首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Analysis of spectral data of two neighboring infrared lines, Fe I 15648.5 Å (g = 3) and FeI 15652.9 Å (geff = 1.53) are carried out for a simple sunspot when it was near the solar disk center (μ = 0.92), to understand the basic structure of sunspot magnetic field. Inversions of Stokes profiles are carried out to derive different atmospheric parameters both as a function of location within the sunspot and height in the atmosphere. As a result of the inversion we have obtained maps of magnetic field strength, temperature, line‐of‐sight velocity, field inclination and azimuth for different optical depth layers between log(τ5) = 0 and log(τ5) = –2.0. In this paper we present few results from our inversion for a layer averaged between log(τ5) from 0.0 to –0.5.  相似文献   

2.
Intensity images and Doppler-velocity maps of the quiet sun in different heights are obtained from simultaneously recorded spectra of different lines. A relation between the intensity images is recognizable up to formation heights of 900 km above continuum, but the correlation coefficient changes sign above 400 km. The core of Hα shows a different pattern without any correlation to the continuum layer. Extreme Doppler velocities as well as the rms-velocities have minima at a height of 400 km, values of about 2 km/s occur in deep photospheric layers and 2.5 km/s in a height of 900 km. The velocities in the lower and in the upper photosphere are well correlated indicating that the pattern of the velocity field is preserved up to higher layers than the intensity pattern. Hα-velocities reach values up to 10 km/s and more, they show no correlation with the continuum intensities and almost no with the line core intensities.  相似文献   

3.
Powerful flares are closely related to the evolution of the complex magnetic field configuration at the solar surface. The strength of the magnetic field and speed of its evolution are two vital parameters in the study of the change of magnetic field in the solar atmosphere. We propose a dynamic and quantitative depiction of the changes in complexity of the active region: E=u×B, where u is the velocity of the footpoint motion of the magnetic field lines and B is the magnetic field. E represents the dynamic evolution of the velocity field and the magnetic field, shows the sweeping motions of magnetic footpoints, exhibits the buildup process of current, and relates to the changes in nonpotentiality of the active region in the photosphere. It is actually the induced electric field in the photosphere. It can be deduced observationally from velocities computed by the local correlation tracking (LCT) technique and vector magnetic fields derived from vector magnetograms. The relationship between E and ten X-class flares of four active regions (NOAA 10720, 10486, 9077, and 8100) has been studied. It is found that (1) the initial brightenings of flare kernels are roughly located near the inversion lines where the intensities of E are very high, (2) the daily averages of the mean densities of E and its normal component (E n) decrease after flares for most cases we studied, whereas those of the tangential component of E (E t) show no obvious regularities before and after flares, and (3) the daily averages of the mean densities of E t are always higher than those of E n, which cannot be naturally deduced by the daily averages of the mean densities of B n and B t.  相似文献   

4.
Temperature and velocity structures above granules and intergranular lanes were studied on spectrograms covering Caii H and K lines. In agreement with our earlier results, it was confirmed more quantitatively that there appear two kinds of bright continua, one in the outer wings (granular continuum) and the other in the inner wings (temporarily called K0-continuum) of Caii H and K lines, and that these two kinds of bright continua are located more or less in a complementary fashion. Further, it was found that the bright K0-continuum is well associated with higher central residual intensity of absorption lines. These facts suggest that in the upper photosphere of, say, < 0.1, there are high temperature regions in the intergranular lanes. Motions above granular regions are essentially upwards, whereas those of intergranular regions are predominantly downwards, and in the uppermost photosphere the motions become more random.  相似文献   

5.
An M4.1/1B solar flare on November 5, 2004, is investigated. The Stokes I ± V profiles of nine photospheric Fe I, Fe II, Sc II, and Cr II lines are studied for three instants of this flare (11 h 35 m , 11 h 39 m , and 11 h 45 m UT). The magnetic fields in the flare were measured in two ways: using the center-of-gravity method and by comparing the observed profiles with the theoretical ones computed with Baranovsky’s code. Analysis of the profiles reveals that the magnetic field strength peaked in the upper photosphere (logτ500 = ?2.7) at the flare maximum (11 h 35 m ); this peak was smeared and shifted into the deeper photospheric layers as the flare evolved. The semiempirical model of the flare has two layers with an enhanced temperature: in the upper and middle photosphere. These layers also shifted deep into the photosphere as the flare evolved. The turbulent velocities at the distribution maximum increased by almost a factor of 5 compared to those in the undisturbed photosphere, while the plasma density both increased and decreased by a factor of 3–6.  相似文献   

