首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rainfall over West Africa shows strong interannual variability related to changes in Sea Surface Temperature (SST). Nevertheless, this relationship seem to be non-stationary. A particular turning point is the decade of the 1970s, which witnessed a number of changes in the climatic system, including the climate shift of the late 1970s. The first aim of this study is to explore the change in the interannual variability of West African rainfall after this shift. The analysis indicates that the dipolar features of the rainfall variability over this region, related to changes in the Atlantic SST, disappear after this period. Also, the Pacific SST variability has a higher correlation with Guinean rainfall in the recent period. The results suggest that the current relationship between the Atlantic and Pacific El Ni?o phenomena is the principal responsible for these changes. A fundamental goal of climate research is the development of models simulating a realistic current climate. For this reason, the second aim of this work is to test the performance of Atmospheric General Circulation models in simulating rainfall variability over West Africa. The models have been run with observed SSTs for the common period 1957?C1998 as part of an intercomparison exercise. The results show that the models are able to reproduce Guinean interannual variability, which is strongly related to SST variability in the Equatorial Atlantic. Nevertheless, problems in the simulation of the Sahelian interannual variability appear: not all models are able to reproduce the observed negative link between rainfall over the Sahel and El Ni?o-like anomalies in the Pacific, neither the positive correlation between Mediterranean SSTs and Sahelian rainfall.  相似文献   

2.
A set of 12 state-of-the-art coupled ocean-atmosphere general circulation models (OAGCMs) is explored to assess their ability to simulate the main teleconnections between the West African monsoon (WAM) and the tropical sea surface temperatures (SSTs) at the interannual to multi-decadal time scales. Such teleconnections are indeed responsible for the main modes of precipitation variability observed over West Africa and represent an interesting benchmark for the models that have contributed to the fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC4). The evaluation is based on a maximum covariance analysis (MCA) applied on tropical SSTs and WAM rainfall. To distinguish between interannual and multi-decadal variability, all datasets are partitioned into low-frequency (LF) and high-frequency (HF) components prior to analysis. First applied to HF observations, the MCA reveals two major teleconnections. The first mode highlights the strong influence of the El Niño Southern Oscillation (ENSO). The second mode reveals a relationship between the SST in the Gulf of Guinea and the northward migration of the monsoon rainbelt over the West African continent. When applied to HF outputs of the twentieth century IPCC4 simulations, the MCA provides heterogeneous results. Most simulations show a single dominant Pacific teleconnection, which is, however, of the wrong sign for half of the models. Only one model shows a significant second mode, emphasizing the OAGCMs’ difficulty in simulating the response of the African rainbelt to Atlantic SST anomalies that are not synchronous with Pacific anomalies. The LF modulation of these HF teleconnections is then explored through running correlations between expansion coefficients (ECs) for SSTs and precipitation. The observed time series indicate that both Pacific and Atlantic teleconnections get stronger during the twentieth century. The IPCC4 simulations of the twentieth and twenty-first centuries do not show any significant change in the pattern of the teleconnections, but the dominant ENSO teleconnection also exhibits a significant strengthening, thereby suggesting that the observed trend could be partly a response to the anthropogenic forcing. Finally, the MCA is also applied to the LF data. The first observed mode reveals a well-known inter-hemispheric SST pattern that is strongly related to the multi-decadal variability of the WAM rainfall dominated by the severe drying trend from the 1950s to the 1980s. Whereas recent studies suggest that this drying could be partly caused by anthropogenic forcings, only 5 among the 12 IPCC4 models capture some features of this LF coupled mode. This result suggests the need for a more detailed validation of the WAM variability, including a dynamical interpretation of the SST–rainfall relationships.  相似文献   

