首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Applied Geochemistry》2001,16(3):323-338
Chemical and isotopic compositions are reported for water, and CO2 and noble gases in groundwater and soda springs from Bioko, Principé, São Tomé and Annobon, all islands located in the off-shore part of the Cameroon Volcanic Line in West Africa. The soda spring waters are of Ca–Mg–HCO3 type, with δD and δ18O values that range from −20 to −8‰ and −5.4 to −2.7‰ respectively, indicative of a meteoric origin. CO2 is the main gas species in the springs. δ13C–CO2 values vary from −2.8 to −5.0‰, overlapping the observed mantle C range (−3 to −8‰). CO2/3He ratios (3–9×109) suggest that most C (∼90%) in the samples is derived from the mantle. Neon has atmospheric isotopic compositions, while Ar is slightly enriched in radiogenic 40Ar. 3He/4He ratios (3.0 to 10.1×10−6 or 2.1 to 7.2Ra, where Ra is the atmospheric ratio of 1.4×10−6) are much higher than those for typical crustal fluids (∼10−8) but lower than those expected for fluids derived from ‘high-3He/4He’ hotspots like Loihi and Iceland. This precludes significant contributions of such fluids in the source regions of the gases, and by inference, in the magmatism of these oceanic islands. Alternatively, approximately 90% of the He in São Tomé gases is inferred to be derived from a source similar to the MORB source. The 3He/4He ratio for the Bioko gas (6.6×10−6) may be derived from a source with a higher time integrated (U+Th)/3He ratio than the MORB source.  相似文献   

2.
Six gas samples were collected from five thermal springs in the Semail Nappe ophiolite and the calcareous (calcite and dolomite) Hajar Formation, northern Oman. The3He/4He,4He/20Ne,40Ar/36Ar and38Ar/36Ar ratios, chemical compositions (H2, N2, CO2, CH4, O2, Ar and He), and stable isotope compositions (δDH2, δDH2O, δ13CCO2, δ13CCH4, and δ15NN2) are reported. Samples from the ophiolite region are significantly anoxic with major constituents of H2, CH4 and N2, while those from calcite and dolomite regions are ordinary gas seeps, consisting of N2, CO2 and/or O2. The former H2-rich gas is characterized by relatively high3He/4He ratio (0.4–0.8 Ratm) with low He content (<5 ppm), atmospheric40Ar/36Ar ratio, low N2/Ar ratio (<55) and high δ15NN2 value (∼1 ‰). On the other hand, the latter N2-rich gas shows relatively low3He/4He ratio (0.1–0.4 Ratm) with high He concentration (>300 ppm), slight radiogenic40Ar/36Ar ratio, high N2/Ar ratio (77–97) and low δ15NN2 value (<0‰). Observed δDH2 value of −536‰ in H2-rich gas is distinguished from the literature value of −699‰ in the ophiolite region, giving discrepant isotope formation temperatures.  相似文献   

3.
We present new He-Ne data for geothermal fluids and He-Ne-Ar data for basalts from throughout the Icelandic neovolcanic zones and older parts of the Icelandic crust. Geothermal fluids, subglacial glasses, and mafic phenocrysts are characterized by a wide range in helium isotope ratios (3He/4He) encompassing typical MORB-like ratios through values as high as 36.8 RA (where RA = air 3He/4He). Although neon in geothermal fluids is dominated by an atmospheric component, samples from the northwest peninsula show a small excess of nucleogenic 21Ne, likely produced in-situ and released to circulating fluids. In contrast, geothermal fluids from the neovolcanic zones show evidence of a contribution of mantle-derived neon, as indicated by 20Ne enrichments up to 3% compared to air. The neon isotope composition of subglacial glasses reveals that mantle neon is derived from both depleted MORB-mantle and a primordial, ‘solar’ mantle component. However, binary mixing between these two endmembers can account for the He-Ne isotope characteristics of the basalts only if the 3He/22Ne ratio of the primordial mantle endmember is lower than in the MORB component. Indeed, the helium to neon elemental ratios (4He/21Ne∗ and 3He/22Nes where 21Ne∗ = nucleogenic 21Ne and 22Nes = ‘solar’-derived 22Ne) of the majority of Icelandic subglacial glasses are lower than theoretical values for Earth’s mantle, as observed previously for other OIB samples. Helium may be depleted relative to neon in high-3He/4He ratio parental melts due to either more compatible behavior during low-degree partial melting or more extensive diffusive loss relative to the heavier noble gases. However, Icelandic glasses show higher 4He/40Ar∗ (40Ar∗ = radiogenic Ar) values for a given 4He/21Ne∗ value compared to the majority of other OIB samples: this observation is consistent with extensive open-system equilibrium degassing, likely promoted by lower confining pressures during subglacial eruptions of Icelandic lavas. Taken together, the He-Ne-Ar systematics of Icelandic subglacial glasses are imprinted with the overlapping effects of helium depletion in the high-3He/4He ratio parental melt, binary mixing of two distinct mantle components, degassing fractionation and interaction with atmospheric noble gases. However, it is still possible to discern differences in the noble gas characteristics of the Icelandic mantle source beneath the neovolcanic zones, with MORB-like He-Ne isotope features prevalent in the Northern Rift Zone and a sharp transition to more primitive ‘solar-like’ characteristics in central and southern Iceland.  相似文献   

