共查询到20条相似文献,搜索用时 15 毫秒
1.
E. Moliterni R. G. Jiménez-Tusset M. Villar Rayo L. Rodriguez F. J. Fernández J. Villase?or 《International Journal of Environmental Science and Technology》2012,9(4):749-758
Three microbial consortia were isolated from three polluted soils located at an oil refinery and acclimated to grow on diesel fuel as the sole carbon source. Batch experiments were then conducted with the three consortia to study the kinetics of diesel biodegradation. The effects of temperature (25, 30 and 35?°C) and diesel concentration (0.5, 1 and 3?%) on the biodegradation of diesel were analysed. Several species were identified in the acclimated microbial consortia, and some of them appeared in more than one consortium. Thermal inhibition was observed at 35?°C. In the rest of experiments, over 80?% of the substrate was degraded after 40?h of treatment. These results proved the good feasibility of using the polluted sites as sources of mixed consortia for hydrocarbon degradation. However, diesel degradation efficiencies and rates were very similar, suggesting that the acclimation process produced mixed consortia with very similar characteristics; in this context, origin of the soil sample was not a decisive factor. A simple Monod-type kinetic model was used to simulate the biodegradation process, and accurate results were obtained. The ?? max values were between 0.17 and 0.34?h?1. The results of this study revealed that the consortia can function at high concentrations of hydrocarbons without any sign of growth inhibition, which is important for the design of bioreactors for wastewater treatment with high concentrations of fuel. 相似文献
2.
Investigation of a 17 m vertical profile of a silt and clay aquitard at a natural gas well site in Alberta, Canada revealed a contaminant plume of gas condensate, along with high concentrations of acetate, propionate and butyrate. The pattern of the distribution of these short-chain fatty acids in groundwater and sediment samples suggested that they have been produced by microorganisms in a process associated with degradation of the condensate hydrocarbons. It is suggested that, in certain zones, under water-saturated and/or anaerobic conditions, these acids were actively consumed by SO4-reducing bacteria. Analyses of DNA extracts by denaturing gel gradient electrophoresis (DGGE) indicated that, compared to sediment samples collected from outside the condensate plume, contaminated samples tended to have fewer, but more strongly developed bands of DNA, which typically had closest affinities to known anaerobes, including species of Fe-reducing Geobacter, and SO4-reducing Desulfosporosinus. 相似文献
3.
The bacteria and plants were associated to remove diesel oil pollutants from soil.Three efficiently degrading bacteria(named strains Q10,Q14 and Q18,respectively) were isolated.Two plants(alfalfa and Indian mustard) were selected to form the association.Biodegradation of diesel oil pollutants in soil was accelerated by bacteria-plants association.The main results are summarized as follows.The plants-bacteria association was more effective in biodegradation of diesel oil pollutants in soil than in respective experiments carried out with plants or bacteria alone.Strain Q18-Indian mustard association resulted in the maximum diesel oil reduction(69.18%).The activities of catalase and polyphenol oxidase in soil were enhanced and microbial populations in soil,especially in rhizosphere,were also stimulated in the treatment of bacteria-plant association.Overall,the soil conditions might be improved by alfalfa or Indian mustard to benefit the growth of bacteria,which resulted in degradation of diesel oil pollutants more effective by the bacteria-plant association.The bacteria-plants association may be a better approach to the removal of diesel oil pollutants from soil. 相似文献
4.
