首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 406 毫秒
1.
汤俊  高鑫  李垠健  钟正宇 《测绘学报》2022,51(3):317-326
基于北斗GEO卫星独有的静地特性,本文利用其观测数据提取电离层TEC进行磁暴期间电离层TEC时空变化研究。同时利用全球电离层格网图GIM值进行试验对比,结果表明:北斗GEO卫星提取的TEC与GIM模型值变化趋势一致,并且前者可更有效地监测电离层的细微扰动变化。在此次磁暴发生期间,亚太地区电离层TEC变化及扰动响应特征在纬度方向差异明显。其中南北半球较高纬度区域,电离层TEC在磁暴主相阶段主要表现为正响应扰动,而赤道及北半球较低纬度区域,电离层TEC在磁暴主相及恢复相阶段均产生了强度更大、持续时间更长的正响应扰动。结合现有研究,认为造成此次电离层异常扰动的激励因素主要为东向快速穿透电场的增强及热层中性成分的变化。试验结果也证明了GEO卫星可以精准有效地监测在磁暴发生时电离层TEC的变化规律及不同空间位置处TEC产生的扰动响应特征。  相似文献   

2.
差分码偏差(DCB)作为电离层建模和导航定位中一项重要的误差源,对其进行估计求解至关重要. 为提高北斗卫星导航系统(BDS) DCB估计和电离层建模精度,提出了一种综合高度角、卫地距和测站纬度多因素的随机模型,并对比分析了不同随机模型对BDS DCB估计和电离层垂直总电子含量(VTEC)建模精度的影响. 结果表明:不同随机模型对卫星端DCB解算产生约0.2 ns差异. 相较于高度角随机模型,采用高度角、卫地距组合模型测站DCB估计精度平均提高0.13 ns,电离层建模精度提高了约0.2 TECU. 新提出的随机模型,在低纬度测站DCB解算精度上差于高度角模型和高度角、卫地距组合模型,但在高纬度测站DCB解算结果上更优,且对电离层VTEC建模精度提升效果明显,与前两种随机模型相比分别提升了0.88 TECU和0.68 TECU.   相似文献   

3.
针对不同电离层产品精度存在差异的问题,对国际全球卫星导航系统(GNSS)服务员组织(IGS)、美国喷汽动力实验室(JPL)、欧洲定轨中心(CODE)、国际GNSS监测评估系统(iGMAS)、欧空局欧洲空间运行中心(ESOC)分析中心电离层产品进行精度评估,实验结果表明:在中国地区CODE和ESOG的中心电离层产品电离层格网数据(GIM)时间序列结果表现出高度的一致性;在欧洲地区CODE、ESOG和IGS中心电离层产品GIM的时间序列结果表现出高度的一致性;JPL中心电离层产品在中国地区、欧洲地区VTEC日平均值均最大;iGMAS中心电离层产品在中国地区、欧洲地区电离层VTEC日平均值均最小。IGS、JPL、CODE、i GMAS、ESOC分析中心电离层产品在中国地区VTEC的互差在3.6 TECU内,在欧洲地区VTEC的互差在3.2 TECU内,IGS、JPL、CODE、iGMAS、ESOC分析中心电离层产品在中国地区VTEC值相关系数均大于0.90,在欧洲地区相关系数均大于0.94,均表现出强相关性。  相似文献   

4.
为分析磁暴期间电离层扰动规律及GNSS定位性能变化,基于国际GNSS服务(International GNSS Service,IGS)全球观测数据及全球电离层图(global ionospheric map,GIM),对2018年8月26日地磁暴事件引发的北半球地区电离层总电子含量(total electron content,TEC)异常变化和GPS定位性能进行分析.结果表明:北半球TEC异常存在纬度差异,高纬地区响应快,低纬地区异常值变化大,达12 TECU;磁暴期间高纬地区观测数据周跳变化明显,周跳比数值与磁静日相比最大下降61.84%;磁暴期间所有测站数据完整率下降,高纬地区下降响应快,下降严重,达38.65%,研究区所有测站数据完整率下降出现在磁暴恢复相,数据质量与TEC异常变化规律较为一致;对GPS双频动态精密单点定位(precise point positioning,PPP)结果进行分析发现,磁暴期间高纬地区测站定位误差显著增大,水平和垂直方向均方根误差(root mean squared error,RMSE)增至约0.7 m及1.8 m.  相似文献   

5.
卫星导航定位中,电离层延迟是影响用户实时定位精度的重要因素之一。利用全球电离层格网(global ionosphere maps,GIM)提供电离层延迟改正是较为常用的方法,而GIM格网的精度受限于地面GNSS(global navigation satellite system)跟踪站的分布密度。利用区域内少量或1个GNSS跟踪站建立实时区域电离层总电子含量(total electron content,TEC)模型,生成高精度的实时区域电离层格网,为用户提供区域电离层延迟改正显得尤为重要。基于CODE(Center for Orbit Determination in Europe)分析中心2016—2018年995 d的GIM格网数据,分析了相邻格网点TEC的变化范围以及不同时间间隔同一格网点TEC的变化范围。结果表明,GIM在经度方向上分辨率为5°变化的均值范围为0.2~1.0 TECU,在纬度方向上分辨率为2.5°变化的均值范围为0.4~1.4 TECU,在经度和纬度分辨率均小于1°时,电离层TEC的变化小于1.0 TECU;1 h内同一格网点电离层TEC的变化均值约为1.28 TECU,30 min内同一格网点电离层TEC的变化小于1.0 TECU。该研究为小范围内(半径小于100 km)实时区域电离层TEC模型的建立及电离层格网的时间适用范围提供了有效的数据支撑和理论验证,同时对区域电离层TEC时空变化的研究、电离层TEC预报、电离层异常监测和磁暴监测等具有一定的参考意义。  相似文献   

