首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Leuchtenberg granite (Oberpfalz, NE Bavaria) displays a continuous differentiation trend ranging from mildy peraluminous, coarse-grained, porphyritic biotite granites (BG) to strongly peraluminous, medium- to fine-grained, garnet-bearing muscovite granites (GMG). The Rb–Sr and K–Ar age determinations of whole-rock and mineral samples from the granite and associated intermediate rocks (redwitzites) have revealed two divergent age gradients: Rb–Sr wholerock dates decrease and initial 87Sr/86Sr ratios increase for successively more evolved subsets of the granite. All BG samples (87Rb/86Sr=2–16) yield a date of 326±2 Ma with a low initial 87Sr/86Sr ratio of 0.70778±0.00013 (1), while all GMG samples (87Rb/86Sr=70 to 1000) yield a younger date of 317±2 Ma with an enhanced initial 87Sr/86Sr ratio of 0.7146±0.0039. The K–Ar measurements on biotites and muscovites give closely concordant dates for the GMG (326–323 Ma) and the southern lobe of the BG (324–320 Ma). The northern lobe of the BG, including the redwitzites, shows a well-defined trend of decreasing K–Ar dates from 320 Ma to 300 Ma towards the northwest. Critical consideration of both isotope systems leads to the conclusion that the Rb–Sr system of the GMG was disturbed by a later hydrothermal event. The ca. 326 Ma whole-rock Rb–Sr date for the BG is not in conflict with any of the K–Ar mineral dates and is taken as approaching the crystallization age of the Leuchtenberg granite. The K–Ar age progression within the northern lobe of the BG indicates that this part either cooled down over a protracted period of some 20 Ma or experienced reheating at ca. 300 Ma. The study highlights the potential of combined Rb–Sr and K–Ar dating in deciphering detailed chronology on the scale of a single igneous intrusion.  相似文献   

2.
The upper greenschist - lower amphibolite facies, argillaceous to chemical-exhalative metasedimentary sequence of the Mesoarchaean Ghattihosahalli Schist Belt (GHSB), southern India, has been examined with a special focus on the paragenesis and solid solution characteristics of barian feldspars and associated dioctahedral Ba-Cr-bearing micas. Barian feldspars occur as untwinned porphyroblasts in a recrystallized finely banded matrix of barite, quartz and minor white mica. Idioblastic celsian (Cls98-76Or2-20Ab1-8) and hyalophane (Cls55-39Or35-51Ab10) predate the greenschist-facies foliation, whereas xenoblastic hyalophane (Cls44-35Or45-59Ab8–17) and mantles on celsian (Cls45-35Or42-60Ab13-5) as well as xenoblastic barian K-feldspar (Cls6Or90Ab2) postdate the last fabric-defining event. The preservation of extremely complex zoning patterns down to the micron-scale shows that diffusional homogenization did not operate at fluid-present low to medium-grade conditions (350–550 °C, 3–5 kb). Microstructures indicate that at these conditions barian feldspars deform exclusively by brittle fracturing and do not undergo recrystallization. Barian feldspar compositions confirm the positive correlation of Na-content with temperature and the existence of a narrow asymmetric compositional gap (Cls90-85?Cls55, ~350 °C) which probably closes at lower amphibolite facies conditions (Xc ~Cls75; Tc ~550 °C). White micas are solid solutions of the end-members muscovite, ganterite (Ba0.5?K0.5)Al2(Al1.5Si2.5)O10(OH)2, paragonite, celadonite with a significant substitution of [VI]Al by Cr. Zoning is a common feature with cores being enriched in Ba. The data document extensive Ba substitution for K from muscovite to ganterite, exclusively controlled by the coupled substitution [XII]K + [IV]Si ? [XII]Ba + [IV]Al and strongly dependent on bulk composition. The extent of solid solution from (Ms+Gnt) towards paragonite and celadonite end-members is controlled by the miscibility gap in the (Ms+Gnt)–Pg–Cel pseudoternary, with the Pg-substitution depending on temperature and the Cel-substitution on pressure. [IV]Si values between 3.1 and 3.3 in Ba-poor micas indicate minimum pressures of chemical equilibration in the order of 3–5 kbar, while the most sodian compositions of low-celadonite micas provide an upper temperature estimate of ~550 °C, consistent with P-T estimates for assemblages of metapelites (500–550 °C, 4–5 kb).  相似文献   