3.
Results from nine coupled ocean-atmosphere simulations have been used to investigate changes in the relationship between the variability of monsoon precipitation over western Africa and tropical sea surface temperatures (SSTs) between the mid-Holocene and the present day. Although the influence of tropical SSTs on the African monsoon is generally overestimated in the control simulations, the models reproduce aspects of the observed modes of variability. Thus, most models reproduce the observed negative correlation between western Sahelian precipitation and SST anomalies in the eastern tropical Pacific, and many of them capture the positive correlation between SST anomalies in the eastern tropical Atlantic and precipitation over the Guinea coastal region. Although the response of individual model to the change in orbital forcing between 6 ka and present differs somewhat, eight of the models show that the strength of the teleconnection between SSTs in the eastern tropical Pacific and Sahelian precipitation is weaker in the mid-Holocene. Some of the models imply that this weakening was associated with a shift towards longer time periods (from 3–5 years in the control simulations toward 4–10 years in the mid-Holocene simulations). The simulated reduction in the teleconnection between eastern tropical Pacific SSTs and Sahelian precipitation appears to be primarily related to a reduction in the atmospheric circulation bridge between the Pacific and West Africa but, depending on the model, other mechanisms such as increased importance of other modes of tropical ocean variability or increased local recycling of monsoonal precipitation can also play a role.  相似文献   

4.
The main goal of this study is to determine the oceanic regions corresponding to variability in African rainfall and seasonal differences in the atmospheric teleconnections. Canonical correlation analysis (CCA) has been applied in order to extract the dominant patterns of linear covariability. An ensemble of six simulations with the global atmospheric general circulation model ECHAM4, forced with observed sea surface temperatures (SSTs) and sea ice boundary variability, is used in order to focus on the SST-related part of African rainfall variability. Our main finding is that the boreal summer rainfall (June–September mean) over Africa is more affected by SST changes than in boreal winter (December–March mean). In winter, there is a highly significant link between tropical African rainfall and Indian Ocean and eastern tropical Pacific SST anomalies, which is closely related to El Niño-Southern Oscillation (ENSO). However, long-term changes are found to be associated with SST changes in the Indian and tropical Atlantic Oceans, thus, showing that the tropical Atlantic plays a critical role in determining the position of the intertropical convergence zone (ITCZ). Since ENSO is less in summer, the tropical Pacific and the Indian Oceans are less important for African rainfall. The African summer monsoon is strongly influenced by SST variations in the Gulf of Guinea, with a response of opposite sign over the Sahelian zone and the Guinean coast region. SST changes in the subtropical and extratropical oceans mostly take place on decadal time scales and are responsible for low-frequency rainfall fluctuations over West Africa. The modelled teleconnections are highly consistent with the observations. The agreement for most of the teleconnection patterns is remarkable and suggests that the modelled rainfall anomalies serve as suitable predictors for the observed changes.  相似文献   

5.
Jian Lu 《Climate Dynamics》2009,33(4):445-460
Given the pronounced warming in the Indian Ocean sea surface temperature (SST) during the second half of the twentieth century and the empirical relationship between the Indian Ocean SST and Sahel summer precipitation, we investigate the mechanisms underlying this relationship using the GFDL atmospheric model AM2.0 to simulate the equilibrium and transient response to the warming of the Indian Ocean. Equatorial wave dynamics, in particular the westward propagating equatorial Rossby waves, communicates the signal of tropospheric warming and stabilization from the Indian Ocean to the African continent. The stabilization associated with the Rossby wave front acts to suppress the convection. Feedbacks with local precipitation and depletion of moisture amplify the dynamically induced subsidence. While this stabilization mechanism is expected to operate in climate change response, the future prospects for the Sahelian climate under global warming are complicated by the intricate sensitivities to the SSTs from different ocean basins and to the direct radiative forcing of greenhouse gases.  相似文献   