6.
全球电离层时空变化特性分析   总被引:1,自引:0,他引:1  
采用谱分析和小波分解的方法对全球电离层VTEC量的时空变化特性进行了分析。使用IGS中心发布的全球电离层网格图数据,分别从高中低纬度全年变化特性、南北半球全年变化特性、全球范围内随经纬度的变化特性对电离层VTEC进行了分析。结果表明,高中低纬度地区VTEC量具有周日和半周年变化现象,在二分点处存在峰值,南半球电离层较北半球电离层活跃,经度变化对VTEC值的影响较纬度变化大,总体上,太阳辐射是电离层活动的主要影响因素。  相似文献   

7.
卫星测高、DORIS(Doppler Orbitography and Radio-positioning Integrated by Satellite)和无线电掩星等星基观测技术具有不受地表形态限制的全球观测范围,能够作为地基全球导航卫星系统(Global Navigation Satellite System,GNSS)电离层反演在海洋区域的补充观测。然而星基观测电离层高度范围仅限于低轨卫星轨道面以下,无法覆盖整个电离层高度范围,因此不能直接用于与地基GNSS反演的电离层总电子含量(total electron content, TEC)格网融合。针对DORIS观测反演的相对斜向总电子含量(slant total electron content,STEC),以全球电离层TEC格网(global ionosphere maps total electron content, GIM TEC)为基准,采用整体偏移方法将两者归算至统一观测尺度上;而卫星测高和GNSS掩星电离层产品则选取国际GNSS服务(International GNSS Service, IGS)组织提供的全球电离层TEC格网中均方根(root mean square, RMS)误差小于2 TECU的区域作为基准,采用2014年1月份低轨卫星观测值反演的TEC和GIM TEC数据进行对比,统计Jason-2和COSMIC(Constellation Observing System for Meteorology, Ionosphere and Climate)卫星反演的TEC与GIM TEC之间基于比例因子的函数关系,并将不同的观测手段归算到统一的观测尺度上,对比归算前后的TEC产品差异。并根据反演产品附近的全球定位系统(Global Positioning System,GPS)电离层穿刺点数量进行分类,验证星基电离层反演精度的有效性。对比结果显示,卫星测高、DORIS和掩星3种星基技术归算后的TEC产品与GIM TEC的匹配度在地基观测密集区域均能达到较好的符合度,而在地基观测不足区域符合度存在明显差异。考虑星基观测精度不受地域限制的特性,可认为该海洋区域的差异是由于星基观测在海洋区域观测精度比地基GNSS观测精度更高,星基观测反演的电离层TEC产品可作为海洋地区地基电离层TEC观测的有效补充。  相似文献   

8.
针对电离层电子总含量(total electron content,TEC)时间序列高噪声、非线性和非平稳的动态序列的特点,基于反向传播神经网络(back propagation neural network,BPNN)模型对欧洲定轨中心(Centre for Orbit Determination in Europe,CODE)提供的电离层格网(global ionosphere maps,GIM)数据产品中低纬度、中纬度、高经纬格网点TEC数据和对应的时间点、经纬度、太阳射电通量F10.7数据、赤道地磁活动指数Dst、全球地磁活动指数Kp数据进行样本训练并进行电离层预报.结果表明:基于BPNN模型能够较好地预报低纬度、中纬度和高纬度电离层TEC数值,平均相对精度分别到达了90.5%、88.7%、85.35%,残差均值分别为1.505 TECU、1.595 TECU、1.885 TECU,平均均方根误差(root mean square error,RMSE)值分别为1.94 TECU、2.13 TECU、3.08 TECU.  相似文献   

9.
为提高区域电离层模型和导航定位服务的精度,利用河北省连续运行参考站系统(CORS) 6个基准站的GPS卫星观测数据进行区域电离层建模和接收机差分码偏差(DCB)估计,并引入中国科学院(CAS)发布的电离层产品内插得到的垂直总电子含量(VTEC)进行区域电离层模型精度验证。实验结果表明,估计的单日GPS卫星DCB与产品值精度相当,偏差控制在0.5 ns以内;河北省CORS站GPS系统接收机DCB稳定性较好,5 d的标准偏差均小于0.1 ns;利用河北省CORS建立的区域电离层TEC在地磁平静期与磁暴期均与CAS产品值具有较高的一致性,TEC偏差控制在2 TECU以内。河北省区域电离层模型能有效监测电离层TEC在不同地磁状态下的时空变化,提高区域导航定位服务水平。  相似文献   

10.
研究了联合BDS/GPS观测数据基于球冠谐函数的中国区域电离层建模,并精确估计了北斗卫星和接收机DCB。联合解算得到的GPS卫星DCB相对CODE精度优于0.2 ns,GPS接收机DCB相对CODE精度优于1 ns;联合解算得到的中国区域上空VTEC相对CODE事后产品的精度可达2~3 TECU。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号