3.
Fluid-calcite-calcite dihedral angles have been measured for fluids in the system H2O−CO2−NaCl, between 1 and 2 kbar, and 550–750° C. It is found that the calcite-calcite-H2O dihedral angle decreases steadily with addition of NaCl from a value of about 80° (pure water) to 44° (60 wt% NaCl). The CO2−H2O system displays a well-defined minimum at , with a dihedral angle of 50°, in contrast to those of pure CO2 and H2O which are 90° and 80° respectively. Experiments containing fluids which are immiscible at run conditions showed a bimodal distribution of dihedral angles in the CO2−H2O−NaCl system, which can be approximately correlated with the compositions of the two fluid phases. Such bimodality was only observed for immiscible fluids in the H2O−NaCl system if the quench rate exceeded about 200°C per min. This is probably due to the extremely rapid establishment of the single phase dihedral angle on quenching. The fluid phase topology in devolatilising marbles will only be a connected network for very saline brines and fluids with close to 0.5. Fluids trapped in fluid inclusions in calcite grains in marbles may be predominantly H2O-rich or CO2-rich, and of low salinity. All other fluid compositions in the H2O−CO2−NaCl-calcite system will occupy isolated pores, the largest of which will grow at the expense of the smallest. Escape of fluid produced during devolatilisation reactions under such conditions will occur by fluid overpressuring and hydrofracture. In contrast, previous experimental studies of quartz-fluid dihedral angles between 950° and 1100° C (Watson and Brenan 1987) predict that quartz-dominated lithologies will permit pervasive flow of H2O−NaCl fluids, but not of H2O−CO2 fluids. Documented geological examples of differences in permeability and fluid flow mechanism between metamorphic argillites, psammites and limestones which support the results of the experimental studies are discussed.  相似文献   

4.
《Geochimica et cosmochimica acta》1999,63(19-20):3105-3119
A comprehensive low-temperature thermodynamic model for the geochemically important Na2CO3−MgCO3−CaCO3−H2O system is presented. The model is based on calorimetrically determined ΔfH°298 values, S°298 values and C°p(T) functions taken from the literature as well as on μ°298 values of solids derived in this work from solubility measurements obtained in our laboratories or by others. When these thermodynamic quantities were combined with temperature-dependent Pitzer parameters taken from the literature, solubilities calculated for a wide range of conditions agree well with experimental data. The results for several subsystems were summarized by depicting the respective phase diagrams. For the MgO−CO2−H2O subsystem, it was found that the commonly believed stability relations must be revised, i.e., in the temperature range covered, nesquehonite never becomes more stable than hydromagnesite at pCO2 ≤ 1 atm. Although the recommended set of thermodynamic data on sparingly soluble solids was derived from experimental results on mainly NaClO4 systems, it can be incorporated in databanks containing additional Pitzer parameters for modeling more complex fresh- or seawater systems.  相似文献   

