首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
    
In this study V2109 Cyg (a pulsating δ Scuti star) has been modelled. In treating the oscillation equations perturbation in gravitational potential energy has been taken into account. Both radial and nonradial oscillations are treated with adiabatic approximation. The so called radial fundamental frequency (5.3745 c/d) and the nonradial frequency (5.8332 c/d) were obtained within a satisfactory precision. It was found that the Cowling approximation introduced more error as one went from low overtones to high overtones in radial oscillations. A similar trend was observed in nonradial case with low values of l. By keeping the effective temperatures almost the same as with V2109 Cyg two more models with different masses have also been calculated to see the effect of inclusion of perturbation in gravitational potential energy on oscillation frequencies in different masses. Conclusion arrived is that one must be careful to employ the Cowling approximation especially for high nonradial oscillation frequencies. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
    
We present new BV photometry and spectroscopic observations of RZ Cassiopeiae. The light and radial velocity curves were formed by the new observations which have been analyzed simultaneously by using theWilson‐Dewinney code. The non‐synchronous rotational velocity v 1 sin i = 76 ± 6 km s–1, deduced for the primary component from the new spectroscopic observations, was also incorporated in the analysis. A time‐series analysis of the residual light curves revealed the multi‐periodic pulsations of the primary component of RZ Cas. The main peak in the frequency spectrum was observed at about 64.197 c d–1 in both B and V bands. The pulsational constant was calculated to be 0.0116 days. This value corresponds to high overtones (n ∼ 6) of non‐radial mode oscillations.We find significant changes in the pulsational amplitude of the primary component from year to year. The peak‐to‐peak pulsational amplitude of the main frequency displays a decrease from 0.m013 in 2000 to 0.m002 in 2001 and thereafter we have found an increase again in the amplitude to 0.m01 in the year 2002. We propose the mass transfer from the cool secondary to the pulsating primary as a possible explanation for such remarkable changes in the pulsational behavior of the primary component. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
    
Pulsation of the Sun with a period of P0 ≈ 160 min discovered about two decades ago, is still waiting explanation. In view of the hypothesis about its cosmological origin, and attempting to find signature of this P0 periodicity among other (short-period variable) stars, the pulsation frequencies of δ Sct stars are subjected to specific analysis. With a confidence level ≈ 3.8σ it is found that the frequency v0 = P0−1 ≈ 104 m̈Hz, within the error limits, appears indeed to be the most “resonant” one for the total sample of 318 pulsating stars of δ Sct type (the most commensurable, or “synchronizing”, period for all these stars occurs to be 162 ± 4 min). We conjecture that a) the P0 oscillation might be connected with periodic fluctuations of gravity field (metrics), and b) the primary excitation mechanism of pulsations of δ Sct stars, reffected by this “ubiquitous” P0 resonance, must be attributed perhaps to superfast rotation of their inner cores (their rates tend to be in near-resonance with the “universal” v0 frequency). The arguments are given favouring a cosmoogical nature of the P0 oscillation.  相似文献   

4.
    
Two years of Kepler spacecraft data of the δ Sct/γ Dor star KIC 9764965 revealed 67 statistically significant frequencies from 0.45 to 59.17 c d–1 (0.005 to 0.685 mHz). The 19 low frequencies do not show equidistant period spacing predicted for gravity modes of successive radial order. We note a favored frequency spacing of 2.053 c d–1 that appears in both the low‐frequency (gravity mode) region and high‐frequency (pressure mode) regions. The value of this frequency spacing also occurs as a dominant low frequency and in a high‐frequency triplet. A peak at exactly twice the value of the 2.053 cd–1 mode is shown not to be a Fourier harmonic of the low‐frequency peak due to a different amplitude variability. This behavior is also seen in other δ Sct stars. The test for resonant mode coupling between low and high frequencies could not be carried out due to the small amplitudes of the peaks, making it difficult to separate the parent and child modes. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Recent multisite campaigns of the Delta Scuti Network have revealed 34 frequencies of pulsation for the star 4 CVn. Our present knowledge of the frequencies makes it possible to reanalyse the shorter data sets in the literature, photometric observations from 1966 to 1997.
4 CVn shows strong amplitude variability with time-scales of ten years or longer, although for neighbouring years the amplitudes usually are similar. Seven of the eight dominant modes show annual variability of ∼12 per cent. The variability increases to ∼40 per cent over a decade. The formally derived time-scale of variation of 30 years can only be a rough estimate, since this is also the length of the available data span. The variability is compared with that of FG Vir, which shows lower amplitude variability.
The cyclic behaviour of the amplitude variations excludes an evolutionary origin. There exists some evidence that a mode at 6.12 d−1, which appeared during 1996 and 1997, may have been present with small amplitudes in the 1976–1978 time period.
The pulsation mode at 7.375 d−1 exhibited the most rapid decrease found so far: the V amplitude dropped from the highest known value of 15 mmag in 1974 to 4 mmag in 1976 and 1 mmag in 1977. After that the mode has been increasing in amplitude. There exists a phase jump between 1976 and 1977, suggesting the growth of a new mode. It is interesting to note that this mode also has the strongest coupling with other modes with combination frequencies, f i ± f j . The amplitudes of these combination frequencies are also strongly variable from year to year. We speculate that power is transferred between the modes through mode-coupling.  相似文献   