《Applied Geochemistry》2002,17(8):1165-1170
The objectives of this study were to determine the feasibility of ozonation in unsaturated porous media, and consequently to observe its features and to identify possible limiting factors. Diesel fuel was chosen to represent a complex organic contaminant that is widespread in the environment. In this experiment, the effects of several ozonation features were investigated. Sand was spiked with commercially available diesel fuel (17.024 g diesel/kg dry sand), and packed into a column. Ozone was supplied into the column in a downward direction. When the sand was treated for 7 h at 20 mg ozone/l of air, 40% of the diesel was removed. As the ozone concentration increased from 5 to 20 mg ozone/l, the removal efficiency increased. The removal rate varied significantly depending on the ozone concentration and the treatment duration. At higher ozone concentration, significant quantities of ozone were consumed by the intermediates produced by the ozonation process, and therefore, the removal efficiency and the apparent removal rate of diesel became lowered. The low removal efficiency of diesel results from the high concentrations of normal alkanes. Total hydrocarbon concentration (THC) in the effluent gas was measured using a total hydrocarbon analyzer. The THC decreased with the period of exposure and increasing ozone concentration. Ozonation decreased the gas-extractable fraction and accordingly, the THC decreased. Water-extractable fractions formed by the action of ozone were further oxidized by ozone. Due to the reduction of WEOC (water-extractable organic C) caused by ozone treatment, the potential spread of contamination can be reduced. 相似文献
5.
M. Canul-Chan M. Sánchez-González A. González-Burgos A. Zepeda R. Rojas-Herrera 《International Journal of Environmental Science and Technology》2018,15(1):1-16
Petroleum and fuel oil are complex mixtures of recalcitrant hydrocarbons. The biodegradation of these hydrocarbons needs the action of a vast variety of enzymatic capacities. A microbial consortium offers the capability to degrade complex substrates through the assembly of different biochemical reactions, providing a metabolic versatility superior to axenic cultures. In this work, the microbial population dynamics, taxonomy, and the catabolic capacity of a stabilized consortium exposed to fuel and crude oil was analyzed through metagenomics. The stabilized consortium degraded 59% of crude oil components after 8 days, and 34% of fuel oil components after 130 days. Population dynamics analysis indicates that in fuel oil the biodiversity richness was higher; however, denaturing gradient gel electrophoresis similarity dendrogram shows significant changes in the microbial population during crude oil degradation. Taxonomy studies indicate a great genera divergence; only eight microbial genera were common in both samples. In crude oil, the Limnobacter sp. was the most abundant specie (15.6%), while Sphingomonas wittichii (7.9%) and Novosphingobium aromaticivorans (7.6%) were abundant in fuel oil. These microorganisms have been reported to participate in the degradation of aliphatic and aromatic hydrocarbons. Functional analysis suggests that fuel and crude oil components changed the interactions between the consortium members affecting the collective metabolic functionality. 相似文献
6.
《Applied Geochemistry》2001,16(11-12):1419-1428
The effect of nonionic surfactants on the solubility and biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the aqueous phase and in the soil slurry phase, as well as the fate of these surfactants, were investigated. The PAH solubility was linearly proportional to the surfactant concentration when above the critical micelle concentration (CMC), and increased as the hydrophile–lipophile balance (HLB) value decreased. Substantial amounts of the sorbed phenanthrene in the soil particles were desorbed by non-ionic surfactants into the liquid phase when the ratio of soil to water was 1:10 (g/ml). Brij 30 was the most biodegradable surfactant tested, showed no substrate inhibition up to a concentration of 1.5 g/l, and was definitely used as a C source by the bacteria. Naphthalene and phenanthrene were completely degraded by phenanthrene-acclimatised cultures within 60 h, but a substantial amount of naphthalene was lost due to volatilization. The limiting step in the soil slurry bioremediation was bioavailability by the micro-organisms for the sand slurry and mass transfer from a solid to aqueous phase in the clay slurry. 相似文献
7.
This paper deals with a field experiment, combining the push–pull and tracer tests, conducted under natural gradient conditions
at the international Oslo airport. The studied aquifer, showing very complex hydrogeological settings, has been contaminated
by a jet fuel spill. The tracer solutes—bromide, toluene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene, have been injected into the plume. Their migration
and changes in concentration of the electron acceptors and metabolic by-products have been monitored. Fast removal of both
the non-reactive tracer as well as the aromatic organics has been observed. The tracer pulse could only be detected 2 m downgradient
from the injection points. At this point, toluene and o-xylene have been completely removed, however, trimethylbenzenes and naphthalene have been detected. Their depletion, based
on calculations of available electron acceptors, can, to a large extent, be accounted for intrinsic biodegradation, with Fe(III)
and sulphate reductions as the major controlling processes. 相似文献
8.