5.
An orientation survey was undertaken in northwest Ngamiland to evaluate, among other criteria, an optimum size fraction for trace element analysis in the Kalahari sandveld regolith samples for a regional geochemical mapping project in the area. The most prominent geomorphological features of the region are the longitudinal rolling sand dunes and floodplain sediments adjacent to the unique, mid-continent Okavango Delta. Most of the dune sands were deposited in the Late Quaternary, and they show evidence of both pluvial and and environments. Presently the a lab dunes support varied shrub/grass vegetation with intermittent tree cover. Extensive forest fires have affected the region for generations, and the occurrences of remnants of large trees indicate that the region may have also supported large forests at some stage.The sandveld regolith comprises 70% quartz sand (−1000 + 63 μm) and 10–20% silt/clay (< 63 μm) material. There are no size variations between material from dune crests, dune depressions and down the soil profile to a depth of a metre. The process of regolith formation is relatively young and dynamic, being widely churned by a variety of boring animals, termites, ants and other insects. Hence no distinct zonation of soil horizons in the top 100 cm of the soil catena were observed. Remarkably, the significant proportion of the silt/clay fraction in the regolith indicates progressive weathering and possible deposition of precipitates.Trace element contents are invariably enhanced in the fine fractions, a characteristic widely observed elsewhere in residual soils. On the Xaxa-Cheracheraha traverse Zn values range from 2 to 98 ppm (mean 9 ppm); Pb varies from 1 to 101 ppm (mean 27 ppm) and Cu from 0 to 18 ppm (mean 5 ppm) in the −75 μm fraction. Contents in the −180 + 75 μm are, however, significantly lower than in the fine fractions. The variations in element concentrations along each of the orientation survey traverses at Qangwa-Nokaneng, Nxaunxau-Qurube and Nxaunxau-Ghane, in the coarse and fine fractions, generally remain sympathetic, showing that the enhanced values in the fines are a result of secondary dispersion, rather than mere compositional differences in the sandveld regolith.  相似文献   

6.
《Applied Geochemistry》2003,18(10):1653-1662
The through- and out-diffusion of HTO, 36Cl and 125I in Opalinus Clay, an argillaceous rock from the northern part of Switzerland, was studied under different confining pressures between 4 and 15 MPa. The direction of diffusion and the confining pressure were perpendicular to the bedding. Confining pressure had only a small effect on diffusion. An increase in pressure from 4 to 15 MPa resulted in a decrease of the effective diffusion coefficient of ∼20%. Diffusion accessible porosities were not measurably affected. The values of the effective diffusion coefficients, De, ranged between (5.6±0.4)×10−12 and (6.7±0.4)×10−12 m2 s−1 for HTO, (7.1±0.5)×10−13 and (9.1±0.6)×10−13 m2 s−1 for 36Cl and (4.5±0.3)×10−13 and (6.6±0.4)×10−13 m2 s−1 for 125I. The rock capacity factors, α, measured were circa 0.14 for HTO, 0.040 for 36Cl and 0.080 for 125I. Because of anion exclusion effects, anions diffuse slower and exhibit smaller diffusion accessible porosities than the uncharged HTO. Unlike 36Cl, 125I sorbs weakly on Opalinus Clay resulting in a larger rock capacity factor. The sorption coefficient, Kd, for 125I is of the order of 1–2×10−5 m3 kg−1. The effective diffusion coefficient for HTO is in good agreement with values measured in other sedimentary rocks and can be related to the porosity using Archie's Law with exponent m=2.5.  相似文献   

7.
A comprehensive Sr–Nd–Pb–O isotopic study is reported for rhyolites from the Maroa Volcanic Centre in the Taupo Volcanic Zone (TVZ) of New Zealand. The Sr–Nd isotopic compositions of the rhyolites (87Sr/86Sr=0.705236 to 0.705660 and Nd = 2.0 to 0.2) are intermediate between those of primitive basalts (87Sr/86Sr=0.70387 and Nd = 5.3) and the Torlesse basement (87Sr/86Sr=0.709 and Nd = -4.5). The relatively low mantle-like oxygen isotopic compositions of 18 O = 7 ± 0.5 are consistent with the Nd-Sr isotopic constraints in that they can be accounted for by 15% to 25% crustal contamination of a basaltic parent by relatively 18 O-rich Torlesse metasediment. High precision Pb isotopic analyses of plagioclase separates from the Maroa rhyolites show that they have essentially the same compositions as the Torlesse metasedimentary terrane which is itself distinctive from the Western or Waipapa metasediments. Due to the high concentration of Pb in the Torlesse metasediments (>20 ppm) compared to the basalts (<2 ppm), the Pb isotopic composition of the volcanics may be controlled by relatively small amounts (>10%) of crustal contamination. All these results are shown to be consistent with derivation of the rhyolites by 15% to 25% contamination of relatively primitive basaltic magmas with Torlesse metasedimentary crust, followed by extensive, essentially closed system fractionation of the basalt to a magma of rhyolite composition. It is argued that the processes of assimilation and fractionation are separated in both space and time. The voluminous high silica rhyolites, which make up >97% of the exposed volcanism in the continental margin back-are basin environment of the TVZ, therefore appear to be a product of predominantly new additions to the crust with assimilation-recycling of pre-existing crust being of secondary importance.  相似文献   