4.
Noble gas isotopes of HIMU and EM ocean island basalts from the Cook-Austral and Society Islands were investigated to constrain their origins. Separated olivine and clinopyroxene (cpx) phenocrysts were used for noble gas analyses. Since samples are relatively old, obtained from the oceanic area and showing chemical zoning in cpx phenocrysts, several tests on sample preparation and gas extraction methods were performed. First, by comparing heating and crushing methods, it has been confirmed that the crushing method is suitable to obtain inherent magmatic noble gases without radiogenic and cosmogenic components which were yielded after eruption, especially for He and Ne analyses. Second, noble gas compositions in the core and the rim of cpx phenocrysts were measured to evaluate the zoning effect on noble gases. The result has been that noble gas concentrations and He and Ne isotope ratios are different between them. The enrichment of noble gases in the rim compared to the core is probably due to fractional crystallization. Difference of He and Ne isotope ratios is explained by cosmogenic effect, and isotope ratios of the trapped component seem to be similar between the rim and the core. Third, leaching test reveals no systematic differences in noble gas compositions between leached and unleached samples.3He/4He ratios of HIMU samples in the Cook-Austral Islands are uniform irrespective of phenocryst type (olivine and cpx) and age of samples (10–18 Ma), and lower (average 6.8 RA) than those of the Pacific MORB. On the other hand, 3He/4He of EM samples in the Cook-Austral Islands are similar to MORB values. EM samples in the Society Islands show rather higher 3He/4He than MORB. Ne, Kr and Xe isotope ratios are almost atmospheric within analytical uncertainties. 40Ar/36Ar are not so high as those of MORB. Anomalous noble gas abundance pattern such as He and Ne depletion and Kr and Xe enrichment relative to atmospheric abundances was observed. Furthermore, Ne/Ar and Kr/Ar show correlation with some trace elemental ratios like La/Yb.Lower 3He/4He of HIMU than MORB values requires relatively high time-integrated (U + Th)/3He for the HIMU source, which suggests that the HIMU source was produced from recycled materials which had been once located near the Earth’s surface. Moreover, extreme noble gas abundance pattern and strong correlation of Ne/Ar and Kr/Ar with La/Yb indicate that the HIMU endmember is highly depleted in light noble gases and enriched in heavy noble gases. Such feature is not common to mantle materials and is rather similar to the noble gas abundance patterns of the old oceanic crust and sediment, which supports the model that the HIMU source originates from subducted oceanic crust and/or sediment.If the HIMU source corresponds to the oceanic crust which subducted at 1–2 Ga as suggested by Pb isotope studies, however, the characteristic 3He/4He of HIMU (6.8 RA) would be too high because radiogenic 4He produced by U and Th decay should dramatically decrease 3He/4He. To overcome this problem, the He open system model is introduced which includes the effects of 4He production and diffusion between the HIMU source material and the surrounding mantle. This model favors that the HIMU source resides in the upper mantle, rather than in the lower mantle. Furthermore, this model predicts the thickness of the HIMU source to be in the order of 1 km.In contrast to low and uniform 3He/4He character of HIMU, 3He/4He of EM are rather variable. Entrainment of upper mantle material and/or a less-degassed component are required to explain the observed 3He/4He of EM in the Polynesian area. Participation of the less-degassed component would be related to the “superplume” below the Polynesian region.  相似文献   