M. L. Riskuwa-Shehu U. J. J. Ijah S. B. Manga L. S. Bilbis 《International Journal of Environmental Science and Technology》2017,14(10):2205-2214
The aim of this research was to evaluate the potential of six legumes: Medicago sativa L., Glycine max, Arachis hypogea, Lablab purpureus, Pheseolus vulgaris and Cajanus cajan to restore within a short period of time soil contaminated with 3% crude oil. The legumes in five replications were grown in crude oil-contaminated and crude oil-uncontaminated soil in a completely randomized design. Plants were assessed for seedling emergence, plant height and leaf number. GC–MS was used to analyze the residual crude oil from the rhizosphere of the legumes. Plant growth parameters were reduced significantly (P < 0.05) for legumes in contaminated soil compared to their controls. In the 4th week after planting (WAP), shoot height increased across the species up to the 8th WAP. However, in the 12 WAP no significant increase in the shoot of all species was observed. Two WAP legumes planted in contaminated soil had significantly (P < 0.05) higher leaf number than these planted in uncontaminated soil with the exception of M. sativa. In the 4th WAP, only A. hypogea and P. vulgaris had increased leaf number, while in the 6th WAP, only L. purpureus had increased leaf number and survived up to the 12th WAP while most of the legumes species died. Chromatographic profiles indicated 100% degradation of the oil fractions in C. cajan and L. purpureus after 90 days. For other legumes however, greater losses of crude oil fractions C1–C10 and C10–C20 were indicated in rhizosphere soil of P. vulgaris and G. max, respectively. The most effective removal (93.66%) of C21–C30 components was observed in G. max-planted soil even though vegetation was not established. The legumes especially C. cajan, L. purpureus and A. hypogea are promising candidates for phytoremediation of petroleum hydrocarbon-impacted soil. 相似文献
9.
A. Dadrasnia P. Agamuthu 《International Journal of Environmental Science and Technology》2013,10(4):769-778
Bioremediation is an effective measure in dealing with such contamination, particularly those from petroleum hydrocarbon sources. The effect of soil amendments on diesel fuel degradation in soil was studied. Diesel fuel was introduced into the soil at the concentration of 5 % (w/w) and mixed with three different organic wastes tea leaf, soy cake, and potato skin, for a period of 3 months. Within 84 days, 35 % oil loss was recorded in the unamended polluted soil while 88, 81 and 75 % oil loss were recorded in the soil amended with soy cake, potato skin and tea leaf, respectively. Diesel fuel utilizing bacteria counts were significantly high in all organic wastes amended treatments, ranging from 111 × 106 to 152 × 106 colony forming unit/gram of soil, as compared to the unamended control soil which gave 31 × 106 CFU/g. The diesel fuel utilizing bacteria isolated from the oil-contaminated soil belongs to Bacillus licheniformis, Ochrobactrum tritici and Staphylococcus sp. Oil-polluted soil amended with soy cake recorded the highest oil biodegradation with a net loss of 53 %, as compared to the other treatments. Dehydrogenase enzyme activity, which was assessed by 2,3,5-triphenyltetrazolium chloride technique, correlated significantly with the total petroleum hydrocarbons degradation and accumulation of CO2. First-order kinetic model revealed that soy cake was the best of the three organic wastes used, with biodegradation rate constant of 0.148 day?1 and half life of 4.68 days. The results showed there is potential for soy cake, potato skin and tea leaf to enhance biodegradation of diesel in oil-contaminated soil. 相似文献
10.