8.
通过开展大型地震模拟振动台试验,对比研究了土−桩基−隔震支座−核岛结构和土−桩基−核岛结构的地震反应。试验采用橡胶铅锌支座作为基础隔震,放置于桩基承台和上部核岛结构之间,地基土采用某工程场地的均匀粉质黏土,试验输入的地震动时程,是由美国核电设计的 RG1.60 反应谱拟合而成。试验结果表明:隔震支座不仅可以改变上部结构频率、减小加速度和反应谱幅值大小,还可以减少下部桩的弯矩,起到降低上部结构的反应的隔震作用。但隔震支座的使用会改变桩基础的弯矩分布,核电工程采用隔震支座时应对桩基受力和变形进行特殊抗震设计,以保证土−桩−上部结构整体系统的抗震稳定性。  相似文献   

9.
The timing of mantle−derived CO2 charging in sedimentary basins is the basis for studying CO2-sandstone interactions and CO2-oil interactions. In general, the time of the volcanic eruption near the CO2 gas reservoir is considered to be the time of mantle-derived CO2 charging. However, this approach is not suitable for hydrocarbon-bearing basins that have experienced multiple volcanic events. In this paper, using dawsonite-bearing sandstones contained in an oil-bearing CO2 gas and oil reservoir in the southern Songliao Basin as the object of the study on the basis of paragenetic sequence and fluid inclusions, we establish a mineral dating method for determining the time of mantle-derived CO2 charging. In this method, the mineral used for dating is dawsonite, which is formed under a high CO2 partial pressure and records the migration and aggregation of mantle-derived CO2 in geologic history. By interpreting the dawsonite-bearing sandstone in the southern Songliao Basin, we find two hydrocarbon charges and one CO2 charge and that the mantle-derived CO2 charging occurred slightly later than or quasi-simultaneously with the second hydrocarbon filling. Combining the currently known time of hydrocarbon reservoir formation and the time of tectonic fracture development, we deduce that the mantle-derived CO2 formed the dawsonite in the southern Songliao Basin at the end of the Cretaceous (end of the Mingshui period) and the beginning of the Paleogene.  相似文献   

10.
New Sm–Nd isotopic data for eight samples of basalt and komatiite from the Tjakastad Subgroup (lower Onverwacht Group) of the Barberton Greenstone Belt (BGB) of the Kaapvaal craton in southern Africa are reported. They give new constraints on the interpretation of Sm–Nd ages for the Subgroup and highlight the petrogenesis of Tjakastad volcanics. Although Sm–Nd isotopic data earlier reported for volcanic rocks from the Tjakastad Subgroup yielded an isochron age of 3526±48 Ma, the new results give a much younger isochron date of 3269±84 Ma. The 3526±48 Ma isochron age has been obtained in combining samples ranging in composition from felsic volcanics to ultrabasic komatiites and is thus considered suspect with regard to the pre-requisite of geochronology that all the studied rocks must have had identical initial isotopic compositions. The new isochron date of 3269±84 Ma has been obtained in combining samples solely of basic/ultrabasic composition. It might thus represent a more correct age for the eruption of the Tjakastad Subgroup volcanism. In fact, owing to the potential problem of source heterogeneity and also in the light of geochronological and geochemical arguments we show that this date also has little chance to have any strict chronological meaning. Most likely, the Tjakastad volcanics were formed 3450 Ma ago. Also most likely, their source rocks were isotopically heterogeneous and the 3530 Ma and 3270 Ma linear arrays are not true but apparent isochrons. Based on the calculated Nd (3450) values and other geochemical arguments, we show that three possible sources might have been involved: depleted mantle, primitive mantle and older continental crust.  相似文献   