5.
《Applied Geochemistry》2002,17(11):1457-1466
Ocean Drilling Program (ODP) Leg 169, which was conducted in 1996 provided an opportunity to study the gas geochemistry in the deeper part of the sediment-rich hydrothermal system in Escanaba Trough. Gas void samples obtained from the core liner were analyzed and their results were compared with analytical data of vent fluid samples collected by a submersible dive program in 1988. The gas geochemistry of the pore fluids consisted mostly of a hydrothermal component and was basically the same as that of the vent fluids. The He isotope ratios (R/RA=5.6–6.6) indicated a significant mantle He contribution and the C isotopic compositions of the hydrocarbons [δ13C(CH4)=−43‰, δ13C(C2H6)=−20‰] were characterized as a thermogenic origin caused by hydrothermal activity. On the other hand, the pore fluids in sedimentary layers away from the hydrothermal fields showed profiles which reflected lateral migration of the hydrothermal hydrocarbons and abundant biogenic CH4. Helium and C isotope systematics were shown to represent a hydrothermal component and useful as indicators for their distribution beneath the seafloor. Similarities in He and hydrocarbon signatures to that of the Escanaba Trough hydrothermal system were found in some terrestrial natural gases, which suggested that seafloor hydrothermal activity in sediment-rich environments would be one of the possible petroleum hydrocarbon generation scenarios in unconventional geological settings.  相似文献   

6.
《Geochimica et cosmochimica acta》1999,63(11-12):1805-1813
A comparison of two independent techniques was used to assess the homogeneity of CO2 and H2O concentrations in a number of natural basaltic glasses. Variations in carbon concentration and isotopic ratio were determined by comparison of stepped heating data obtained in two different laboratories. Dissolved volatile concentrations were also obtained by stepped heating and Fourier Transform Infrared (FTIR) spectroscopy. Replicate stepped heating analyses of a mid-ocean ridge basaltic glass show that the concentration and 13C/12C of bulk magmatic and dissolved CO2 vary by less than ±10% and ±0.5‰, respectively. A similar degree of correlation is observed for replicate stepped heating analyses of Mariana Trough glasses conducted in two different laboratories. Dissolved CO2 concentrations determined by stepped heating also correlate well with concentrations measured by FTIR spectroscopy. The correspondence of results obtained in these experiments provide an upper limit to the degree of natural variation in concentrations and isotopic ratios of these volatiles in basaltic glasses and suggest that intrinsic, magmatic carbon has a relatively homogeneous distribution in these glasses. Water concentrations determined through extraction by heating and FTIR also show excellent agreement.  相似文献   

7.
Chemical and isotopic compositions have been measured for CO2-rich bubbling gases discharging from cold springs in Wudalianchi intra-plate volcanic area, NE China. Observed 3He/4He ratios (2–3 RA) and δ13C values of CO2 (−5‰ to −3‰) indicate the occurrence of a mantle component released and transferred to the surface by the Cenozoic extension-related magmatic activities. The CO2/3He ratios are in wide range of (0.4–97 × 109). Based on the apparent mixing trend in a 3He/4He and δ13C of CO2 diagram from all published data, the extracted magmatic end-member in the Wudalianchi Volcano has 3He/4He, δ13C and CO2/3He value of ∼3.2 RA, ∼−4.6‰ and ∼6 × 1010, respectively. These values suggest that the volatiles originate from the sub-continental lithospheric mantle (SCLM) in NE China and represent ancient fluids captured by prior metasomatic events, as revealed by geothermal He and CO2 from the adjacent Changbaishan volcanic area.  相似文献   

8.
The interpretation of noble gas concentrations in groundwater with respect to recharge temperature and fractionated excess gas leads to different results on paleo-climatic conditions and on residence times depending on the choice of the gas partitioning model. Two fractionation models for the gas excess are in use, one assuming partial re-equilibration of groundwater supersaturated by excess air (PR-model, Stute et al., 1995), the other assuming closed-system equilibration of groundwater with entrapped air (CE-model, Aeschbach-Hertig et al., 2000). In the example of the Continental Terminal aquifers in Niger, PR- and CE- model are both consistent with the data on elemental noble gas concentrations (Ne, Ar, Kr, and Xe). Only by including the isotope ratio 20Ne/22Ne it can be demonstrated that the PR-model has to be rejected and the CE-model should be applied to the data. In dating applications 3He of atmospheric origin (3Heatm) required to calculate 3H-3He water ages is commonly estimated from the Ne excess presuming that gas excess is unfractionated air (UA-model). Including in addition to the Ne concentration the 20Ne/22Ne ratio and the concentration of Ar enables a rigorous distinction between PR-, CE- and UA-model and a reliable determination of 3Heatm and of 3H-3He water ages.  相似文献   