6.
Magnetic activity in the photosphere and chromosphere of the M dwarf EY Dra is studied and possible correlations between the two are investigated using photometric observations in the V and R bands and optical and near infrared spectroscopy. The longitudinal spot configuration in the photosphere is obtained from the V band photometry, and the chromospheric structures are investigated using variations in the Hα line profile and observations of the Paschen β line. The shape of the V band light‐curve indicates two active regions on the stellar surface, about 0.4 in phase apart. The spectroscopic observations show enhanced Hα emission observed close to the phases of the photometrically detected starspots. This could indicate chromospheric plages associated with the photospheric starspots. Some indications of prominence structures are also seen. The chromospheric pressure is limited to log mTR < –4 based on the non‐detection of emission in the Paschen β wavelength region. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In this work we investigate p‐mode power variation with solar atmosphere. To this aim, we use THÉMIS observations of the Na D1 (λ 5896 Å) and K (λ 7699 Å) spectral lines. While the formation heights of the K spectral line are essentially located in the photospheric layer, the formation heights of the Na D1 line span a much wider region: from photosphere up to chromosphere. Hence, we had the opportunity to infer p‐mode power variation up to the chromospheric layer. By analyzing power spectra obtained by temporal series at different points of the Na D1 and K spectral lines, we confirm and quantify the increase in p‐mode power towards higher atmospheric layers. Furthermore, the large span in formation heights of the Na D1 line induces a larger enhancement of p‐mode power with solar atmosphere compared to the K spectral line. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
I present and discuss the fitting methodology I developed for very‐long time series (2088‐day‐long). This new method was first used to fit low degree modes, 𝓁 ≤ 25. That time series was also sub‐divided in somewhat shorter segments (728‐daylong) and also fitted for these low degrees, in order to measure changes with the solar activity level. I have recently extended the fitting in several “directions”: 1) to substantially higher degrees (𝓁 ≤ 125), 2) to shorter time series (364‐ and 182‐day‐long), and, 3) to additional 728‐day‐long segments, covering now some 10 years of observations. I present and discuss issues related to this expansion, namely problems at low frequencies affecting the f and p1 modes, and the inadequacy of the leakage matrix at higher degrees. I also present some of the characteristics of the observed temporal changes in the resulting frequencies. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Using two volume‐limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) with the luminosity –20.0 ≤ Mr ≤ –18.5 and –22.40 ≤ Mr ≤–20.16, we have explored the environmental dependence of the fractions of red star‐forming and blue passive galaxies. It is found that the fractions of red star‐forming and blue passive galax‐ies decline mildly with increasing local density in the luminous volume‐limited sample, but in the faint volume‐limited sample these fractions rise slightly with increasing local density except that the fraction of red star‐forming decreases with density in the densest regime. Only according to statistical results of this study, it is difficult to reach the conclusion: there is an environmental dependence for color beyond that for star formation activities or for star formation activities beyond that for color. In this condition, we preferentially believe that star formation activities and color possiblely have equally strong environmental dependence. In the faint volume‐limited sample, we observe that the fraction of star‐forming galaxies‐the density relation has a “critical density” at the projected local density PLD ≈ 1 h–2 Mpc–2: below this density the fraction of star‐forming galaxies is high and nearly constant, while above this density this fraction drops rapidly. Thus, it is possible that in the densest regime of the faint volume‐limited sample, there is an environmental dependence for star formation activities beyond that for color, which leads to the fraction of red star‐forming decreasing with density in the densest regime of the faint volume‐limited sample (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Hinode is an observatory‐style satellite, carrying three advanced instruments being designed and built to work together to explore the physical coupling between the photosphere and the upper layers for understanding the mechanism of dynam‐ ics and heating. The three instruments aboard are the Solar Optical Telescope (SOT), which can provide high‐precision photometric and polarimetric data of the lower atmosphere in the visible light (388–668 nm) with a spatial resolution of 0.2–0.3 arcseconds, the X‐Ray Telescope (XRT) which takes a wide field of full sun coverage X‐ray images being capable of diagnosing the physical condition of coronal plasmas, and the EUV Imaging Spectrometer (EIS) which observes the upper transition region and coronal emission lines in the wavelength ranges of 17–21 nm and 25–29 nm. Since first‐light observations in the end of October 2006, Hinode has been continuously providing unprecedented high‐quality solar data. We will present some new findings of the sun with Hinode, focusing on those from SOT (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The observations of lithium were carried out with the TST-2 telescope at CrAO on August 15–20, 2006. A sunspot model was calculated for the dates of observations. The lithium abundance in a sunspot and in the undisturbed photosphere was determined. It is log(N Li) = 1.35 for the sunspot and log (N Li) = 1.05 for the undisturbed photosphere.  相似文献   