6.
A nine-member ensemble of simulations with a state-of-the-art atmospheric model forced only by the observed record of sea surface temperature (SST) over 1930–2000 is shown to capture the dominant patterns of variability of boreal summer African rainfall. One pattern represents variability along the Gulf of Guinea, between the equator and 10°N. It connects rainfall over Africa to the Atlantic marine Intertropical Convergence Zone, is controlled by local, i.e., eastern equatorial Atlantic, SSTs, and is interannual in time scale. The other represents variability in the semi-arid Sahel, between 10°N and 20°N. It is a continental pattern, capturing the essence of the African summer monsoon, while at the same time displaying high sensitivity to SSTs in the global tropics. A land–atmosphere feedback associated with this pattern translates precipitation anomalies into coherent surface temperature and evaporation anomalies, as highlighted by a simulation where soil moisture is held fixed to climatology. As a consequence of such feedback, it is shown that the recent positive trend in surface temperature is consistent with the ocean-forced negative trend in precipitation, without the need to invoke the direct effect of the observed increase in anthropogenic greenhouse gases. We advance plausible mechanisms by which the balance between land–ocean temperature contrast and moisture availability that defines the monsoon could have been altered in recent decades, resulting in persistent drought. This discussion also serves to illustrate ways in which the monsoon may be perturbed, or may already have been perturbed, by anthropogenic climate change.  相似文献   

7.
A series of recent papers showed that sea surface temperature (SST) anomalies in the south equatorial tropical Atlantic modulate the interannual variability of the African and Indian monsoon rainfall. Physically this teleconnection can be explained by a simple Gill-Matsuno mechanism. In this work, the output from five different models chosen within the CMIP3 (Coupled Model Intercomparison Project version 3) ensemble of coupled general circulation models (CGCMs) are analyzed to investigate how state-of-the-art CGCMs represent the impact of the South Tropical Atlantic (STA) SSTs on the Indian and African region. Using a correlation-regression technique, it is found that four out of the five models display a teleconnection between STA and Indian region which is generally weaker than in the observations but in agreement in the rainfall field pattern. This teleconnection is also noticeable in the ensemble mean of the five models. Over Africa, however, the significant changes in rainfall displayed in the observation are properly caught by only one of the CGCMs. Additionally, none of the models reproduces the symmetric upper-level wind response around the Equator seen over the Indian Ocean in the observations and all have significant biases also in the surface pressure field response to the tropical Atlantic SSTs. Nonetheless the STA response, particularly over the southern hemisphere, is indicative of the Gill-Matsuno-type mechanism identified in previous studies using idealized experiments with atmospheric GCMs and observational data. With a suite of atmospheric-only GCM integrations it is shown that the differences in amplitude and pattern are not only due to the strong biases and reduced variabilities of the CGCMs over the tropical Atlantic but they are also caused by the different physical parameterizations used in models.  相似文献   

8.
The Gulf of Guinea in the equatorial Atlantic is characterized by the presence of strong subsidence at certain times of the year. This subsidence appears in June and becomes well established from July to September. Since much of theWest African monsoon flow originates over the Gulf, Guinean subsidence is important for determining moisture sources for the monsoon. Using reanalysis products, I contribute to a physical understanding of what causes this seasonal subsidence, and how it relates to precipitation distributions across West Africa.There is a seasonal zonal overturning circulation above the Congo basin and the Gulf of Guinea in the ERA-Interim, ERA-40, NCEP2, and MERRA reanalyses. The up-branch is located in the Congo basin around 20°E. Mid-tropospheric easterly flows constitute the returning-branch and sinking over the Gulf of Guinea forms the down-branch, which diverges at 2°W near the surface, with winds to the east flowing eastward to complete the circulation. This circulation is driven by surface temperature differences between the eastern Gulf and Congo basin. Land temperatures remain almost uniform, around 298 K, throughout a year, but the Guinean temperatures cool rapidly from 294 K in May to about 290 K in August. These temperature changes increase the ocean/land temperature contrast, up to 8 K, and drive the circulation.I hypothesize that when the overturning circulation is anomalously strong, the northward moisture transport and Sahelian precipitation are also strong. This hypothesis is supported by ERA-Interim and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record) data.  相似文献   