9.
During the Devonian magmatism (370 Ma ago) ∼20 ultrabasic-alkaline-carbonatite complexes (UACC) were formed in the Kola Peninsula (north-east of the Baltic Shield). In order to understand mantle and crust sources and processes having set these complexes, rare gases were studied in ∼300 rocks and mineral separates from 9 UACC, and concentrations of parent Li, K, U, and Th were measured in ∼70 samples. 4He/3He ratios in He released by fusion vary from pure radiogenic values ∼108 down to 6 × 104. The cosmogenic and extraterrestrial sources as well as the radiogenic production are unable to account for the extremely high abundances of 3He, up to 4 × 10−9 cc/g, indicating a mantle-derived fluid in the Kola rocks. In some samples helium extracted by crushing shows quite low 4He/3He = 3 × 104, well below the mean ratio in mid ocean ridge basalts (MORB), (8.9 ± 1.0) × 104, indicating the contribution of 3He-rich plume component. Magnetites are principal carriers of this component. Trapped 3He is extracted from these minerals at high temperatures 1100°C to 1600°C which may correspond to decrepitation or annealing primary fluid inclusions, whereas radiogenic 4He is manly released at a temperature range of 500°C to 1200°C, probably corresponding to activation of 4He sites degraded by U, Th decay.Similar 4He/3He ratios were observed in Oligocene flood basalts from the Ethiopian plume. According to a paleo-plate-tectonic reconstruction, 450 Ma ago the Baltica (including the Kola Peninsula) continent drifted not far from the present-day site of that plume. It appears that both magmatic provinces could relate to one and the same deep-seated mantle source.The neon isotopic compositions confirm the occurrence of a plume component since, within a conventional 20Ne/22Ne versus 21Ne/22Ne diagram, the regression line for Kola samples is indistinguishable from those typical of plumes, such as Loihi (Hawaii). 20Ne/22Ne ratios (up to 12.1) correlate well with 40Ar/36Ar ones, allowing to infer a source 40Ar/36Ar ratio of about 4000 for the mantle end-member, which is 10 times lower than that of the MORB source end-member. In (3He/22Ne)PRIM versus (4He/21Ne)RAD plot the Kola samples are within array established for plume and MORB samples; almost constant production ratio of (4He/21Ne)RAD ≅ 2 × 107 is translated via this array into (3He/22Ne)PRIM ∼ 10. The latter value approaches the solar ratio implying the non-fractionated solar-like rare gas pattern in a plume source.The Kola UACC show systematic variations in the respective contributions of in situ-produced radiogenic isotopes and mantle-derived isotopes. Since these complexes were essentially plutonic, we propose that the depth of emplacement exerted a primary control on the retention of both trapped and radiogenic species, which is consistent with geological observations. The available data allow to infer the following sequence of processes for the emplacement and evolution of Kola Devonian UACC: 1) Ascent of the plume from the lower mantle to the subcontinental lithosphere; the plume triggered mantle metasomatism not later than ∼700 to 400 Ma ago. 2) Metasomatism of the lithosphere (beneath the central part of the Kola Peninsula), including enrichment in volatile (e.g., He, Ne) and in incompatible (e.g., U, Th) elements. 3) Multistage intrusions of parental melts, their degassing, and crystallisation differentiation ∼370 Ma ago. 4) Postcrystallisation migration of fluids, including loss of radiogenic and of trapped helium. Based on model compositions of the principle terrestrial reservoirs we estimate the contributions (by mass) of the plume material, the upper mantle material, and the atmosphere (air-saturated groundwater), into the source of parent melt at ∼2%, 97.95%, and ∼0.05%, respectively.  相似文献   

10.
《Applied Geochemistry》1994,9(4):371-377
We have measured the chemical compositions, He/Ne ratios, He and C isotopes of 14 gas samples collected from the crater lake, fumaroles and hot springs associated with Kusatsu-Shirane Volcano, Japan. The3He/4He ratio decreases with increasing distance from the central crater of the volcano to the sampling site whereas the δ13C value of CO2 increases with the distance. This tendency suggests that high3He/4He-low δ13C magmatic gas is mixed with and/or diluted by low3He/4He-high δ13C crustal gas with increasing distance from the crater. Alternatively, the variation of δ13C values may be the result of isotope fractionation during migration since the isotope shift is relatively small. Based on the apparent mixing trend in a3He/4He-δ13C diagram, the magmatic He and CO2 in the volcano may have a3He/4He ratio of 8 Ratm and a δ13C value of −3.2%, respectively. The CO2/3He ratios show a positive correlation with temperature of fumaroles or hot springs, which may be caused by a difference of temperature dependencies of the solubilities between CO2 and He.  相似文献   

