共查询到20条相似文献,搜索用时 15 毫秒
1.
从遥感图像中自动化地检测和提取建筑物在城市规划、人口估计、地形图制作和更新等应用中具有极为重要的意义。本文提出和展示了建筑物提取的数个研究进展。由于遥感成像机理、建筑物自身、背景环境的复杂性,传统的经验设计特征的方法一直未能实现自动化,建筑物提取成为30余年尚未解决的挑战。先进的深度学习方法带来新的机遇,但目前存在两个困境:①尚缺少高精度的建筑物数据库,而数据是深度学习必不可少的"燃料";②目前国际上的方法都采用像素级的语义分割,目标级、矢量级的提取工作亟待开展。针对于此,本文进行以下工作:①与目前同类数据集相比,建立了一套目前国际上范围最大、精度最高、涵盖多种样本形式(栅格、矢量)、多类数据源(航空、卫星)的建筑物数据库(WHU building dataset),并实现开源;②提出一种基于全卷积网络的建筑物语义分割方法,与当前国际上的最新算法相比达到了领先水平;③将建筑物提取的范围从像素级的语义分割推广至目标实例分割,实现以目标(建筑物)为对象的识别和提取。通过试验,验证了WHU数据库在国际上的领先性和本文方法的先进性。 相似文献
2.
田普光 《测绘与空间地理信息》2023,(12):109-112+116
针对传统卷积神经网络进行建筑提取时效果不佳的问题,本文以U-Net网络为基础,在U-Net网络的跳跃连接结构中加入注意力门机制,并且使用混合交叉熵损失函数和Lovasz损失函数的策略监督训练。上述方法可有效解决不同层级特征在跳跃连接时,因语义鸿沟而造成拼接后的特征语义损失的问题,而混合损失函数的策略还能有效整合多个不同混合损失函数的优势,从而增强模型的鲁棒性。定性和定量化的实验结果均表明,本文方法的建筑物提取结果错漏较少,建筑物提取效果较为完整,并且精度较其他对比方法有一定优势。 相似文献
4.
结合影像的LIDAR数据三维建筑物提取 总被引:3,自引:1,他引:3
随着LIDAR技术的出现,三维建筑物的提取也受到越来越多的重视。由于LIDAR数据分布的不连续性和不规律性,直接从机载激光扫描测距数据中进行建筑物提取较为困难。本文提出了一种结合灰度影像的LIDAR数据三维建筑物提取方法,分三个步骤:首先对灰度影像进行建筑物二维提取;然后将处理后影像和LIDAR数据粗匹配,初步确定LI-DAR数据中的三维建筑物区域;最后利用一组阈值操作进行三维建筑物的精确提取。实验结果表明该方法简单实用,适应性强。 相似文献
5.
基于LiDAR数据的建筑物自动提取方法的比较 总被引:2,自引:0,他引:2
简述三种典型的利用LiDAR点云自动提取建筑物的方法.提出对建筑物提取结果的精度评价指标,并对三种方法的提取结果进行比较.结果表明摹于Dempster-Shafer理论的建筑物自动提取方法最为稳健. 相似文献
7.
8.
通过倾斜摄影技术实现三维城市建模是当前三维城市快速建模的一种发展趋势,在三维城市快速建模过程中,如何在加密和定向工序处理后的倾斜影像中提取建筑物的侧面纹理,从而实现纹理自动匹配,是一个值得研究的问题。 相似文献
9.
基于体元分析的三维建筑物模型结构化分割方法 总被引:1,自引:0,他引:1
针对现有三维模型分割方法在建筑物基本结构特征识别方面存在的不足,提出一种基于体元分析的三维建筑物模型结构化分割方法。该方法首先通过体元化和内部距离参数计算在模型内部构建分层距离场,然后采用局部极值判别方法从各层距离场中提取出对建筑物结构、形状分布具有代表意义的中心体元,并基于中心体元和内、外部体元聚类找到建筑物在空间组成上相互独立的结构单元,最后依据体元分析结果对原始建筑物模型进行表面分割。试验结果表明,该方法能够对不同风格的建筑物模型进行有效分割,具有极强的稳健性。 相似文献
10.
11.
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN(Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE(Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。 相似文献
12.
利用机载三维成像仪的DSM数据自动提取建筑物 总被引:6,自引:1,他引:6
利用三维成像仪获取的DSM作为数据源,首先采用影像分割得到建筑物的平面轮廓线,再根据建筑物一般具有规则平面形状的特点,对建筑物的平面边缘线进行规格化处理,最后求出建筑物的平均高度值,从而得到建筑物的三维信息。试验表明,该方法是实用的。 相似文献
13.
14.
15.
16.
17.
18.
19.
建筑物作为三维模型的主体,其矢量化主要依赖人工勾画,虽有采用深度学习等方法进行建筑物提取的研究,但依然需要标注大量样本。针对上述问题,本文以天津市典型区域为试验区,提出一种融合高度和光谱信息的倾斜摄影数据建筑物自动提取方法。首先,通过高度初始分割、植被信息滤除、形态学后处理等,逐步优化建筑物提取结果,实现建筑物信息的自动提取,建筑物的总体识别精度达到94%。然后,通过对建筑物轮廓进行矢量化和规则化,在地理信息平台中实现了建筑物的对象化查询,拓展了实景三维模型的应用深度。 相似文献
20.
基于机载激光扫描数据提取建筑物的研究现状 总被引:2,自引:3,他引:2
机载激光扫描系统是集成了GPS、惯性导航系统(INS)和扫描激光测距系统并利用飞机作为运行平台,来获取地面的三维位置,进而快速生成数字表面模型(DSM)。随着机载扫描激光测距系统的不断完善和发展,获取城市DSM数据也变得越来越快速,而且方便和经济可靠,地面激光点的密度也大大提高。目前国外激光扫描系统的激光点密度一般都达到了1~20点/m2,因此利用机载激光扫描系统获取的城市DSM提取建筑物也渐渐受到重视。利用激光扫描数据提取建筑物可以分为两大类,第一类是单纯以获取的机载激光测距数据来提取建筑物,第二类是融合激光测距数据和其他相关信息的建筑物提取,如融合航空影像、融合IKONOS高分辨率卫星影像来提取建筑物。本文对国际上利用机载激光扫描测距数据进行建筑物提取的最新研究进展进行了一些分析,同时也给出了应用我国研制的机载激光扫描数据提取建筑物的试验研究和初步结果。 相似文献