11.
The eclogite-facies metasedimentary rocks in the Münchberg gneiss complex (T=630±30° C/P17–24 kbar) locally contain CO2–N2-rich fluid inclusions of extremely low molar volumes (32 cm3/mol) in quartz. These fluid compositions are mainly found in rocks intercalated with calcsilicate bands. Densities were determined from low-temperature phase transitions like stable or metastable homogenization (L+VL), partial homogenization (S+L+VS+L) and the transition S+LL (L = liquid, V = vapour, S = solid). The high fluid densities are in agreement with eclogite-facies pressure and temperature and subsequent amphibolite facies. CO2–N2 inclusions were not observed in adjacent eclogites nor in non-calcareous metasediments. These rock types contain predominantly H2O-rich inclusions correlating with amphibolite-facies conditions. The variation of fluid composition with lithological differences indicates local fluid gradients and speaks against a pervasive fluid flow during eclogite-facies metamorphism.  相似文献   

12.
Ijolites from the type locality at Iivaara, Finland, form a continuous series of magmatic rocks ranging from urtites to melteigites. Both Ni and Cr, but also the large ion lithophile light-rare-earth elements, Zr, Hf, Nb, Rb, Sr and Ba are low in concentration. The Nd contents equal those of the neighboring fenites, Sr is distinctly less abundant, and there is no significant Eu anomaly. The 143Nd/144Nd and 87Sr/86Sr of the ijolites demonstrate a systematic covariation between the data of carbonaties from the Kola Alkaline Province (Sr – 13.8, Nd + 5.6) and those of the fenites at Iivaara (Sr + 132.9, Nd – 24.7) with Sr varying from +0.3 to +23.9 and Nd varying from-9.2 to-19.3. The trace element abundances and the isotopic data give evidence for a crystallization of the rocks from a liquid generated by melting (rheomorphism) of high-grade fenitized country rocks rather than from a primary mantle-derived magma which was contaminated at crustal levels. The fenitization of wall rocks preceding the ijolite magma formation was clement selective. Mixing of elements during the fenitization process between the designated components carbonatite (or derivative fenitizing fluid) and wall rock should have been dynamical depending on the stability of the wall rock mineral assemblages in contact with the fenitizing fluids, the migration velocity of these fluids, and their capacity of the respective elements. Such dynamical mixing explains best the variation of the isotope ratios withont systematic covariation of the respective element concentrations.  相似文献   