11.
《Geochimica et cosmochimica acta》1999,63(23-24):4139-4156
We have measured the isotopes of He, Sr, Nd and Pb in a number of lava flows from the Galapagos Archipelago; the main goal is to use magmatic helium as a tracer of plume influence in the western volcanoes. Because the Galapagos lava flows are so well preserved, it is also possible to measure surface exposure ages using in situ cosmic-ray-produced 3He. The exposure ages range from <0.1 to 580 Ka, are consistent with other chronological constraints, and provide the first direct dating of these lava flows. The new age data demonstrate the utility of the technique in this important age range and show that the western Galapagos volcanoes have been erupting distinct compositions simultaneously for the last ∼10 Ka. The magmatic 3He/4He ratios range from 6.9 to 27 times atmospheric (Ra), with the highest values found on the islands of Isabela (16.8 Ra for Vulcan Sierra Negra) and Fernandina (23 to 27 Ra). Values from Santa Cruz are close to typical mid-ocean ridge basalt values (MORB, of ∼9 Ra) and Pinta has a 3He/4He ratio lower than MORB (6.9 Ra). These data confirm that the plume is centered beneath Fernandina which is the most active volcano in the archipelago and is at the leading edge of plate motion. The data are consistent with previous isotopic studies, confirming extensive contributions from depleted asthenospheric or lithospheric mantle sources, especially to the central islands. The most striking aspect of the helium isotopic data is that the 3He/4He ratios decrease systematically in all directions from Fernandina. This spatial variability is assumed to reflect the contribution of the purest plume component to Fernandina magmatism, and shows that helium is a sensitive indicator of plume influence. The highest 3He/4He ratios are found in volcanoes with lowest Na2O(8) and FeO(8), which may relate to source composition as well as degree and depth of melting. An excellent correlation is observed between 3He/4He and Nb/La, suggesting that the Galapagos plume source is characterized by high concentrations of Nb (and Ta). The major and trace element correlations demonstrate that helium is controlled by silicate melting and source variations rather than degassing and/or metasomatic processes. Although lavas with radiogenic isotopic compositions tend to have higher 3He/4He, the island-wide isotopic variability cannot be explained by simple two components mixing alone. The preferred model to explain the isotopic data includes a heterogeneous plume, centered at Fernandina, which undergoes polybaric melting, and spatial divergence and mixing with asthenospheric material at shallower depths. The unique regional pattern of the helium isotopic data suggests that helium is extracted more efficiently than other elements during the early stages of melting in the ascending plume.  相似文献   

12.
The He isotope composition as an indicator of mantle-derived component was studied in gases from mineral springs, stratal waters, and mud volcanoes developed west of the Teberda River valley (10 objects) and two springs in the central segment of the Greater Caucasus orogen between the active El’brus and Kazbek volcanoes. In the western segment of the orogen, the values of 3He/4He = Rcorr vary in the range of (46–114) × 10−8 = (0.33–0.81)Ratm, where Ratm =1.4 × 10−6 is the atmospheric ratio. They are substantially lower as compared with values in the vicinity of El’brus and Kazbek and close to those in samples from the central segment equal to (70–134) × 10−8 = (0.50–0.96)Ratm, as well as to the values previously recorded in the Caucasian Mineral Waters (CMW) area. Moreover, the content of 3He in them is notably higher as compared with its crustal radiogenic level characteristic of mud volcanoes in the Taman Peninsula, where R = (1.4–2.8) × 10−8 = (0.01–0.02)Ratm. Nitrogen-methane gas from northern piedmonts of the western Caucasus also contain nonatmogenic components, including the radiogenic 40Ar (40Ar/36Ar = 900), “excess” nitrogen (∼87% of the total N2 concentration in sample) and the mantle He. These data specify the distribution of mantle derivates along the orogen strike and age of intrusive magmatic activity in its different segments.  相似文献   