13.
From inversion of a time series of slit spectra, observed in a quiet region of the solar photosphere, averaged models of a granular cell have been obtained showing the stratification of physical quantities versus optical depth and geometrical height. Furthermore a semi‐empiric dynamic model of a mean granular cell has been derived and the results are presented.  相似文献   

14.
Two quiescent solar prominences were observed in July 2000 from SUMER aboard SOHO and from the two German solar telescopes at Tenerife. Two‐dimensional images taken at the VTT simultaneously in the spectral lines Hβ at 4862 Å and Ca II at 8542 Å show no significant spatial variation of their pressure‐sensitive emission ratio. Slit spectra of the Ca II 8542 Å and He I 10830 Å lines obtained at the Gregory‐Coudé telescope yield 8000 K < Tkin < 9000 K and 3 km/s < Vn–th < 8 km/s. Among the various spectral ranges observed with SUMER, we first investigate the Lyman emission lines, which were fitted by Gaussians yielding reliable spectral radiances and line widths for the series members 5 < k < 18. A determination of the level population gives for the lower series members a Boltzmann temperature of 60 000 K, the higher members being over‐populated. This temperature indicates an origin of the Lyman lines from hot surroundings of the cool prominence body seen in the ground‐based data; this also holds for the ‘hotter’ SUMER lines.  相似文献   

15.
Lutz‐Kelker bias corrected absolute magnitude calibrations for the detached binary systems with main‐sequence components are presented. The absolute magnitudes of the calibrator stars were derived at intrinsic colours of Johnson‐Cousins and 2MASS (Two Micron All Sky Survey) photometric systems. As for the calibrator stars, 44 detached binaries were selected from the Hipparcos catalogue, which have relative observed parallax errors smaller than 15% (σπ ≤ 0.15). The calibration equations which provide the corrected absolute magnitude for optical and near‐infrared pass bands are valid for wide ranges of colours and absolute magnitudes: –0.18 < (BV)0 < 0.91, –1.6 < MV < 5.5 and –0.15 < (JH)0 < 0.50, –0.02 < (HKs)0 < 0.13, 0 < MJ < 4, respectively. The distances computed using the luminosity‐colours (LCs) relation with optical (BV) and near‐infrared (JHKs) observations were compared to the distances found from various other methods. The results show that new absolute magnitude calibrations of this study can be used as a convenient statistical tool to estimate the true distances of detached binaries out of Hipparcos' distance limit. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The helioseismic instruments aboard the SOHO satellite make it possible to measure solar oscillations as variations of the irradiance (VIRGO) or as variations of the photospheric velocity (GOLF). Theoretically, phase differences between different photometric bands are expected to be around 0 degrees over the p‐mode frequency range. By using VIRGO (red) and VIRGO (blue) data, we find a mean phase shift of 8.05 ± 1.81°, whereas by using VIRGO (green) and VIRGO (blue) data, we got a mean value of –1.04 ± 0.19°. Hence, when the analysis includes the VIRGO infrared range, the Sun's atmosphere does not follow an exact adiabatic behavior. In this study, we use the phase shifts obtained by VIRGO (green) and VIRGO (blue) to determine the non‐adiabatic parameter phase lag (ψT) as a function of frequency. To this aim, we applied the non radial linearized formula put in the complex form by Garrido: we found a mean value of ψT = 179.95°. The lowest value being ψT = 179.90°, the departure from theoretical predictions is less then a tenth of a degree over the entire p mode frequency range. We can state that the solar atmosphere has a behavior close to the adiabatic case, when the phase shifts and amplitude ratios are computed using VIRGO (green) and VIRGO (blue) data. Nevertheless this small deviation is significant. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The decrease in the rms contrast of time-averaged images with the averaging time is compared between four data sets: (1) a series of solar granulation images recorded at La Palma in 1993, (2) a series of artificial granulation images obtained in numerical simulations by Rieutord et al. (Nuovo Cimento 25, 523, 2002), (3) a similar series computed by Steffen and his colleagues (see Wedemeyer et al. in Astron. Astrophys. 44, 1121, 2004), (4) a random field with some parameters typical of the granulation, constructed by Rast (Astron. Astrophys. 392, L13, 2002). In addition, (5) a sequence of images was obtained from real granulation images by using a temporal and spatial shuffling procedure, and the contrast of the average of n images from this sequence as a function of n is analysed. The series (1) of real granulation images exhibits a considerably slower contrast decrease than do both the series (3) of simulated granulation images and the series (4) of random fields. Starting from some relatively short averaging times t, the behaviour of the contrast in series (3) and (4) resembles the t −1/2 statistical law, whereas the shuffled series (5) obeys the n −1/2 law from n=2 on. Series (2) demonstrates a peculiarly slow decline of contrast, which could be attributed to particular properties of the boundary conditions used in the simulations. Comparisons between the analysed contrast-variation laws indicate quite definitely that the brightness field of solar granulation contains a long-lived component, which could be associated with locally persistent dark intergranular holes and/or with the presence of quasi-regular structures. The suggestion that the random field (4) successfully reproduces the contrast-variation law for the real granulation (Rast in Astron. Astrophys. 392, L13, 2002) can be dismissed.  相似文献   