9.
The surface ocean explains a considerable part of the inter-annual Tropical Atlantic variability. The present work makes use of observational datasets to investigate the effect of freshwater flow on sea surface salinity (SSS) and temperature (SST) in the Gulf of Guinea. In particular, the Congo River discharges a huge amount of freshwater into the ocean, affecting SSS in the Eastern Equatorial Atlantic (EEA) and stratifying the surface layers. The hypothesis is that an excess of river runoff emphasize stratification, influencing the ocean temperature. In fact, our findings show that SSTs in the Gulf of Guinea are warmer in summers following an anomalously high Congo spring discharge. Vice versa, when the river discharges low freshwater, a cold anomaly appears in the Gulf. The response of SST is not linear: temperature anomalies are considerable and long-lasting in the event of large freshwater flow, while in dry years they are less remarkable, although still significant. An excess of freshwater seems able to form a barrier layer, which inhibits vertical mixing and the entrainment of the cold thermocline water into the surface. Other processes may contribute to SST variability, among which the net input of atmospheric freshwater falling over EEA. Likewise the case of continental runoff from Congo River, warm anomalies occur after anomalously rainy seasons and low temperatures follow dry seasons, confirming the effect of freshwater on SST. However, the two sources of freshwater anomaly are not in phase, so that it is possible to split between atypical SST following continental freshwater anomalies and rainfall anomalies. Also, variations in air-sea fluxes can produce heating and cooling of the Gulf of Guinea. Nevertheless, atypical SSTs cannot be ascribed to fluxes, since the temperature variation induced by them is not sufficient to explain the SST anomalies appearing in the Gulf after anomalous peak discharges. The interaction processes between river runoff, sea surface salinity and temperature play an effective role in the interannual variability in the EEA region. Our results add a new source of variability in the area, which was often neglected by previous studies.  相似文献   

10.
The study examines results of dynamic downscaling of two global analyses: the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis II and the Global Forecast System final analysis (FNL). Downscaling to a 0.5° grid over West Africa and the adjacent Atlantic Ocean is accomplished by each of two regional models, the Regional Model, version 3 (RM3) of the Center for Climate Systems Research and the Weather, Research and Forecasting model (WRF). Simulations are for September 2006, the African Monsoon Multidisciplinary Analysis (AMMA) Special Observing Period #3 (SOP-3). The aim of this study is to exploit the increased spatial detail in the simulations and representations of climate fields by the regional models to analyze meteorological systems within the SOP-3 area of interest and time frame. In particular, the paper focuses on the regional models’ representations of the structure and movement of a prominent easterly wave during September 10–13th, the precursor of Tropical Storm/Hurricane Helene. It describes the RM3 simulated structure of the developing storm in terms of circulation, precipitation, vertical motion, cumulus heating rates, and cross-sections of wind and geopotential height anomalies. Simulated cumulus heating rates within the wave’s main precipitation area imply a lowering of the bases of active cumulus in the transition from the African continent to the Atlantic, indicating that the ocean environment promotes greater upward latent heat flux that in turn intensifies overlying storms. RM3 circulation, precipitation patterns, and storm trajectory are reasonably consistent with observational evidence. Experiments show that precipitation rates near 6°N over the eastern North Atlantic are sensitive to vertical thermal stability, such that they are enhanced by warmer in situ sea-surface temperatures (SSTs) and diminished by colder SSTs. However, prescribing colder SST causes increases in precipitation north of 9°N within areas of large scale upward vertical motion where rainfall rates are less sensitive to in situ SSTs. The evaluation of WRF indicates that its storm propagation is too fast over West Africa, where associated WRF precipitation rates are exaggerated, but its performance is improved over the Atlantic.  相似文献   

11.
Most coupled general circulation models (GCMs) perform poorly in the tropical Atlantic in terms of climatological seasonal cycle and interannual variability. The reasons for this poor performance are investigated in a suite of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM. The experiments show that a significant portion of the equatorial SST biases in the model is due to weaker than observed equatorial easterlies during boreal spring. Due to these weak easterlies, the tilt of the equatorial thermocline is reduced, with shoaling in the west and deepening in the east. The erroneously deep thermocline in the east prevents cold tongue formation in the following season despite vigorous upwelling, thus inhibiting the Bjerknes feedback. It is further shown that the surface wind errors are due, in part, to deficient precipitation over equatorial South America and excessive precipitation over equatorial Africa, which already exist in the uncoupled atmospheric GCM. Additional tests indicate that the precipitation biases are highly sensitive to land surface conditions such as albedo and soil moisture. This suggests that improving the representation of land surface processes in GCMs offers a way of improving their performance in the tropical Atlantic. The weaker than observed equatorial easterlies also contribute remotely, via equatorial and coastal Kelvin waves, to the severe warm SST biases along the southwest African coast. However, the strength of the subtropical anticyclone and along-shore winds also play an important role.  相似文献   