Zhi-hui Qu Yong-sheng Zhao Rui Zhou Xiao-dong Yin Ying-hua Zhu Bing Wang Li-na Jiao 《Environmental Earth Sciences》2013,68(6):1555-1561
Processes that control the distribution and natural attenuation (NA) of petroleum hydrocarbons dissolved from the released diesel fuel in a bench-scale model aquifer were evaluated. The experimental results obtained in two-dimensional aqueous-phase petroleum hydrocarbon concentrations indicated that the total petroleum hydrocarbon (TPH) in the aquifer migrated in longitudinal and lateral directions. The TPH plume of 2 mg L?1 spread to the entire area of the aquifer, and the maximum concentration at the center of the plume was 44.15 mg L?1 after 90 days of release. After diesel fuel release, the NA of TPH was evaluated and quantified. Experimental data indicated that the NA of TPH was immediately implemented to prevent migration of the plume into the downgradient of the aquifer, but controlling the TPH plumes using NA mechanisms requires a long time. 相似文献
11.
加油站地下水中石油烃污染是较为普遍的现象,本文对研究区位于不同水文地质条件的加油站地下水进行取样分析,分析加油站地下水中石油烃的污染特征和地下水化学类型特征,并运用因子分析、相关性分析和多元回归分析揭示加油站地下水中石油烃潜在的生物降解机制。研究结果表明,地下水化学类型主要可划分为Cl-Na型、HCO3-Na型、HCO3-Ca型和SO4-Na型4类。加油站地下水中石油烃的检出率为85.71%,检出浓度为0.020.35 mg/L。因子分析结果表明影响地下水化学组成的因素主要以水-岩相互作用和石油烃的生物降解为主。TPH与地下水化学指标间的相关关系表明:TPH与K+、Na+、Cl-、Mn、Mg2+、 呈现负相关的关系,与pH值、 、 、 、Ca2+、Fe不存在显著的相关关系。加油站地下水环境中可能存在嗜盐或耐盐微生物,导致随着盐度的升高,总石油烃(total petroleum hydrocarbon,TPH)生物降解率加快,TPH浓度呈现出降低的趋势。微生物利用电子受体( 、Mn、 、Fe)降解TPH的过程中,电子受体的贡献率为:铁还原(64.88%)>锰还原(24.86%)>硫酸根还原(5.78%)>硝酸盐还原(4.46%),即加油站地下水中铁锰还原菌的石油烃生物降解为优势反应。 相似文献
12.
Intrinsic biodegradation of toluene coupled with the microbial reduction of ferric iron (Fe(III)) as the terminal electron acceptor was studied by using laboratory column experiments under continuous flow conditions. Columns were packed with contaminated aquifer sediment and N2-purged groundwater taken from the western part of the Gardermoen aquifer. The columns were operated anaerobically at 8 °C (in-situ temperature). Chloride was initially used to characterize flow properties of the columns. Intrinsic biodegradation of toluene, including abiotic loss and biological loss, was estimated by comparing breakthrough curves of toluene for live columns and sterilized control columns based on mass balance in steady-state conditions. The column experiments were run at two different flow velocities. The estimated average intrinsic rate was -0.73 and -0.53 mM day-1 for pore-water velocities of 1.75 and 2.68 cm h-1, respectively, corresponding to -0.27 and -0.22 mM day-1 in biological loss rate. The results indicate that intrinsic biodegradation of toluene could be used as an efficient remediation approach for contaminated groundwater at the Gardermoen fire-fighting training site. 相似文献
13.
