.40±0.04, respectively.  相似文献   

11.
A sample of subdwarfs with accurate space velocities and standarized metallicities is presented. This was constructed by combining Hipparcos parallaxes and proper motions with radial velocities and metallicities from Carney et al. (1994; CLLA). The accurate Hipparcos parallaxes lead to an – upward – correction factor of 11% of the photometric distance scale of CLLA. The kinematical behaviour of the subdwarfs is discussed in particular in relation to their metallicities. Most of the stars turn out to be thick disk stars, but the sample contains also many genuine halo stars. While the extreme metal poor halo does not rotate, a population of subdwarfs with metallicities in the range −1.6≤ [Fe/H] ≤ −1.0 dex appears to rotate around the galactic center with a mean rotation speed of about 100 km s-1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We present the results of our infrared observations of WR 140 (=V1687 Cyg) in 2001–2010. Analysis of the observations has shown that the J brightness at maximum increased near the periastron by about 0 m .3; the M brightness increased by ∼2 m in less than 50 days. The minimum J brightness and the minimum L and M brightnesses were observed 550–600 and 1300–1400 days after the maximum, respectively. The JHKLM brightness minimum was observed in the range of orbital phases 0.7–0.9. The parameters of the primary O5 component of the binary have been estimated to be the following: R(O5) ≈ 24.7R , L(O5) ≈ 8 × 105 L , and M bol(O5) ≈ −10 m . At the infrared brightness minimum, T g ∼ 820–880 K, R g ≈ 2.6 × 105 R , the optical depth of the shell at 3.5 μm is ∼5.3 × 10−6, and its mass is ≈1.4 × 10−8 M . At the maximum, the corresponding parameters are ∼1300 K, 8.6 × 104 R , ∼2 × 10−4, and ∼6 × 10−8 M ; the mean rate of dust inflow (condensation) into the dust structure is ∼3.3 × 10−8 M yr−1. The mean escape velocity of the shell from the heating source is ∼103 km s−1 and the mean dispersal rate of the shell is ∼1.1 × 10−8 M yr−1.  相似文献   

13.
An experiment was conducted in conjunction with the total solar eclipse on 29 March 2006 in Libya to measure both the electron temperature and its flow speed simultaneously at multiple locations in the low solar corona by measuring the visible K-coronal spectrum. Coronal model spectra incorporating the effects of electron temperature and its flow speed were matched with the measured K-coronal spectra to interpret the observations. Results show electron temperatures of (1.10±0.05) MK, (0.70±0.08) MK, and (0.98±0.12) MK, at 1.1 R from Sun center in the solar north, east and west, respectively, and (0.93±0.12) MK, at 1.2 R from Sun center in the solar west. The corresponding outflow speeds obtained from the spectral fit are (103±92) km s−1, (0+10) km s−1, (0+10) km s−1, and (0+10) km s−1. Since the observations were taken only at 1.1 R and 1.2 R from Sun center, these speeds, consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working. The electron temperature at 1.1 R from Sun center is larger at the north (polar region) than the east and west (equatorial region).  相似文献   

14.
ISOGAL is a survey at 7 and 15 μm with ISOCAM of the inner galactic disk and bulge of our Galaxy. The survey covers ∼ 22 deg2 in selected areas of the centrall = ±30 degree of the inner Galaxy. In this paper, we report the study of a small ISOGAL field in the inner galactic bulge (l = 0°,b = −1°, area = 0.033deg2). Using the multicolor nearinfrared data (IJKs) of DENIS (DEep Near Infrared Southern Sky Survey) and mid-infrared ISOGAL data, we discuss the nature of the ISOGAL sources. The various color-color and color-magnitude diagrams are discussed in the paper. While most of the detected sources are red giants (RGB tip stars), a few of them show an excess in J-Ks and Ks-[15] colors with respect to the red giant sequence. Most of them are probably AGB stars with large mass-loss rates.  相似文献   