13.
Solubilities of noble gases in magnetite were determined by growing magnetite in a noble-gas atmosphere between 450 and 700°K. Henry's law is obeyed at pressures up to 10?2 atm for He, Ne, Ar and up to 10?5 atm for Kr, Xe, with the following distribution coefficients at 500° (cc STP g?1 atm?5): He 0.042, Ne 0.016, Ar 3.6, Kr 1.3, Xe 0.88, some 102–105 times higher than previous determinations on silicate and fluoride melts. Apparent heats of solution in kcal/mole are: He ?2.42 ±0.12, Ne ?2.20 ±0.10, Ar ?15.25 ±0.25, Kr ?13.0 ±0.3, Xe ?12-5 ± 0.5. These values, too, stand in sharp contrast with earlier determinations on melts which were small and positive, but are comparable to the values for clathrates. Presumably the gases are held in anion vacancies.Extrapolation of the magnetite data to the formation temperature of C1 chondrites, 360°K, shows that the Arp36 content of Orgueil magnetite could be acquired by equilibrium solubility at a total nebular pressure of 4 × 10?6 atm. In the absence of data for silicates (the principal host phase of planetary gas), an attempt is made to estimate the solubilities required to account for planetary gases in meteorites. These values do not appear grossly unreasonable in the light of the magnetite data, when structural differences between the two minerals are taken into account. It seems that equilibrium solubility may be able to account for four features of planetary gas: elemental ratios, amounts, correlations with other volatiles and retentive siting. It cannot account for the isotopic fractionation of planetary gas, however.  相似文献   

14.
Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He. Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic areathan do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4‰ to 1.6 ‰ and from -52.8‰ to -2.8‰, respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and near-surface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantle-derived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the  相似文献   

15.
Based on detailed petrological, geochemical, and isotope-geochemical study, fragments of fresh pillow lavas with chilled glass margins dredged at the Sierra-Leone test site in the axial MAR rift zone between 5° and 7°N correspond to MORB tholeiites, which are not primitive mantle melts but were differentiated in intermediate magmatic (intrusive) chambers. Small-scale geochemical and Sr-Nd isotope heterogeneities were established for the first time in the basalts and their glasses. It was shown that some samples show significant nonsystematic differences in the 87Sr/86Sr ratio between the basalts and their chilled glasses and less significant difference in ?Nd; higher Sr ratios can be observed both in the glasses and basalts of the same lava fragments. No significant correlation is observed between the isotope characteristics of the samples and their geochemistry; it was also shown that seawater did not affect the Sr and Nd isotope composition of the chilled glasses of the studied pillow lavas. It is suggested that such differences in isotope ratios are related to a small-scale heterogeneity of the melts owing to incomplete homogenization during their rapid ascent to the surface. The heterogeneity of the basaltic melts is explained by their partial contamination by the older plutonic rocks (especially gabbroids) of the lower oceanic crust, through which they ascended to the ocean floor surface. The wider scatter of the Sr isotopic ratios relative to Nd is related to the presence of xenocrysts of calcic plagioclase; correspondingly, the absence of a Nd mineral carrier in the rocks results in less distinct Nd isotope variations. It was shown that all of the studied basalts define a single trend along the mantle correlation array in the Sr-Nd isotope diagram. The causes of this phenomenon remain unclear.  相似文献   

16.
《Applied Geochemistry》1993,8(2):141-152
The results of analysis of natural emanations in Réunion Island show a clear magmatic origin for CO2 and He, while N2 and Ar are predominantly derived from the atmosphere. The distribution of magmatic gases in the Piton des Neiges massif fits the local volcanotectonic context well and suggests that the areas concerned are still subject to volcanic activity at depth. A simple method is proposed for correcting gas concentration and isotope composition for water degassing. In doing so, the isotope and elemental (C, He) composition of gases is homogeneous for the two volcanoes. The isotope ratio of He (12.5 ± 0.5R/Ra) in the present discharges is in agreement with the results of previous studies on rocks of various ages from the two volcanoes. The isotope ratio of C(δ13C= −5 ‰ to −4 ‰ vs PDB) and the C/3 He ratio (∼4 × 109) are similar to those found in other Hot Spot volcanic systems such as Kilauea (Hawaii) and Hengill (Iceland). These similarities suggest comparable volatile history for the respective mantle sources, the main differences being in the relative proportions of radiogenic 4He. In detail, Hot Spots appear enriched in C having a light composition with respect to MORB, possibly due to the addition of a C-rich (e.g. subducted) component, in addition to a relatively undegassed, 3He-rich, component.  相似文献   