12.
A 15 member ensemble of 20th century simulations using the ECHAM4–T42 atmospheric GCM is utilized to investigate the potential predictability of interannual variations of seasonal rainfall over Africa. Common boundary conditions are the global sea surface temperatures (SST) and sea ice extent. A canonical correlation analysis (CCA) between observed and ensemble mean ECHAM4 precipitation over Africa is applied in order to identify the most predictable anomaly patterns of precipitation and the related SST anomalies. The CCA is then used to formulate a re-calibration approach similar to model output statistics (MOS) and to derive precipitation forecasts over Africa. Predictand is the climate research unit (CRU) gridded precipitation over Africa. As predictor we use observed SST anomalies, ensemble mean precipitation over Africa and a combined vector of mean sea level pressure, streamfunction and velocity potential at 850 hPa. The different forecast approaches are compared. Most skill for African precipitation forecasts is provided by tropical Atlantic (Gulf of Guinea) SST anomalies which mainly affect rainfall over the Guinean coast and Sahel. The El Niño/Southern Oscillation (ENSO) influences southern and East Africa, however with a lower skill. Indian Ocean SST anomalies, partly independent from ENSO, have an impact particularly on East Africa. As suggested by the large agreement between the simulated and observed precipitation, the ECHAM4 rainfall provides a skillful predictor for CRU precipitation over Africa. However, MOS re-calibration is needed in order to provide skillful forecasts. Forecasts using MOS re-calibrated model precipitation are at least as skillful as forecast using dynamical variables from the model or instantaneous SST. In many cases, MOS re-calibrated precipitation forecasts provide more skill. However, differences are not systematic for all regions and seasons, and often small.  相似文献   

13.
An intermediate complexity atmospheric general circulation model has been used to investigate the influence of the South Atlantic Ocean (SAO) dipole (SAOD) on summer precipitation over the Guinea Coast of West Africa. Two ensemble integrations in which idealized but realistic SAOD-type sea surface temperature (SST) anomaly is prescribed only in the SAO, and then globally are performed and inter-compared. Consistently, above (below) the average precipitation is simulated over the Guinea Coast during the positive (negative) phase of the SAOD. Comparison of the two set of experiments reveal that in its active years, the SAOD is a dominant mechanism that shapes the spatial character of summer precipitation at the Guinea coast, the global SST variability merely slightly moderate its effects. During the SAOD, cool SST anomaly in the extra-tropical SAO off the Brazil–Uruguay–Argentina coast gives rise to suppressed convection and mass divergence. In turn, the subsidence tends to amplify the sub-tropical arm of anomalous Hadley-type circulation and consequently large scale convection and mass flux convergence in the equatorial Atlantic Ocean/Gulf of Guinea region bordering on the coastal fringes of West Africa. Precipitation is therefore increased at the Guinea Coast.  相似文献   

14.
We investigate the role of the ocean feedback on the climate in response to insolation forcing during the mid-Holocene (6,000 year BP) using results from seven coupled ocean–atmosphere general circulation models. We examine how the dipole in late summer sea-surface temperature (SST) anomalies in the tropical Atlantic increases the length of the African monsoon, how this dipole structure is created and maintained, and how the late summer SST warming in the northwest Indian Ocean affects the monsoon retreat in this sector. Similar mechanisms are found in all of the models, including a strong wind evaporation feedback and changes in the mixed layer depth that enhance the insolation forcing, as well as increased Ekman transport in the Atlantic that sharpens the Atlantic dipole pattern. We also consider changes in interannual variability over West Africa and the Indian Ocean. The teleconnection between variations in SST and Sahelian precipitation favor a larger impact of the Atlantic dipole mode in this region. In the Indian Ocean, the strengthening of the Indian dipole structure in autumn has a damping effect on the Indian dipole mode at the interannual time scale.  相似文献   