15.
We present multi-colour CCD observations of the low-temperature contact binaries, V453 Mon and V523 Cas. Their light curves are modelled to determine a new set of stellar and orbital parameters. Analysis of mid-eclipse times yields a new linear ephemeris for both systems. A period decrease (dP/dt=2.3×10−7 days/yr) in V453 Mon is discovered. V523 Cas, however, is detected to show a period increase (dP/dt=9.8×10−8 days/yr) because of the mass transfer of a rate of 1.1×10−7 M yr−1, from a less massive donor. Using these findings we can determine the physical parameters of the components of V523 Cas to be M 1=0.76 (3)M , M 2=0.39 (2)M , R 1=0.74 (2)R , R 2=0.55 (2)R , L 1=0.19 (3)L , L 2=0.14 (3)L , and the distance of system as 46(9) pc.  相似文献   

16.
Astrometric CCD observations of 1123 stars with large proper motions (μ > 300 mas yr−1) from the LSPM (I/298) catalog in the declination zone +30°–+70° have been carried out with the Pulkovo normal astrograph since 2006. The observational program includes mostly stars that previously have not entered into high-accuracy projects to determine the proper motions. Our studies are aimed at determining new proper motions of fast stars in the HCRF/UCAC3 system and searching for stars with invisible companions in the immediate Galactic neighborhoods of the Sun. Having analyzed about 10 000 CCD frames, we have obtained the equatorial coordinates of 414 program stars in the HCRF/UCAC3 system at an accuracy level of 10–50 mas and determined their new proper motions. To derive the proper motions, we have used the data from several star catalogs and surveys (M2000, CMC14, 2MASS, SDSS) as early epochs. The epoch differences range from 5 to 13 years (on average, about 10 years); the mean accuracy of the derived proper motions is 4–5 mas yr−1. For 70 stars, we have revealed significant differences between the derived proper motions and those from the LSPM and I/306A catalogs (these proper motions characterize the mean motion of the photocenter in 50 years or more). Apart from systematic errors, these differences can result from the existence of invisible components of the program stars.  相似文献   

17.
Any calibration of the present value of the Hubble constant (H 0) requires recession velocities and distances of galaxies. While the conversion of observed velocities into true recession velocities has only a small effect on the result, the derivation of unbiased distances which rest on a solid zero point and cover a useful range of about 4–30 Mpc is crucial. A list of 279 such galaxy distances within v < 2,000 km s−1 is given which are derived from the tip of the red-giant branch (TRGB), from Cepheids, and/or from supernovae of type Ia (SNe Ia). Their random errors are not more than 0.15 mag as shown by intercomparison. They trace a linear expansion field within narrow margins, supported also by external evidence, from v = 250 to at least 2,000 km s−1. Additional 62 distant SNe Ia confirm the linearity to at least 20,000 km s−1. The dispersion about the Hubble line is dominated by random peculiar velocities, amounting locally to <100 km s−1 but increasing outwards. Due to the linearity of the expansion field the Hubble constant H 0 can be found at any distance >4.5 Mpc. RR Lyr star-calibrated TRGB distances of 78 galaxies above this limit give H 0 = 63.0 ± 1.6 at an effective distance of 6 Mpc. They compensate the effect of peculiar motions by their large number. Support for this result comes from 28 independently calibrated Cepheids that give H 0 = 63.4 ± 1.7 at 15 Mpc. This agrees also with the large-scale value of H 0 = 61.2 ± 0.5 from the distant, Cepheid-calibrated SNe Ia. A mean value of H 0 = 62.3 ± 1.3 is adopted. Because the value depends on two independent zero points of the distance scale its systematic error is estimated to be 6%. Other determinations of H 0 are discussed. They either conform with the quoted value (e.g. line width data of spirals or the D n σ method of E galaxies) or are judged to be inconclusive. Typical errors of H 0 come from the use of a universal, yet unjustified P–L relation of Cepheids, the neglect of selection bias in magnitude-limited samples, or they are inherent to the adopted models.  相似文献   