13.
A new mineral vigrishinite, epistolite-group member and first layer titanosilicate with species-defining Zn, was found at Mt. Malyi Punkaruaiv, in the Lovozero alkaline complex, Kola Peninsula, Russia. It occurs in a hydrothermally altered peralkaline pegmatite and is associated with microcline, ussingite, aegirine, analcime, gmelinite-Na, and chabazite-Ca. Vigrishinite forms rectangular or irregularly shaped lamellae up to 0.05 × 2 × 3 cm flattened on [001]. They are typically slightly split and show blocky character. The mineral is translucent to transparent and pale pink, yellowish-pinkish or colorless. The luster is vitreous. The Mohs’ hardness is 2.5–3. Vigrishinite is brittle. Cleavage is {001} perfect. D meas = 3.03(2), D calc = 2.97 g/cm3. The mineral is optically biaxial (?), α = 1.755(5), β = 1.82(1), γ = 1.835(8), 2V meas = 45(10)°, 2V calc = 50°. IR spectrum is given. The chemical composition (wt %; average of 9 point analyses, H2O is determined by modified Penfield method) is as follows: 0.98 Na2O, 0.30 K2O, 0.56 CaO, 0.05 SrO, 0.44 BaO, 0.36 MgO, 2.09 MnO, 14.39 ZnO, 2.00 Fe2O3, 0.36 Al2O3, 32.29 SiO2, 29.14 TiO2, 2.08 ZrO2, 7.34 Nb2O5, 0.46 F, 9.1 H2O, ?0.19 O=F2, total is 101.75. The empirical formula calculated on the basis of Si + Al = 4 is: H7.42(Zn1.30Na0.23Mn0.22Ca0.07Mg0.07K0.05Ba0.02)Σ1.96(Ti2.68Nb0.41Fe 0.18 3+ Zr0.12)Σ3.39(Si3.95Al0.05)Σ4 20.31F0.18. The simplified formula is: Zn2Ti4?x Si4O14(OH,H2O,□)8 (x < 1). Vigrishinite is triclinic, space group P $\bar 1$ , a = 8.743(9), b = 8.698(9), c = 11.581(11)Å, α = 91.54(8)°, β = 98.29(8)°, γ = 105.65(8)°, V = 837.2(1.5) Å3, Z = 2. The strongest reflections in the X-ray powder pattern (d, Å, ?I[hkl]) are: 11.7-67[001], 8.27-50[100], 6.94-43[0 $\bar 1$ 1, $\bar 1$ 10], 5.73–54[1 $\bar 1$ 1, 002], 4.17-65[020, $\bar 1$ $\bar 1$ 2, 200], and 2.861-100[3 $\bar 1$ 0, 2 $\bar 2$ 2, 004, 1 $\bar 3$ 1]. The crystal structure model was obtained on a single crystal, R = 0.171. Vigrishinite and murmanite are close in the structure of the TiSiO motif, but strongly differ from each other in part of large cations and H-bearing groups. Vigrishinite is named in honor of Viktor G. Grishin (b. 1953), a Russian amateur mineralogist and mineral collector, to pay tribute to his contribution to the mineralogy of the Lovozero Complex. The type specimen is deposited in the Fersman Mineralogical Museum of Russian Academy of Sciences, Moscow.  相似文献   

14.
A scientific exploration well(CK1) was drilled to expand the oil/gas production in the western Sichuan depression, SW, China. Seventy-three core samples and four natural gas samples from the Middle–Late Triassic strata were analyzed to determine the paleo-depositional setting and the abundance of organic matter(OM) and to evaluate the hydrocarbon-generation process and potential. This information was then used to identify the origin of the natural gas. The OM is characterized by medium n-alkanes(n C_(15)–n C_(19)), low pristane/phytane and terrigenous aquatic ratios(TAR), a carbon preference index(CPI) of ~1, regular steranes with C_(29) C_(27) C_(28), gammacerane/C_(30) hopane ratios of 0.15–0.32, and δD_(org) of-132‰ to-58‰, suggesting a marine algal/phytoplankton source with terrestrial input deposited in a reducing–transitional saline/marine sedimentary environment. Based on the TOC, HI index, and chloroform bitumen "A" the algalrich dolomites of the Leikoupo Formation are fair–good source rocks; the grey limestones of the Maantang Formation are fair source rocks; and the shales of the Xiaotangzi Formation are moderately good source rocks. In addition, maceral and carbon isotopes indicate that the kerogen of the Leikoupo and Maantang formations is type Ⅱ and that of the Xiaotangzi Formation is type Ⅱ–Ⅲ. The maturity parameters and the hopane and sterane isomerization suggest that the OM was advanced mature and produced wet–dry gases. One-dimensional modeling of the thermal-burial history suggests that hydrocarbon-generation occurred at 220–60 Ma. The gas components and C–H–He–Ar–Ne isotopes indicate that the oilassociated gases were generated in the Leikoupo and Maantang formations, and then, they mixed with gases from the Xiaotangzi Formation, which were probably contributed by the underlying Permian marine source rocks. Therefore, the deeply-buried Middle–Late Triassic marine source rocks in the western Sichuan depression and in similar basins have a great significant hydrocarbon potential.  相似文献   