15.
Besides sea surface temperature (SST), soil moisture (SM) exhibits a significant memory and is likely to contribute to atmospheric predictability at the seasonal timescale. In this respect, West Africa was recently highlighted as a “hot spot” where the land–atmosphere coupling could play an important role, through the recycling of precipitation and the modulation of the meridional gradient of moist static energy. Particularly intriguing is the observed relationship between summer monsoon rainfall over Sahel and the previous second rainy season over the Guinean Coast, suggesting the possibility of a soil moisture memory beyond the seasonal timescale. The present study is aimed at revisiting this question through a detailed analysis of the instrumental record and a set of numerical sensitivity experiments. Three ensembles of global atmospheric simulations have been designed to assess the relative influence of SST and SM boundary conditions on the West African monsoon predictability over the 1986–1995 period. On the one hand, the results indicate that SM contributes to rainfall predictability at the end and just after the rainy season over the Sahel, through a positive soil-precipitation feedback that is consistent with the “hot spot” hypothesis. On the other hand, SM memory decreases very rapidly during the dry season and does not contribute to the predictability of the all-summer monsoon rainfall. Though possibly model dependent, this conclusion is reinforced by the statistical analysis of the summer monsoon rainfall variability over the Sahel and its link with tropical SSTs. Our results indeed suggest that the apparent relationship with the previous second rainy season over the Guinean Coast is mainly an artefact of rainfall teleconnections with tropical modes of SST variability both at interannual and multi-decadal timescales.  相似文献   

16.
The relative importance of sea surface temperatures (SSTs) and the surface energy budget to tropical precipitation is examined by comparing models with zonally symmetric climates, both fixed SST and coupled to a slab mixed layer ocean. Two models are considered with differing surface flux formulations and in each case solutions that are symmetric about the equator are perturbed to create interhemispheric asymmetry. When SSTs are prescribed in the two models with different flux formulations, the magnitude of tropical precipitation response to identical SST anomalies is significantly different, but the differences can be understood in terms of the altered surface fluxes. In contrast, when the net surface energy fluxes are constrained to be identical in mixed layer simulations of the two different models, the response of tropical precipitation to perturbations in the surface energy balance is very similar. Both perspectives predict qualitatively the same precipitation response, but the energy budget better predicts the magnitude of the precipitation response. Thus, we argue that the atmospheric energy budget, controlled in these experiments primarily by the surface energy budget, is more fundamental to the control of tropical precipitation than the SSTs, in these simulations with axisymmetric climates. We touch briefly on a complication in the interpretation of the model results due to the fact that fixed SST and slab-ocean versions of the model can produce different Hadley cell strengths for the same SSTs.  相似文献   

17.
Observations indicate that since the 1970s Equatorial Atlantic sea surface temperature (SST) variations in boreal summer tend to modulate El Niño in the following seasons, indicating that the Atlantic Ocean can have importance for predicting the El Niño–Southern Oscillation (ENSO). The cause of the change in the recent decades remains unknown. Here we show that in the Bergen Climate Model (BCM), a freshwater forced weakening of the Atlantic meridional overturning circulation (AMOC) results in a strengthening of the relation between the Atlantic and the Pacific similar to that observed since the 1970s. During the weakening AMOC phase, SST and precipitation increase in the central Equatorial Atlantic, while the mean state of the Pacific does not change significantly. In the Equatorial Atlantic the SST variability has also increased, with a peak in variability in boreal summer. In addition, the characteristic timescales of ENSO variability is shifted towards higher frequencies. The BCM version used here is flux-adjusted, and hence Atlantic variability is realistic in contrast to in many other models. These results indicate that in the BCM a weakening AMOC can change the mean background state of the Tropical Atlantic surface conditions, enhancing Equatorial Atlantic variability, and resulting in a stronger relationship between the Tropical Atlantic and Pacific Oceans. This in turn alters the variability in the Pacific.  相似文献   