17.
《Applied Geochemistry》2001,16(4):419-436
The chemical and isotopic compositions of gases from hydrocarbon systems of the Taranaki Basin of New Zealand (both offshore and onshore) show wide variation. The most striking difference between the western and south-eastern groups of gases is the helium content and its isotopic ratio. In the west, the Maui gas is over an order of magnitude higher in helium concentration (up to 190 μmol mol−1) and its 3He/4He ratio of 3.8 RA (where RA=the air 3He/4He ratio of 1.4×10−6) is approximately half that of upper mantle helium issuing from volcanic vents of the Taupo Volcanic Zone. In the SE, the Kupe South and most Kapuni natural gases have only a minor mantle helium input of 0.03–0.32 RA and low total helium concentrations of 10–19 μmol mol−1. The 3He/C ratio (where C represents the total carbon in the gas phase) of the samples measured including those from a recent study of on-shore Taranaki natural gases are generally high at locations where the surface heat flow is high. The 3He/CO2 ratio of the Maui gases of 5 to 18×10−9 is higher than the MORB value of 0.2 to 0.5×10−9, a feature found in other continental basins such as the Pannonian and Vienna basins and in many high helium wells in the USA. Extrapolation to zero CO2/3He and CO2/C indicates δ13C(CO2) values between −7 and −5‰ close to that of MORB CO2. The remaining CO2 would appear to be mostly organically-influenced with δ13C(CO2) c.−15‰. There is some evidence of marine carbonate CO2 in the gases from the New Plymouth field. The radiogenic 4He content (Herad) varies across the Taranaki Basin with the highest Herad/C ratios occurring in the Maui field. δ13C(CH4) becomes more enriched in 13C with increasing Herad and hydrocarbon maturity. Because 3He/4He is related to the ratio of mantle to radiogenic crustal helium and 3He/C is virtually constant in the Maui field, there is a correlation between RC/RA (where RC=air-corrected 3He/4He) and δ13C(CH4) in the Maui and New Plymouth fields, with the more negative δ13C(CH4) values corresponding to high 3He/4He ratios. A correlation between 3He/4He and δ13C(CO2) was also observed in the Maui field. In the fields adjacent to Mt Taranaki (2518 m andesitic volcano), correlations of some parameters, particularly CO2/CH4, C2H6/CH4 and δ13C(CH4), are present with increasing depth of the gas reservoir and with distance from the volcanic cone.  相似文献   

18.
Northwest Africa (NWA) 12379 is a new metal-rich chondrite with unique characteristics distinguishing it from all previously described meteorites. It contains high Fe,Ni-metal content (∼ 70 vol.%) and completely lacks interchondrule matrix; these characteristics are typical only for metal-rich carbonaceous (CH and CB) and G chondrites. However, chondrule sizes (60 to 1200 μm; mean = 370 μm), their predominantly porphyritic textures, nearly equilibrated chemical compositions of chondrule olivines (Fa18.1–28.3, average Fa24.9±3.2, PMD = 12.8; Cr2O3 = 0.03 ± 0.02 wt.%; FeO/MnO = 53.2 ± 6.5 (wt.-ratio); n = 28), less equilibrated compositions of low-Ca pyroxenes (Fs3.2–18.7Wo0.2–4.5; average Fs14.7±3.7Wo1.4±1.3; n = 20), oxygen-isotope compositions of chondrule olivine phenocrysts (Δ17O ∼ 0.2–1.4‰, average ∼ 0.8‰), and the presence of coarse-grained Ti-bearing chromite, Cl-apatite, and merrillite, all indicate affinity of NWA 12379 to unequilibrated (type 3.8) ordinary chondrites (OCs). Like most OCs, NWA 12379 experienced fluid-assisted thermal metamorphism that resulted in formation of secondary ferroan olivine (Fa27) that replaces low-Ca pyroxene grains in chondrules and in inclusions in Fe,Ni-metal grains. Δ17O of the ferroan olivine (∼ 4‰) is similar to those of aqueously-formed fayalite in type 3 OCs, but its δ18O is significantly higher (15–19‰, average = 17‰ vs. 3―12‰, average = 8‰, respectively). We suggest classifying NWA 12379 as the ungrouped metal-rich chondrite with affinities of its non-metal fraction to unequilibrated OCs and speculate that it may have formed by a collision between an OC-like body and a metal-rich body and subsequently experienced fluid-assisted thermal metamorphism. Trace siderophile element abundances and isotopic compositions (e.g., Mo, Ni, Fe) of the NWA 12379 metal could help to constrain its origin.  相似文献   