A consequence of the biodegradation of petroleum is that lower molecular weight compounds are removed preferentially to higher molecular weight (HMW) compounds greater than triacontane (n-C30). The extent to which the latter compounds are biodegraded has rarely been studied. Reasons for this include the technical difficulties associated with carrying out biodegradability tests with solid, water-insoluble substances and the limits of the analytical techniques, such as gas chromatography (GC).A quantitative high temperature GC (HTGC) method was developed to monitor the biodegradation of the aliphatic fraction of a waxy Indonesian oil by Pseudomonas fluorescens. Recoveries of over 90% were obtained for n-alkanes up to hexacontane (C60) using liquid-liquid continuous extraction. After only 14 days, 80% of the aliphatic hydrocarbons had been degraded. At the end of the 136-day study, 14% of the original fraction remained. This comprised mainly C40+ compounds. No decrease in the concentrations of compounds above C45 was observed. However, the use of a rapid screening biodegradation method provided tentative proof that Pseudomonas fluorescens was capable of utilising n-alkanes up to C60 once the bacteria had acclimated to HMW alkanes. 相似文献
14.
The effect of biodegradation on polycyclic aromatic hydrocarbons in reservoired oils from the Liaohe basin, NE China 总被引:3,自引:0,他引:3
Haiping Huang Bernard F.J. Bowler Thomas B.P. Oldenburg Steve R. Larter 《Organic Geochemistry》2004,35(11-12):1619
The occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) has been studied in oil columns from the Liaohe basin, NE China, characterized by varied degrees of biodegradation. The Es3 oil column has undergone light to moderate biodegradation – ranging from levels 2 to 5 on the [Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, Englewood Cliffs, NJ, p. 363] scale (abbreviated as ‘PM level’) – while the shallower Es1 column has undergone more severe biodegradation, ranging from PM level 5 to 8. Both columns show excellent vertical biodegradation gradients, with degree of biodegradation increasing with increasing depth toward the oil–water contact (OWC). The compositional gradients in the oil columns imply mass transport control on degradation rates, with degradation occurring primarily at the OWC. The diffusion of hydrocarbons to the OWC zone will be the ultimate control on the maximum degradation rate. The chemical composition and physical properties of the reservoired oils, and the ‘degradation sequence’ of chemical components are determined by mixing of fresh oil with biodegraded oil.The PAH concentrations and molecular distributions in the reservoired oils from these biodegraded columns show systematic changes with increasing degree of biodegradation. The C3+-alkylbenzenes are the first compounds to be depleted in the aromatic fraction. Concentrations of the C0–5-alkylnaphthalenes and the C0–3-alkylphenanthrenes decrease markedly during PM levels 3–5, while significant isomer variations occur at more advanced stages of biodegradation (>PM level 4).The degree of alkylation is a critical factor controlling the rate of biodegradation; in most cases the rate decreases with increasing number of alkyl substituents. However, we have observed that C3-naphthalenes concentrations decrease faster than those of C2-naphthalenes, and methylphenanthrenes concentrations decrease faster than that of phenanthrene. Demethylation of a substituted compound is inferred as a possible reaction in the biodegradation process.Differential degradation of specific alkylated isomers was observed in our sample set. The relative susceptibility of the individual dimethylnaphthalene, trimethylnaphthalene, tetramethylnaphthalene, pentamethylnaphthalene, methylphenanthrene, dimethylphenanthrene and trimethylphenanthrene isomers to biodegradation was determined. The C20 and C21 short side-chained triaromatic steroid hydrocarbons are degraded more readily than their C26–28 long side-chained counterparts. The C21–22-monoaromatic steroid hydrocarbons (MAS) appear to be more resistant to biodegradation than the C27–29-MAS.Interestingly, the most thermally stable PAH isomers are more susceptible to biodegradation than less thermally stable isomers, suggesting that selectivity during biodegradation is not solely controlled by thermodynamic stability and that susceptibility to biodegradation may be related to stereochemical structure. Many commonly used aromatic hydrocarbon maturity parameters are no longer valid after biodegradation to PM level 4 although some ratios change later than others. The distribution of PAHs coupled with knowledge of their biodegradation characteristics constitutes a useful probe for the study of biodegradation processes and can provide insight into the mechanisms of biodegradation of reservoired oil. 相似文献
15.