18.
A prominent weakening in equatorial Atlantic sea surface temperature (SST) variability, occurring around the year 2000, is investigated by means of observations, reanalysis products and the linear recharge oscillator (ReOsc) model. Compared to the time period 1982–1999, during 2000–2017 the May–June–July SST variability in the eastern equatorial Atlantic has decreased by more than 30%. Coupled air–sea feedbacks, namely the positive Bjerknes feedback and the negative net heat flux damping are important drivers for the equatorial Atlantic interannual SST variability. We find that the Bjerknes feedback weakened after 2000 while the net heat flux damping increased. The weakening of the Bjerknes feedback does not appear to be fully explainable by changes in the mean state of the tropical Atlantic. The increased net heat flux damping is related to an enhanced response of the latent heat flux to the SST anomalies (SSTa). Strengthened trade winds as well as warmer SSTs are suggested to increase the air–sea specific humidity difference and hence, enhancing the latent heat flux response to SSTa. A combined effect of those two processes is proposed to be responsible for the weakened SST variability in the eastern equatorial Atlantic. The ReOsc model supports the link between reduced SST variability, weaker Bjerknes feedback and stronger net heat flux damping.  相似文献   

19.
Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach   总被引:3,自引:2,他引:1  
On the frame of the AMMA-EU project, sensitivity experiments for an Atlantic Equatorial mode (AEM) which origin, development and damping resembles the observed one during the last decades of the 20th century, has been analysed in order to investigate the influence on the anomalous summer West African rainfall. Recent studies raise the matter of the AEM influence on the next Pacific ENSO episodes and also on the Indian Monsoon. This paper evaluates the response of four different atmospheric global circulation models, using the above-mentioned AEM sensitivity experiments, to study the tropical forcing associated with the Atlantic Niño mode. The results show a remote signal in both the Pacific and Indian basins. For a warm phase of the AEM the associated southward location of the ITCZ, with rising motions over the Equatorial Atlantic, leads to a global subsidence over the rest of the tropics, weakening the Asian Monsoon and favouring the La Niña conditions in the central Pacific. Although ocean–atmosphere coupled experiments are required to test the latter hypothesis, the present studies shows how the AEM is able to influence the rest of the tropics, a result with important implications on ENSO seasonal predictability.  相似文献   

20.
Decadal Sahelian rainfall variability was mainly driven by sea surface temperatures (SSTs) during the twentieth century. At the same time SSTs showed a marked long-term global warming (GW) trend. Superimposed on this long-term trend decadal and multi-decadal variability patterns are observed like the Atlantic Multidecadal Oscillation (AMO) and the inter-decadal Pacific Oscillation (IPO). Using an atmospheric general circulation model we investigate the relative contribution of each component to the Sahelian precipitation variability. To take into account the uncertainty related to the use of different SST data sets, we perform the experiments using HadISST1 and ERSSTv3 reconstructed sets. The simulations show that all three SST signals have a significant impact over West Africa: the positive phases of the GW and the IPO lead to drought over the Sahel, while a positive AMO enhances Sahel rainfall. The tropical SST warming is the main cause for the GW impact on Sahel rainfall. Regarding the AMO, the pattern of anomalous precipitation is established by the SSTs in the Atlantic and Mediterranean basins. In turn, the tropical SST anomalies control the impact of the IPO component on West Africa. Our results suggest that the low-frequency evolution of Sahel rainfall can be interpreted as the competition of three factors: the effect of the GW, the AMO and the IPO. Following this interpretation, our results show that 50% of the SST-driven Sahel drought in the 1980s is explained by the change to a negative phase of the AMO, and that the GW contribution was 10%. In addition, the partial recovery of Sahel rainfall in recent years was mainly driven by the AMO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号