19.
Past global mean ocean temperature may be reconstructed from measurements of atmospheric noble gas concentrations in ice core bubbles. Assuming conservation of noble gases in the atmosphere-ocean system, the total concentration within the ocean mostly depends on solubility which itself is temperature dependent. Therefore, the colder the ocean, the more gas can be dissolved and the less remains in the atmosphere. Here, the characteristics of this novel paleoclimatic proxy are explored by implementing krypton, xenon, argon, and N2 into a reduced-complexity climate model. The relationship between noble gas concentrations and global mean ocean temperature is investigated and their sensitivities to changes in ocean volume, ocean salinity, sea-level pressure and geothermal heat flux are quantified. We conclude that atmospheric noble gas concentrations are suitable proxies of global mean ocean temperature. Changes in ocean volume need to be considered when reconstructing ocean temperatures from noble gases. Calibration curves are provided to translate ice-core measurements of krypton, xenon, and argon into a global mean ocean temperature change. Simulated noble gas-to-nitrogen ratios for the last glacial maximum are δKratm = ?1.10‰, δXeatm = ?3.25‰, and δAratm = ?0.29‰. The uncertainty of the krypton calibration curve due to uncertainties of the ocean saturation concentrations is estimated to be ±0.3 °C. An additional ±0.3 °C uncertainty must be added for the last deglaciation and up to ±0.4 °C for earlier transitions due to age-scale uncertainties in the sea-level reconstructions. Finally, the fingerprint of idealized Dansgaard-Oeschger events in the atmospheric krypton-to-nitrogen ratio is presented. A δKratm change of up to 0.34‰ is simulated for a 2 kyr Dansgaard-Oeschger event, and a change of up to 0.48‰ is simulated for a 4 kyr event.  相似文献   

20.
The Hugoton-Panhandle giant gas field, located across SW Kansas and the Texas and Oklahoma panhandles in the USA, is the case type example of high nitrogen concentrations in a natural gas being linked with high helium concentrations. We collected 31 samples from producing wells in a north-south traverse of the 350-km-long field. The samples reflect the previously observed north-south change in 4He/N2, with values changing from 0.020 to 0.049 respectively. 3He/4He, 21Ne/22Ne, and 40Ar/36Ar vary between 0.14-0.25 Ra, 0.0373-0.0508, and 818-1156 respectively, and are caused by quantifiable contributions from mantle, crustal, and atmosphere-derived sources. The atmosphere-derived 20Ne/36Ar ratios are indistinguishable from groundwater values. The crustal 4He/21Ne* and 4He/40Ar* ratios show a 60% excess of 4He compared to predicted production ratios in the crust and are typical of noble gases released from the shallow crust. The mantle 3He/N2 and groundwater-recharge 36Ar/N2 ratios enable us to rule out significant magmatic or atmosphere contributions to the gas field N2, which is dominantly crustal in origin.Correlated 20Ne/N2 and 4He/N2 shows mixing between two distinct crustal N2 components. One N2 component (N2*) is associated with the crustal 4He and groundwater-derived 20Ne, and the other with no resolvable noble gas contribution. Measured δ15NN2 values vary from +2.7‰ to +9.4‰. The N2* and non-He-associated N2 endmembers are inferred to have δ15NN2 = −3‰ and +13‰ and contribute from between 25-60% and 75-40% of the nitrogen respectively. The non-He-associated nitrogen is probably derived from relatively mature organic matter in the sedimentary column. The δ15NN2* value is not compatible with a crystalline or high-grade metamorphic source and, similar to the 4He, is inferred to be from a shallow or low metamorphic-grade source rock. 4He mass balance requires a regional crustal source, its association with significant magmatic 3He pointing to a tectonically active source to the west of the Hugoton system. The volume of groundwater required to source the 20Ne in the gas field demonstrates the viability of the groundwater system in providing the collection, transport, and focusing mechanism for the 4He and N2*. The N2*/20Ne ratio shows that the N2* transport must be in the aqueous phase, and that the degassing mechanism is probably contact between the regional groundwater system and the preexisting reservoir hydrocarbon gas phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号