6.
    
This series of high quality elemental abundance analyses of mostly Main Sequence normal and peculiar B, A, and F stars defines their properties and provides data for the comparison with analyses of somewhat similar stars and with theoretical predictions. Most use high dispersion and high S/N (≥ 200) spectrograms obtained with CCD detectors at the long camera of the 1.22‐m Dominion Astrophysical Observatory telescope's coudé spectrograph. Here we expand the range of stars examined to include two relatively quiescent F supergiants. ν Her (F2 II) and 41 Cyg (F5 Ib‐II) are analyzed as consistently as possible with previous studies. These LTE fine analyses use the ATLAS9 and the WIDTH9 programs of R. L. Kurucz. High signal‐to‐noise spectrograms and high quality atomic data were employed. The derived values of these photometrically constant stars are somewhat different with the abundances of ν Her being somewhat metal‐poor and those of 41 Cyg being crudely solar‐like. Our analyses indicate that the basic results of Luck & Wepfer (1995) who also studied ν Her and 41 Cyg are not likely to be significantly changed by new studies of all their stars. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Elemental abundances of 28 And (A7 III) and 99 Her (F7 V), which have modest rotational velocities, are derived in a manner consistent with previous studies in this series of papers. The values for 28 And, a δ Scuti variable, show that it is slightly metal-poor, but not a classical Am star. 99 Her, which is somewhat more metal-poor, has a rather small microturbulence for its spectral type.  相似文献   

8.
We report on the discovery of a new short-periodic pulsating variable star in the field of the pulsating sdB star KPD 2109+4401. The star was observed on 10 consecutive nights. Based on the light curves, we detect three pulsation frequencies at 10.308, 4.023 and 11.075 cycle d−1 with amplitudes of 11.1, 4.3 and 4.2 milli-magnitudes, respectively. Using the existing data from other sky surveys, we estimate a spectral type of late F and other atmospheric parameters. Then we discuss the observational properties of the star. Finally it is classified to be a new low-amplitude multiperiodic δ Scuti star. A future interest addressed is to accurately determine the star's spectral type and then to judge a possible link to γ Doradus-type pulsation.  相似文献   

9.
Evolutionary stellar models of FG Vir have been developed theoretically and are compared with earlier observational results. Using the models, we performed calculations to obtain radial and non-radial adiabatic oscillation frequencies. The results show that, if the observational splitting was considered and the observational mode identifications were followed, 1.85M star models with the rotational velocities in the range from 32 to 66 kms−1 seem to be representative models of FG Vir.  相似文献   

10.
HD 23194, a member of the Pleiades, was found to pulsate with a period of about 30 min. The literature on the star is reviewed, and it is concluded that it may be a marginal Am star in a binary system. HD 95321 is an evolved Am ( ρ Puppis) star with a 5.1-h periodicity. Mode identification of its pulsation, based on multicolour photometry, suggests that the oscillation is probably non-radial with ℓ=2. We also report on the discovery of six other new δ Scuti stars, some of which may be pulsating in gravity modes.  相似文献   

11.
12.
Only a fraction of the theoretically predicted non-radial pulsation modes have so far been observed in δ Scuti stars. Nevertheless, the large number of frequencies detected in recent photometric studies of selected δ Scuti stars allow us to look for regularities in the frequency spacing of modes. Mode identifications are used to interpret these results.
Statistical analyses of several δ Scuti stars (FG Vir, 44 Tau, BL Cam and others) show that the photometrically observed frequencies are not distributed at random, but that the excited non-radial modes cluster around the frequencies of the radial modes over many radial orders.
The observed regularities can be partly explained by modes trapped in the stellar envelope. This mode selection mechanism was proposed by Dziembowski & Królikowska and shown to be efficient for  ℓ= 1  modes. New pulsation model calculations confirm the observed regularities.
We present the s – f diagram, which compares the average separation of the radial frequencies ( s ) with the frequency of the lowest frequency unstable radial mode ( f ). This provides an estimate for the  log  g   value of the observed star, if we assume that the centres of the observed frequency clusters correspond to the radial mode frequencies. This assumption is confirmed by examples of well-studied δ Scuti variables in which radial modes were definitely identified.  相似文献   