《Applied Geochemistry》2000,15(2):157-169
Ground-water chemistry and the stable C isotope composition (δ13CDIC) of dissolved inorganic C (DIC) were measured in a sand aquifer contaminated with JP–4 fuel hydrocarbons. Results show that ground water in the upgradient zone was characterized by DIC content of 14–20 mg C/L and δ13CDIC values of −11.3‰ to −13.0‰. The contaminant source zone was characterized by an increase in DIC content (12.5 mg C/L to 54 mg C/L), Ca, and alkalinity, with a significant depletion of 13C in δ13CDIC (−11.9‰ to −19.2‰). The source zone of the contaminant plume was also characterized by elevated levels of aromatic hydrocarbons (0 μg/L to 1490 μg/L) and microbial metabolites (aromatic acids, 0 μg/L to 2277 μg/L), non-detectable dissolved O2, NO3 and SO4. Phospholipid ester-linked fatty acid analyses suggest the presence of viable SO4-reducing bacteria in ground water at the time of sampling. The ground-water chemistry and stable C isotope composition of ground-water DIC are interpreted using a chemical reaction model involving rainwater recharge, contributions of CO2 from soil gas and biodegradation of hydrocarbons, and carbonate dissolution. The major-ion chemistry and δ13CDIC were reconciled, and the model predictions were in good agreement with field measurements. It was concluded that stable C isotope measurements, combined with other biogeochemical measures can be a useful tool to monitor the dominant terminal electron-accepting processes in contaminated aquifers and to identify mineralogical, hydrological, and microbiological factors that affect δ13C of dissolved inorganic C. 相似文献
16.
Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel 总被引:4,自引:4,他引:0
D. Yousefi Kebria A. Khodadadi H. Ganjidoust A. Badkoubi M. A. Amoozegar 《International Journal of Environmental Science and Technology》2009,6(3):435-442
The ability of native bacteria to utilize diesel fuel as the sole carbon and energy source was investigated in this research. Ten bacterial strains were isolated from the oil refinery field in Tehran, Iran. Two biodegradation experiments were performed in low and high (500 and 10000 ppm, respectively) concentration of diesel fuel for 15 days. Only two isolates were able to efficiently degrade the petroleum hydrocarbons in the first test and degraded 86.67% and, 80.60 % of diesel fuel, respectively. The secondary experiment was performed to investigate the toxicity effect of diesel fuel at high concentration (10000 ppm). Only one strain was capable to degrade 85.20 % of diesel fuel at the same time (15 days). Phenotype and phylogeny analysis of this strain was characterized and identified as diesel-degrading bacteria, based on gram staining, biochemical tests, 16S rRNA gene sequence analysis. These results indicate that this new strain was Bacillus sp. and could be considered as Bacillus Cereus with 98 % 16 S rRNA gene sequence similarity. The results indicate that native strains have great potential for in situ remediation of diesel-contaminated soils in oil refinery sites. 相似文献
17.
《地球化学》2015,(5)
大宛齐油田全油样品的GC分析显示,部分样品经受了不同程度的微生物降解作用。对原油C7轻烃组成分析发现,随微生物降解程度的增加,链烷烃、环烷烃的相对丰度呈现规律性的变化。对不同支链烷烃而言,单甲基链烷烃比双甲基链烷烃和三甲基链烷烃优先降解,2,3-二甲基戊烷是C7支链烷烃中抗微生物降解能力最强的;2-甲基己烷比3-甲基己烷优先降解,甲基位于末端位置的比位于中间位置的异构体更易于被细菌攻击;烷基化程度和烷基化位置是影响微生物降解的两个主要因素。对于环烷烃,在较为强烈的微生物降解条件下,只剩下1,1-二甲基环戊烷,1,1-二甲基环戊烷是所有C7类烃中抗微生物降解能力最强的。随微生物降解程度的增加,Mango轻烃参数K1值减小、K2值增大,正庚烷值和异庚烷值减小,甲基环己烷指数增加,Halpern变化参数Tr2、Tr3、Tr4、Tr5均减小。 相似文献
18.