18.
Continuous wavelet transform and cross‐wavelet transform have been used to investigate the phase periodicity and synchrony of the monthly mean Wolf (Rz) and group (Rg) sunspot numbers during the period of June 1795 to December 1995. The Schwabe cycle is the only one common period in Rg and Rz, but it is not well‐defined in case of cycles 5–7 of Rg and in case of cycles 5 and 6 of Rz. In fact, the Schwabe period is slightly different in Rg and Rz before cycle 12, but from cycle 12 onwards it is almost the same for the two time series. Asynchrony of the two time series is more obviously seen in cycles 5 and 6 than in the following cycles, and usually more obviously seen around the maximum time of a cycle than during the rest of the cycle. Rg is found to fit Rz better in both amplitudes and peak epoch during the minimum time time of a solar cycle than during the maximum time of the cycle, which should be caused by their different definition, and around the maximum time of a cycle, Rg is usually less than Rz. Asynchrony of Rg and Rz should somewhat agree with different sunspot cycle characteristics exhibited by themselves (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Helioseismic techniques such as ring-diagram analysis have often been used to determine the subsurface structural differences between solar active and quiet regions. Results obtained by inverting the frequency differences between the regions are usually interpreted as the sound-speed differences between them. These in turn are used as a measure of temperature and magnetic-field strength differences between the two regions. In this paper we first show that the “sound-speed” difference obtained from inversions is actually a combination of sound-speed difference and a magnetic component. Hence, the inversion result is not directly related to the thermal structure. Next, using solar models that include magnetic fields, we develop a formulation to use the inversion results to infer the differences in the magnetic and thermal structures between active and quiet regions. We then apply our technique to existing structure inversion results for different pairs of active and quiet regions. We find that the effect of magnetic fields is strongest in a shallow region above 0.985R and that the strengths of magnetic-field effects at the surface and in the deeper (r<0.98R ) layers are inversely related (i.e., the stronger the surface magnetic field the smaller the magnetic effects in the deeper layers, and vice versa). We also find that the magnetic effects in the deeper layers are the strongest in the quiet regions, consistent with the fact that these are basically regions with weakest magnetic fields at the surface. Because the quiet regions were selected to precede or follow their companion active regions, the results could have implications about the evolution of magnetic fields under active regions.  相似文献   

20.
The Coudé feed of the vacuum telescope (aperture D = 65 cm) at the Big Bear Solar Observatory (BBSO) is currently completely remodelled to accommodate a correlation tracker and a high‐order Adaptive Optics (AO) system. The AO system serves two imaging magnetograph systems located at a new optical laboratory on the observatory's 2nd floor. The InfraRed Imaging Magnetograph (IRIM) is an innovative magnetograph system for near‐infrared (NIR) observations in the wavelength region from 1.0 μm to 1.6 μm. The Visible‐light Imaging Magnetograph (VIM) is basically a twin of IRIM for observations in the wavelength range from 550 nm to 700 nm. Both instruments were designed for high spatial and high temporal observations of the solar photosphere and chromosphere. Real‐time data processing is an integral part of the instruments and will enhance BBSO's capabilities in monitoring solar activity and predicting and forecasting space weather.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号