15.
Diffuse X-ray scattering distributions have been recorded for reciprocal layers normal to c * of a synthetic mullite with composition Al2(Al2+2xSi2–2x) O10–xx, where represents an oxygen vacancy and x is close to 0.4. The effect on the diffuse scattering pattern of different schemes for ordering of the oxygen vacancies and the accompanying cation shifts within a single ab-layer of mullite has been investigated using optical diffraction analogue experiments in conjunction with Monte Carlo simulation.A simple scheme in which the only driving force for the ordering is that the Oc oxygens are precluded from being bonded to four T/T* cations, results in a 2D diffuse intensity distribution which displays many of the features that are observed in the x-ray scattering patterns. An alternative scheme in which bonding to four T/T* cations was favoured, resulted in a domain structure consisting of islands of the -alumina structure within a matrix of sillimanite. This gave diffraction patterns bearing no resemblance to the observed x-ray patterns and can, we believe, be discounted completely.  相似文献   

16.
The equilibrium in which hydrous Fe-cordierite breaks down to almandine, sillimanite, quartz, and water was previously experimentally determined by Richardson (1968) and Holdaway and Lee (1977) using QMF buffer and by Weisbrod (1973) using QIF buffer. All these studies yielded similar results — a negative dP/dT slope for the equilibrium curve. However, based on theoretical arguments, Martignole and Sisi (1981), and based on Fe-Mg partitioning experiments on coexisting cordierite and garnet in equilibrium with sillimanite and quartz, Aranovich and Podlesskii (1983) suggested that this equilibrium curve has a positive dP/dT slope and its position depends on the water content of the equilibrium cordierite. We have redetermined this equilibrium using a much improved tecnique of detecting reaction direction, and cordierite starting material that contained virtually no hercynite. Hercynite was present as a contaminant in the cordierites of previous experimental studies and possibly reacted with quartz during the experimental runs to expand the apparent stability field of Fe-cordierite. We synthesized Fe-cordierite from reagent grade oxides at 710°C and 2 kbar (using QMF buffer) with two intermediate stages of grinding and mixing. The cordierite has a unit cell volume of 1574.60 Å3 (molar volume=23.706 J/bar) and no Fe3+ as indicated by X-ray diffraction and room temperature Mössbauer studies respectively. Reaction direction was concluded by noting20% change of the ratios of intensities of two key X-ray diffraction peaks of cordierite and almandine. Our results show that the four-phase equilibrium curve passes through the points 2.1 kbar, 650°C and 2.5 kbar, 750°C. This disagrees with all previous experimental studies. H2O in the Fe-cordierite, equilibrated at 2.2 kbar and 700°C and determined by H-extraction line in the stable isotope laboratory, is 1.13 wt% (n=0.41 moles). H2O content of pure Mg-cordierite equilibrated under identical conditions and determined by thermogravimentric conditions and determined by thermogravimetric analysis is 1.22 wt% (n=0.40). Similar determinations on Fe-cordierite and Mg-cordierite equilibrated at 2.0 kbar and 650°C show 1.27 wt% (n=0.46) and 1.47 wt% (n=0.48) of H2O respectively. Thus, H2O content appears to be independent of Fe/Mg ratio in cordierite, a conclusion which supports previous experimental determinations. The experimentally determined equilibrium curve represents conditions of PH2O=Ptotal. From this we calculated the anhydrous curve representing equilibrium under conditions of X H2O V =0.0. A family of calculated equilibrium curves of constant n H2O Cord cut the experimentally determined curve at a very small angle indicating a slight variation in n H2O Cord in cordierite in equilibrium with almandine, sillimanite, and quartz under the conditions of constant X H2O V . Ancther set of calculated equilibrium curves, each representing constant a H2O V demonstrate that the slopes of the curves vary with X H2O V , and are all positive in the full range of 0.0X H2O V 1.0.  相似文献   