Recently, decreasing of fossil fuel reserves and their negative effect on environment have increased the interest in alternative energy sources. One of the alternative energy sources is vegetable oils. In this study, blends of 50 % opium poppy oil — 50 % diesel fuel mixture are tested as alternative fuel on a single cylinder, 4-stroke, air cooled, pre-combustion chamber diesel engine at different speeds and its effects on engine performance and emissions are investigated. When compared to the diesel fuel as average, engine torque and power decrease at 4 % and 5.73 %, respectively. Specific fuel consumption increases by using of 50% opium poppy oil — 50 % diesel fuel mixture. When compared to the diesel fuel as average, carbon monoxide and nitrogen oxides emissions of 50 % opium poppy oil — 50 % diesel fuel mixture decrease to 15.5 % and 5.9 %, respectively. Diesel fuel-opium poppy oil mixture has been found notably successful and environment friendly as an alternative fuel for diesel engines. 相似文献
19.
We investigated the distribution of lipids in Lower Triassic sedimentary rocks (252–247 myr) from South China, including a shallow water microbialite in the uppermost section of the outcrop. Archaeal derived hydrocarbons were the major constituents of the microbialite from the latest Early Triassic. Among these, we detected (i) abundant C40 acyclic and monocyclic biphytanes (possibly derived from glycerol dialkyl glycerol tetraether lipids) and their degradation products, C30–39 pseudohomologues and (ii) a C25 head-to-tail linked (regular) isoprenoid hydrocarbon [possibly derived from dialkyl glycerol diether lipids (DGDs)] and its degradation products, C21–24 pseudohomologues and abundant pristane and phytane. Through combination of compound-specific stable carbon isotope analysis of isoprenoid hydrocarbons, which had average δ13C values of −35‰ to −30‰, and their molecular distribution, it was not possible to unambiguously define the archaeal source for the biphytanes in the microbialite. The δ13C values for pristane and phytane were similar to those for head-to-tail linked C21–25 isoprenoids; potential source organisms for these compounds were halophilic archaea. Except for methane seep microbialites, no other ancient or recent phototrophic microbialites have been reported to contain predominantly archaeal isoprenoid hydrocarbons. Our findings suggest the presence of a new type of microbialite. 相似文献
20.
Maksim Bano Olivier Loeffler Jean-François Girard 《Comptes Rendus Geoscience》2009,341(10-11):846-858
Ground penetrating radar (GPR) is a non-destructive method which, over the past 10 years, has been successfully used not only to estimate the water content of soil, but also to detect and monitor the infiltration of pollutants on sites contaminated by light non-aqueous phase liquids (LNAPL). We represented a model water table aquifer (72 cm depth) by injecting water into a sandbox that also contains several buried objects. The GPR measurements were carried out with shielded antennae of 900 and 1200 MHz, respectively, for common mid point (CMP) and constant offset (CO) profiles. We extended the work reported by Loeffler and Bano by injecting 100 L of diesel fuel (LNAPL) from the top of the sandbox. We used the same acquisition procedure and the same profile configuration as before fuel injection. The GPR data acquired on the polluted sand did not show any clear reflections from the plume pollution; nevertheless, travel times are very strongly affected by the presence of the fuel and the main changes are on the velocity anomalies. We can notice that the reflection from the bottom of the sandbox, which is recorded at a constant time when no fuel is present, is deformed by the pollution. The area close to the fuel injection point is characterized by a higher velocity than the area situated further away. The area farther away from the injection point shows a low velocity anomaly which indicates an increase in travel time. It seems that pore water has been replaced by fuel as a result of a lateral flow. We also use finite-difference time-domain (FDTD) numerical GPR modelling in combination with dielectric property mixing models to estimate the volume and the physical characteristics of the contaminated sand. 相似文献