18.
The first generation of stars was formed from primordial gas. Numerical simulations suggest that the first stars were predominantly very massive, with typical masses M≥100M . These stars were responsible for the reionization of the universe, the initial enrichment of the intergalactic medium with heavy elements, and other cosmological consequences. In this work, we study the structure of Zero Age Main-Sequence stars for a wide mass and metallicity range and the evolution of 100, 150, 200, 250 and 300M galactic and pregalactic Pop III very massive stars without mass loss, with metallicity Z=10−6 and 10−9, respectively. Using a stellar evolution code, a system of 10 equations together with boundary conditions are solved simultaneously. For the change of chemical composition, which determines the evolution of a star, a diffusion treatment for convection and semiconvection is used. A set of 30 nuclear reactions are solved simultaneously with the stellar structure and evolution equations. Several results on the main sequence, and during the hydrogen and helium burning phases, are described. Low-metallicity massive stars are hotter and more compact and luminous than their metal-enriched counterparts. Due to their high temperatures, pregalactic stars activate sooner the triple alpha reaction self-producing their own heavy elements. Both galactic and pregalactic stars are radiation pressure dominated and evolve below the Eddington luminosity limit with short lifetimes. The physical characteristics of the first stars have significant influence in predictions of the ionizing photon yields from the first luminous objects; also they develop large convective cores with important helium core masses which are important for explosion calculations.  相似文献   

19.
Hydrodynamic calculations of nonlinear radial oscillations of LBV stars with effective temperatures 1.5 × 104 K ⩽ T eff ⩽ 3 × 104 K and luminosities 1.2 × 106 L L ⩽ 1.9 × 106 L have been performed. Models for the evolutionary sequences of Population I stars (X = 0.7, Z = 0.02) with initial masses 70M M ZAMS ⩽ 90M at the initial helium burning stage have been used as the initial conditions. The radial oscillations develop on a dynamical time scale and are nonlinear traveling waves propagating from the core boundary to the stellar surface. The amplitude of the velocity variations for the outer layers is several hundred km s−1, while the bolometric magnitude variations are within ΔM bol ⩽ 0· m 2. The onset of oscillations is not related to the κ-mechanism and is attributable to the instability of a self-gravitating envelope gas whose adiabatic index is close to its critical value of Γ1 = 4/3 due to the dominant contribution of radiation in the internal energy and pressure. The interval of magnitude variation periods (6 days ≤ II ≤ 31 days) encompasses all currently available estimates of the microvariability periods for LBV stars, suggesting that this type of nonstationarity is pulsational in origin.  相似文献   

20.
We consider two samples of OB stars with different distance scales that we have studied previously. The first and second samples consist of massive spectroscopic binaries with photometric distances and distances determined from interstellar calcium lines, respectively. The OB stars are located at heliocentric distances up to 7 kpc. We have identified them with the Gaia DR1 catalogue. Using the proper motions taken from the Gaia DR1 catalogue is shown to reduce the random errors in the Galactic rotation parameters compared to the previously known results. By analyzing the proper motions and parallaxes of 208 OB stars from the Gaia DR1 catalogue with a relative parallax error of less than 200%, we have found the following kinematic parameters: (U, V) = (8.67, 6.63)± (0.88, 0.98) km s?1, Ω0 = 27.35 ± 0.77 km s?1 kpc?1, Ω′0 = ?4.13 ± 0.13 km s?1 kpc?2, and Ω″0 = 0.672 ± 0.070 km s?1 kpc?3, the Oort constants are A = ?16.53 ± 0.52 km s?1 kpc?1 and B = 10.82 ± 0.93 km s?1 kpc?1, and the linear circular rotation velocity of the local standard of rest around the Galactic rotation axis is V 0 = 219 ± 8 km s?1 for the adopted R 0 = 8.0 ± 0.2 kpc. Based on the same stars, we have derived the rotation parameters only from their line-of-sight velocities. By comparing the estimated values of Ω′0, we have found the distance scale factor for the Gaia DR1 catalogue to be close to unity: 0.96. Based on 238 OB stars of the combined sample with photometric distances for the stars of the first sample and distances in the calcium distance scale for the stars of the second sample, line-of-sight velocities, and proper motions from the Gaia DR1 catalogue, we have found the following kinematic parameters: (U, V, W) = (8.19, 9.28, 8.79)± (0.74, 0.92, 0.74) km s?1, Ω0 = 31.53 ± 0.54 km s?1 kpc?1, Ω′0 = ?4.44 ± 0.12 km s?1 kpc?2, and Ω″0 = 0.706 ± 0.100 km s?1 kpc?3; here, A = ?17.77 ± 0.46 km s?1 kpc?1, B = 13.76 ± 0.71 km s?1 kpc?1, and V 0 = 252 ± 8 km s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号