17.
Members Ⅰ-Ⅳ of the Wumishan Formation of the Jixian System are exposed respectively in Mt. Cuihua and Mt. Hushan in the Ming Tombs, Beijing. Black banded cherts which are extensively developed in this formation contain an abundance ofmicrofossils that are well preserved and variable in form. A study of thin sections shows that the microfossils include 10 genera, 12 species, 3 of. species, 2 indeterminate species and 1 unnamed form, of which 1 genus and 7 species are newly erected. The present assemblage is morphologically comparable to those from the Wumishan Formation in the Western Hills of Beijing, Jixian County of Tianjin and Kuancheng of Hebei Province.  相似文献   

18.
Recent experimental studies have shown that the rates of Al–Si order-disorder and interdiffusion in alkali feldspars at high pressures under dry conditions increase dramatically in the approximate pressure range 7–14 kb, depending on temperature and feldspar composition (Goldsmith 1987, 1988). Enhancement of Al–Si interdiffusion rates is ascribed to the involvement of hydrogen, but the species of hydrogen involved is undetermined.A simple kinetic analysis of the data of Goldsmith (1987) on disordering of dry albite at 800°–950° C and 6–24 kb in the solid media press is consistent with the NaCl pressure cell acting as a proton donor by enhancing dissociation of water in the pressure medium, generating a high in the experimental environment. The rate constant for disordering of albite is found to increase linearly with the estimated experimental and with the density of aqueous salt solution, implicating H+ as the rate-enhancing species.Further experimental studies confirm the importance of . At 16 kb and 850° C, dry albite in sealed Pt capsules in a NaCl cell containing tantalum powder (which reduces H2O to H2) remains highly ordered over the same time that complete disordering would occur in the absence of Ta. H2 cannot therefore be the rate-enhancing species. At 1 kb and 850° C, the extent of Al–Si disorder in albite in direct contact with various NaCl–H2O solutions increases from partially disordered for pure H2O to completely disordered for saturated aqueous NaCl solution, giving strong support to the proton model. SIMS scanning ion imaging of albite run products demonstrates conclusively that solution-reprecipitation is not responsible for enhanced disordering rates.Results of disordering experiments in the solid media apparatus cannot be duplicated in Ar gas media internally-heated pressure vessels, even with the same experimental configuration around the albite-bearing capsules, due to the different proton-buffering capacities of the solid and gas media apparatus.  相似文献   

19.
29Si NMR shieldings have been calculated by ab initio coupled Hartree-Fock perturbation theory for the orthosilicate species Si(OH)4, Si(OH)3O-, Si(OH)2O 2 2- , Si(OH)O 3 3- and SiO 4 4- using energy optimized geometries from ab initio Hartree-Fock calculations. The shielding of Si(OH)3O- is smaller than that of Si(OH)4 by 2.7 ppm and the shielding trend along the Si(OH)4 to SiO 4 4- series is decidedly nonlinear. The unprotonated O in Si(OH)3O- is more shielded and has a much smaller electric field gradient than do the protonated oxygens. Calculated anisotropies show the largest components of the shielding to lie along or near the short Si-O bonds. Calculations employing point charges in place of H reproduce the shielding trends in T d and S 4 symmetry Si(OH)4 semiquantitatively. The calculated trends in shielding with < si-o-h=" can=" also=" be=" correlated=" with=" the=" energies=" of=" the=" si3p,o2p="> bonding orbitals.  相似文献   

20.
1. IntroductionThe Tarim basin, one of the most developed and important areas of marine Cretaceous-Tertiary in China except for south Tibet, is very rich in oil and gas, such as Kekeya oilfield in southwestern Tarim and Kela2 gas field in northeastern Tarim. Because of the expansion, subduction of the oceanic crust of the Tethys and the collision between the India plate and the Eurasia plate during the Cretaceous-Tertiary, the Tethys transgressed into the Tarim basin from west to east fr…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号