13.
14.
15.
16.
We have examined the evolution of merged low-mass double white dwarfs which become low-luminosity (or high-gravity) extreme helium stars. We have approximated the merging process by the rapid accretion of matter, consisting mostly of helium, on to a helium white dwarf. After a certain mass is accumulated, a helium shell flash occurs, the radius and luminosity increase and the star becomes a yellow giant. Mass accretion is stopped artificially when the total mass reaches a pre-determined value. As the helium-burning shell moves inwards with repeating shell flashes, the effective temperature gradually increases as the star evolves towards the helium main sequence. When the mass interior to the helium‐burning shell is approximately 0.25 M, the star enters a regime where it is pulsationally unstable. We have obtained radial pulsation periods for these models.
These models have properties very similar to those of the pulsating helium star V652 Her. We have compared the rate of period change of the theoretical models with that observed in V652 Her, as well as with its position on the Hertzsprung–Russell diagram. We conclude that the merger between two helium white dwarfs can produce a star with properties remarkably similar to those observed in at least one extreme helium star, and is a viable model for their evolutionary origin. Such helium stars will evolve to become hot subdwarfs close to the helium main sequence. We also discuss the number of low-luminosity helium stars in the Galaxy expected for our evolution scenario.  相似文献   

17.
    
We examine the sharp‐lined stars HR 6455 (A3 III, v sin i = 8.7 km s–1) and η Lep (F2 V, v sin i = 13.5 km s–1) as well as δ Aqr (A3 V, v sin i = 81 km s–1) and 1 Boo (A1 V, v sin i = 59 km s–1) to increase the number consistently analyzed A and F stars using high dispersion and high S/N (≥200) spectrograms obtained with CCD detectors at the long Coudé camera of the 1.22‐m telescope of the Dominion Astrophysical Observatory. Such studies contribute to understanding systematic abundance differences between normal and non‐magnetic main‐sequence band chemically peculiar A and early F stars. LTE fine analyses of HR 6455, δ Aqr, and 1 Boo using Kurucz's ATLAS suite programs show the same general elemental abundance trends with differences in the metal richness. Light and iron‐peak element abundances are generally solar or overabundant while heavy element and rare earth element abundances are overabundant. HR 6455 is an evolved Am star while δ Aqr and 1 Boo show the phenomenon to different extents. Most derived abundances of η Lep are solar (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The Blazhko effect in RR Lyrae stars is still poorly understood theoretically. Stars with multiple Blazhko periods or in which the Blazhko effect itself varies are particularly challenging. This study investigates the Blazhko effect in the RRc star LS Her. Detailed CCD photometry in the   V , R C  and I C band has been performed on 63 nights during six months. LS Her is confirmed to have a Blazhko period of  12.75 ± 0.02  d. However, where normally the side frequencies of the Blazhko triplet are expected, an equidistant group of three frequencies is found on both sides of the main pulsation frequency. As a consequence, the period and amplitude of the Blazhko effect itself vary in a cycle of  109 ± 4  d. LS Her is a unique object turning out to be very important in the verification of the theories for the Blazhko effect.  相似文献   

19.
We present the results of a three-year Johnson V and Strömgren uvby H β photometric study of the δ Scuti star BR Cancri (BR Cnc). Our data sets consist of 1293 discrete differential magnitudes in Johnson V and yellow y filters, 883 in Strömgren v and 239 in ub filters. The Fourier analysis of the data suggests four pulsation frequencies for the variable: f 1=24.978, f 2=11.358, f 3=11.808 and f 4=27.914 cycle d−1. During the three observing years, the main frequency f 1 kept its V ( y ) amplitude constant at about 6 mmag but its v amplitude seems to be changing. Amplitude variations for all the three other frequencies are also claimed. The pulsation modes of the frequencies are discussed based on the colour data. Using uvbyβ data and calibrations in the literature, we derive the physical parameters for BR Cnc.  相似文献   

20.
We present simultaneous UBVRI photometry and high-dispersion spectroscopy of the δ Scuti star QQ Tel. At least seven periodicities are detected in the light curve, but there are likely to be many more. The line profile variations suggest that some of the observed frequencies may be due to modes of moderately high degree  (ℓ≳4)  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号